一元一次方程的解法习题课
- 格式:doc
- 大小:92.00 KB
- 文档页数:3
个人收集整理-ZQ 习题课集体备课教案
附:习题及讲解
、 312253-=-x x 、 、223131x x --=-- 、5
124121223+--=-+x x x 、数学小诊所:小明是个“小马虎”下面是他做地题目,我们看看对不对?如果不对,请帮他改正.
()方程
1024
x x --=去分母,得214x x -+= ()方程1136
x x -+=去分母,得122x x +-= ()方程11263
x x --=去分母,得312x x --= ()方程1123x x -=+去分母,得3261x x -=+ 教学反思:
.去分母后原来地分子没有添加括号
分析:分数线实际上包含括号地意思,去分母后原来地分子应该添上括号.
.去分母时最小公倍数没有乘到每一项—漏乘
分析:去分母时最小公倍数没有乘到每一项,特别是不含有分数地项.
. 去括号导致错误
. 运用乘法分配律时,漏乘括号里地项.
分析:去括号时没有把括号外地数分配到括号中地每一项.
. 括号前面是“-”号时,去括号要使括号里地每一项变号.
6
751413-=--y y
个人收集整理-ZQ。
第三章一元一次方程3.1从算式到方程3.1.1一元一次方程练习1.设沿跑道跑x周可以跑3000米,则:400x=3000 解得x=7.52.设甲种铅笔买了x枝,则乙种铅笔买了(20一x)枝,则:0.3x+0.6(20一x)=9 解得x=10 故20一x=l0(枝)3.设梯形上底为xcm,则[x+(x+2)]×5×(1/2)=40 解得x=73.1.2等式的性质练习(1)x=11 (2)x=150 (3)x= 一4 (4)x= 一4/5习题3.11.(1)a+5=8 (2) b/3=9 (3)2x+10=18(4) x/3一y=6 (5)3a+5=4a (6) b/2—7=a+b2.(1)a+b=b+a (2)ab=ba(3)a(b+c)=ab+ac (4)a+b+c=a+(b+c)3.等式的性质1,等式两边加(或减)同一个数(或式子),结果仍相等。
用式子表示为:若a=b则a±c=b±c等式的性质2,等式两边乘以同一个数,或除以同一个不为零的数,结果仍相等。
用式子表示为:若a=b,那ac=bc,若a=b(c≠0)那么4.(1)x=33 (2)x=8 (3)x=1 (4)x=14.设获得一等奖的学生有x人,则获得二等奖的学生有(22一x)人,故200x+50(22一x)=14006.设有x人种树,则:10x+6=12x一67.设上年同期这项收人为x元,则x(1+8.3%)=51098.设x个月后,这辆汽车将行驶20800千米,则12000+800x=208009.设中间小圆半径为xcm,则∏×102一∏x2=20010.(1)由题意有:这两个数分别为:l0b+a和10a+b它们的差是:(106+a)一(10a+6)=9b一9a=9(b一a)所以它们的差一定能被9整除它们的和是(10b+a)+(10a+b)=1la+11b=11(a+b)所以它们的和一定能被11整除(2)x为3 11.略3.2解一元一次方程(一)——合并同类项与移项练习(一)(1)x=3 (2)x=7/2 (3)x= 一4 (4)x=1练习(二)(1)x=1 (2)x= 一24习题 3.21.(1)x=2 (2)x=3 (3))x= 一1 (4)b=18/52.解方程时,将方程中某一项改变符号后,从方程的一边移到另一边叫做移项,移项实质上是根据等式的性质。
第2课时 去分母要点感知1 去分母的方法:依据等式的性质2.方程两边各项都乘以所有分母的 ,将分母去掉.预习练习1-1 解方程3y -14-1=2y +76,去分母时,方程两边都乘以( ) A .10 B .12 C .24 D .61-2 解方程13-x -12=1,去分母正确的是( ) A .1-(x -1)=1 B .2-3(x -1)=6C .2-3(x -1)=1D .3-2(x -1)=6要点感知2 解一元一次方程的一般步骤:(1) ;(2) ;(3) ;(4) ;(5) .预习练习2-1 解方程:2x -13=x +24.知识点1 利用去分母解一元一次方程1.方程3-1-x 2=0可以变形为( ) A .3-1-x =0 B .6-1-x =0C .6-1+x =0D .6-1+x =22.解方程13-x -12=1的结果是( ) A .x =12 B .x =-12C .x =13D .x =-133.若a 3+1与2a +13互为相反数,则a 等于( ) A.43 B .10 C .-43D .-10 4.要将方程2t -53+3-2t 5=3的分母去掉,在方程的两边最好是乘以 . 5.方程3x +12-x -16=1去分母后所得的结果是 . 6.