《离子交换色谱》PPT课件
- 格式:ppt
- 大小:1.04 MB
- 文档页数:10
离⼦交换⾊谱(ion exchange chromatography)2、离⼦交换⾊谱(ion exchange chromatography)蛋⽩质、多肽均属于两性电解质,在缓冲液pH⼩于其等电点时,带净正电荷,⽽在缓冲液pH⼤于其等电点时,带净负电荷。
阴离⼦交换凝胶本⾝带有正电荷基团,阳离⼦交换凝胶本⾝带负电荷基团。
由于静电相互作⽤⽽使样品结合到凝胶上,再采⽤盐浓度梯度或者更换缓冲液的pH值进⾏洗脱对于等电点⼩于5.0的酸性蛋⽩质,推荐使⽤阴离⼦交换,对于等电点⼤于7.0的碱性蛋⽩质,推荐使⽤阳离⼦交换。
两种模式:⼀种使⽬的蛋⽩结合凝胶,通过梯度洗脱;⼀种使⽬的蛋⽩不结合凝胶,⽽⼤部分杂质结合凝胶,则穿过液中含有⽬的蛋⽩。
column chromatography(柱⾊谱)batch chromatography(批⾊谱)c、疏⽔作⽤⾊谱利⽤蛋⽩质、多肽在⾼盐存在下,可以结合疏⽔凝胶,⽽在盐浓度降低时⼜可以解脱的原理实现分离。
d、亲和⾊谱利⽤蛋⽩质、多肽与某些配基的特异性相互作⽤⽽进⾏分离。
例如:酶-底物,酶-抑制剂,糖蛋⽩-凝集素,抗原-抗体等。
近来发展了⾦属螯合亲和⾊谱,⽤于纯化表⾯含⾊氨酸、酪氨酸、组氨酸等的蛋⽩质以及(His)6-tagged重组蛋⽩。
亲和⾊谱分为特异性亲和⾊谱和组别亲和⾊谱两类。
肝素、凝集素、染料、⾦属螯合亲和⾊谱均为组别亲和⾊谱(同⼀配基可以结合许多种蛋⽩质)。
e、反相⾊谱常⽤于蛋⽩质、多肽的HPLC分析,以及多肽的精细制备分离,分辨率极⾼,可以分离两种仅相差⼀个氨基酸的多肽。
如⾎管紧张素(angiotensin)的⼏个亚型通过反相⾊谱可以很好地分离。
同⼀个样品在同⼀Source 30 RPC柱上进⾏分离,由于⾊谱条件进⾏了改变,⾊谱图截然不同,说明反相⾊谱具有⾼度的选择性。
四、应⽤举例例⼀、⼀种抗HIV gp120单克隆抗体的Fab⽚断(E.coli中表达)分⼦量:50 kD等电点:11表达定位:周质(periplasmic)纯化策略:渗透压休克提取周质,阳离⼦交换去除⼤部分杂质,疏⽔作⽤⾊谱进⼀步去除杂质,最后⽤凝胶过滤分离。
离子交换色谱原理离子交换色谱(Ion Exchange Chromatography, IEC)是一种利用离子交换树脂对离子进行分离的色谱技术。
它是一种广泛应用于生物化学、生物技术和生物医学领域的分离纯化技术,也是一种非常重要的分离手段。
离子交换色谱原理的核心是根据离子在离子交换树脂上的吸附和解吸特性进行分离。
在离子交换色谱中,离子交换树脂是起到分离作用的重要载体。
离子交换树脂是一种聚合物,其表面带有大量的阴离子或阳离子交换基团。
当待分离物质溶液通过离子交换树脂时,树脂上的离子交换基团会与溶液中的离子发生离子交换反应,使得待分离物质中的离子被树脂吸附。
而随着溶液的流动,树脂上的离子交换基团会逐渐释放出被吸附的离子,从而实现了离子的分离。
离子交换色谱原理主要包括两种模式,阴离子交换色谱和阳离子交换色谱。
在阴离子交换色谱中,离子