(滨州中考)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.( ) 去分母,得3(3x +5)=2(2x -1).( )去括号,得9x +15=4x -2.( )( ),得9x -4x =-15-2.( )合并同类项,得5x =-17.( ),得x =-175.( )7.解下列方程:(1)x -32-4x +15=1; (2)2x +13=1-x -15.知识点2 解一元一次方程的步骤8.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长.通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去.通讯员用多少时间可以追上学生队伍?9.解方程x -34-1+2x 3=1时,去分母正确的是( )A .3(x -3)-4(1+2x)=1B .3(x -3)-4(1+2x)=12C .3x -9-1-2x =12D .3(x -3)-1+2x =1210.若关于x 的一元一次方程2x -k 3-x -3k 2=1的解是x =-1,则k 的值是( ) A .27 B .1 C .-1311D .0 11.如果规定“*”的意义为:a*b =a +2b 2(其中a ,b 为有理数),那么方程3*x =52的解是x = . 12.解下列方程:(1)x -13-x +26=4-x 2; (2)x -x -12=2-x +25;(3)x -32-4x +15=1; (4)x +12=6-2x -13.13.某同学在解方程2x -13=x +a 3-2去分母时,方程右边的-2没有乘3,因而求得的方程的解为x =2,试求a 的值,并求出原方程的正确的解.14.小明以每小时8千米的速度从甲地到达乙地,回来时走的路程比去时多3千米,已知速度为9千米/时,这样回来时比去时多用18小时,求甲、乙两地的原路长.挑战自我15.(武昌模拟)有一些相同房间需要粉刷,一天3名师傅(每名师傅的工作效率相同)去粉刷8个房间,结果其中有40 m 2墙面未来得及刷;同样的时间内5名徒弟(每名徒弟的工作效率相同)粉刷了9个房间的墙面.每名师傅比徒弟一天多刷30 m 2的墙面.(1)求每个房间需要粉刷的墙面面积为多少;(2)已知一名师傅一天的工钱比一名徒弟的一天的工钱多40元,现有36间房需要粉刷,全部请徒弟粉刷比全部请师傅粉刷少付300元工钱,求一名徒弟一天的工钱是多少?参考答案要点感知1 最小公倍数预习练习1-1 B1-2 B要点感知2 去分母;去括号;移项;合并同类项;系数化为1预习练习2-1 去分母,得8x -4=3x +6.移项,得8x -3x =4+6.合并同类项,得5x =10.系数化为1,得x =2.1.C 2.D 3.C 4.15 5.3(3x +1)-(x -1)=66.分式的基本性质,等式的性质2,去括号法则或乘法分配律,移项,等式的性质1,系数化为1,等式的性质27.(1)去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(2)去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.A8.设通讯员需x 小时追上学生队伍,则其行进了14x 千米,学生在通讯员出发后又走了5x 千米,根据题意,得14x =5×310+5x.解得x =16. 答:通讯员用16小时(即10分钟)可以追上学生队伍9.B 10.B 11.112.(1)去分母,得2(x -1)-(x +2)=3(4-x).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)去分母,得10x -5(x -1)=20-2(x +2).去括号,得10x -5x +5=20-2x -4.移项,得10x -5x +2x =-5+20-4.合并同类项,得7x =11.系数化为1,得x =117. (3)去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(4)去分母,得3(x +1)=36-2(2x -1).去括号,得3x +3=36-4x +2.移项,得3x +4x =-3+36+2.合并同类项,得7x =35.系数化为1,得x =5.13.根据该同学的做法,去分母,得2x -1=x +a -2.解得x =a -1.因为x =2是方程的解,所以a =3.把a =3代入原方程,得2x -13=x +33-2,解得x =-2. 14.设甲、乙两地的原路长为x 千米,则x 8+18=x +39.解得x =15. 答:甲、乙两地的原路长为15千米.挑战自我15.(1)设每个房间需要粉刷的墙面面积x m 2,依题意,得8x -403-30=9x 5,解得x =50. 答:每个房间需要粉刷的墙面面积为50 m 2.(2)1名师傅一天粉刷面积为8×50-403=120 m 2,1名徒弟一天粉刷面积为9×505=90 m 2, 36间房需粉刷面积为36×50=1 800 m 2.设一名徒弟一天的工钱是y 元,由题意得1800120(y +40)-300=1 80090y.解得y =60. 答:一名徒弟一天的工钱是60元.9.解方程x -34-1+2x 3=1时,去分母正确的是(B) A .3(x -3)-4(1+2x)=1B .3(x -3)-4(1+2x)=12C .3x -9-1-2x =12D .3(x -3)-1+2x =1210.若关于x 的一元一次方程2x -k 3-x -3k 2=1的解是x =-1,则k 的值是(B) A .27 B .1 C .-1311D .0 11.如果规定“*”的意义为:a*b =a +2b 2(其中a ,b 为有理数),那么方程3*x =52的解是x =1. 12.解下列方程:(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)x -x -12=2-x +25; 解:去分母,得10x -5(x -1)=20-2(x +2).去括号,得10x -5x +5=20-2x -4.移项,得10x -5x +2x =-5+20-4.合并同类项,得7x =11.系数化为1,得x =117. (3)x -32-4x +15=1; 解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(4)x +12=6-2x -13. 解:去分母,得3(x +1)=36-2(2x -1).去括号,得3x +3=36-4x +2.移项,得3x +4x =-3+36+2.合并同类项,得7x =35.系数化为1,得x =5.13.某同学在解方程2x -13=x +a 3-2去分母时,方程右边的-2没有乘3,因而求得的方程的解为x =2,试求a 的值,并求出原方程的正确的解.解:根据该同学的做法,去分母,得2x -1=x +a -2.解得x =a -1.因为x =2是方程的解,所以a =3.把a =3代入原方程,得2x -13=x +33-2,解得x =-2. 14.小明以每小时8千米的速度从甲地到达乙地,回来时走的路程比去时多3千米,已知速度为9千米/时,这样回来时比去时多用18小时,求甲、乙两地的原路长. 解:设甲、乙两地的原路长为x 千米,则x 8+18=x +39.解得x =15. 答:甲、乙两地的原路长为15千米.挑战自我15.(武昌模拟)有一些相同房间需要粉刷,一天3名师傅(每名师傅的工作效率相同)去粉刷8个房间,结果其中有40 m 2墙面未来得及刷;同样的时间内5名徒弟(每名徒弟的工作效率相同)粉刷了9个房间的墙面.每名师傅比徒弟一天多刷30 m 2的墙面.(1)求每个房间需要粉刷的墙面面积为多少;解:设每个房间需要粉刷的墙面面积x m 2,依题意,得8x -403-30=9x 5,解得x =50. 答:每个房间需要粉刷的墙面面积为50 m 2.(2)已知一名师傅一天的工钱比一名徒弟的一天的工钱多40元,现有36间房需要粉刷,全部请徒弟粉刷比全部请师傅粉刷少付300元工钱,求一名徒弟一天的工钱是多少?解:1名师傅一天粉刷面积为8×50-403=120 m 2, 1名徒弟一天粉刷面积为9×505=90 m 2, 36间房需粉刷面积为36×50=1 800 m 2.设一名徒弟一天的工钱是y 元,由题意得1800120(y +40)-300=1 80090y.解得y =60. 答:一名徒弟一天的工钱是60元.。
3.1一元一次方程及其解法(1)
教材分析
本节课是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用等式性质解一些简单的方程。
本节课在描述一元一次方程的概念后,继续学习用等式基本性质解一元一次方程,从而引出用移项法则解一元一次方程,为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
教学目标
(一)知识教学点
1.由实际问题得到的方程抽象出一元一次方程的概念。
2. 理解等式基本性质,并利用等式基本性质解一元一次方程,并学会检验。
3. 理解移项法则,会用移项法则解一元一次方程。
(二)能力训练点
1.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义.
2.由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.(三)德育渗透点
增强学生用数学的意识,激发学生学数学的热情。
(四)美育渗透点
用移项法解方程明显比用等式性质方法解方程方便,体现了数学的方法美.
教学重点:利用移项法则解一元一次方程
教学难点:移项法则的理解和运用
教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛。
教学准备:多媒体辅助
教学流程:
1.用猜谜引出学生身边的问题,从而引出一元一次方程的概念。
2.复习等式的基本性质。
3.利用等式基本性质解一元一次方程,同时给出检验的过程。
4.通过学生的观察、交流、归纳得到移项法则。
5.用移项法则解一元一次方程。
教学过程:
教学反思:。
(完整word版)一元一次不等式习题课一元一次不等式习题课【学习目标】1.会整理易错点,并能找到错误原因2.能灵活应用不等式的性质解决相关问题,会熟练准确地解一元一次不等式【错误展示】1.去括号时,错用乘法分配律解不等式3x+2(2-4x)<19.错解:去括号,得3x+4-4x<19,解得x>-15.诊断: 诊断: 错解在去括号时,括号前面的数 2 没有乘以括号内的每一项.正解: 正解: 去括号,得3x+4-8x<19,-5x<15,所以x>-3. 2.去括号时,2.去括号时,忽视括号前的负号解不等式5x-3(2x-1)>-6.错解:去括号,得5x-6x-3>-6,解得x<3.诊断:诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.正解: 去括号,得5x-6x+3>-6,所以-x>-9,所以x<9.3.移项时,不改变符号解不等式4x-5<2x-9.错解:移项,得4x+2x<-9-5,即6x<-14,所以x<-7/3诊断: 诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解: 移项,得4x-2x<-9+5,解得2x<-4,所以x<-2.4.去分母时,忽视分数线的括号作用解不等式3x-(2x-5)/2>7错解:去分母,得6x-2x-5>15 ,解得:x>19/4诊断:去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解: 去分母,得6x-(2x-5)>14,去括号,得6x-2x+5>14,x>9/45.不等式两边同除以负数,不改变方向解不等式3x-6<1+7x. 错解:移项,得3x-7x<1+6,即-4x <7,所以x<-7/4诊断:将不等式-4x<7 的系数化为1 时,不等式两边同除以-4 后,根据不等式的诊断基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x-7x<1+6,即-4x<7,所以所以x>-7/46.去分母时,漏乘不含分母的项解不等式x-(x-1)/3>x/2+1 错解:去分母,得x-2(x-1)>3x+1,去括号,解得x<1/4诊断:去分母时,要用最简公分母去乘不等式两边的每一项.而错解只乘了含有分母的项,漏乘了不含有分母的项.正解: 去分母,得6x-2(x-1)>3x+6,去括号,得6x-2x+2>3x+6,解得x>4.7.忽视对有关概念的理解求不等式(3x+4)/2-3≤7的非负整数解错解:整理,得3x≤16,的非负整数解. 所以x≤16/3 故其非负整数的解是1,2,3,4正解:非负整数的解是0,1,2,3,4,58.在数轴上表示解集时出现错误解不等式:3(1-x)≥2(x+9),并把它的解集在数轴上表示出来.错解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图1 所示.诊断:本题求得的解集并没错,问题出在将解集在数轴上表示出来时出现了错误,即有两处错误:一是方向表示错误,不应该向右,而应该向左;二是不应用空心圆圈表示,而应用实心圆圈表示.正解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图2 所示.上述三例告诉我们解一元一次不等式时一定要认真分析题目的结构特征,灵活运用注:解一元一次不等式的步骤,正确理解有关概念,才能及时避开陷阱,准确、快速的求解. 【典型例题】例1.不等式基本性质的应用(比较大小)已知:a<b< p="">(1)a+1<b-c;<="" p="">(3)2a<2b: (4)-a/2 >-a/b;(5)3a-2<3b-2; (6)-a+c>-b+c例题2.求不等式2x-3≤5的正整数解例3.已知方程3x+y=2,当y取何值时,x<5?例4.解不等式:(x-2)/2 –(x-1)/3<1【巩固练习】一、不等式的解集1.不等式-3≤x<2的整数解是二、不等式的性质1、已知a>b 用”>”或”<”连接下列各式;(1)a-3 ---- b-3,(2)2a ----- 2b,( 3 )- a /3 ----- -b /3 (4)4a-3---- 4b-3 (5)a-b --- 02、不等式ax>a 的解集为x>1,则a 的取值范围是()A. a>0B.a≥0C.a<0D.a≤03、不等式( a -3) x > 1 的解集是x < 3/a-1,则a的取值范围是4、若a > b ,则ac2 ____ bc2.(本组题独立完成后小组内正)三、解不等式,并把解集在数轴上表示出来(1)-3x/4<-2 (2)3x-1<5x+5(3)(2x-1)/3≤(1+x)/2 (4)(x-3)/4<6-(3-4x)/2(5) 2(x-1)/3≤(x+1/3)/5(由5 名同学板演,然后集体订正)四、列不等式并求出x的范围1、x 的1 与5 的差不小于32、代数式3x-5 的值大于5x+33、代数式(x+3)/2 –(x-1)/5<1的解是非负数(独立完成后,小组派代表讲解订正)五、不等式的综合应用1、求不等式x+1 < 3 的正整数解2、若不等式2x3、关于x 的方程3 x +k= 2 的解是非负数,求k 的取值范围4.3x+y= m+1,2x+y=m-1当m 为何值时,x>y?5.已知关于x,y的方程组x+2y=1,x-2y=m(1)求这个方程组的解;(2)当m取何值时,这个方程组的解x大于1,y不小于-1</b<>。
《一元一次方程的解法》 习题课
一、导学
1、导入课题:一元一次方程是初中数学的重要内容之一,解一元一次方程的方法比较多,本节课我们一起来复习回顾一下解一元一次方程的几种常见的方法
2、目标展示:(1)熟练掌握一元一次方程的解法,熟悉解法中的每个步骤。
(2)能使用一些常用的技巧解决相对较为复杂的方程 二、分层学习:
第一层次学习:复习回顾解一元一次方程 1、自学指导:
(1) 自学内容:例1、解下列一元一次方程
① 23418x x x ++= ② 6745x x -=-
③ 2(8)3(1)x x +=- ④
(2)自学时间:15分钟 (3)自学参考提纲:
① 解一元一次方程的基本思路和基本步骤是什么? ② 移项和去括号分别要注意哪些问题? ③ 在去分母化为整系数方程的过程中要注意什么?
④ 去分母时分数线具有什么作用?去分母后,分数线应如何处理? 2、自学:学生先自行解决,若有困难,可小组内讨论 3、助学:同桌之间互助,教师进行适当的指导 4、强化:(1)熟悉解方程的基本步骤和方法 (2) 练习:解方程
3521
23
x x +-=
第二层次学习: 1、自学指导:
(1)自学内容:例2、解下列一元一次方程 ①
34311
[()12]43242
x x --=+ ② 3
11
17[17(17)](17)2
94
x x x x ----
-=- (2)自学时间:10分钟
(3)自学参考提纲:
① 这两个方程用我们一般的方法都能解出来,你还有没有其它的方法呢? ② 在第①此题中,我们可以看出
34143⨯=,3
1294
⨯=,因此我们还可以采用先外后内223
146
x x +--=
的去括号方法,即先去中括号,再去小括号的方法
③ 在第②题中,我们可以看到,方程两边都含有(17)x -,因此我们可以将(17)x -看作一个整体,先求出(17)x -的值,进而可求出x 的值
2、自学:学生先自行解决,若有困难,可小组内讨论
3、助学:同桌之间互助,教师进行适当的指导
4、强化:(1)善于观察方程的特点,关于去括号,是由里向外还是由外向里,应根据具体的题目特点,给予具体分析,选取最佳的去括号的方法,可优化解题过程
(2)在解一元一次方程的过程中,有时为了减少解题过程,可把某一个式子看成一个整体,先求出这个整体的值,再求出未知数的值
三、评价:
1、 学生学习的自我评价
(1) 请同学们谈谈你所学到的解方程的经验和方法 (2) 请同学们说说自己的收获 2、 教师对学生的评价
请同学们独立完成下面的检测题,看大家掌握的怎么样?
评价检测题
一、(必做题)解下列一元一次方程
(1)4(1)3(21)10(12)x x x -++=- (2)3252
x x x --=
(3)0.30.23
0.224
x x ++= (4)0.7(3 3.7)4 1.3(3 3.7)x x --=--
(5)1111{[(3)3]3}302222
x ----=
二、思考题: 解方程
120
1262=+++x x x x 分析:此题若按照常规方法解答,有些复杂,我们可以根据12、16、112和120
的特征拆项 我们知道:
11112122==-⨯,11623
==⨯ ,
112= = ,1
20
= =。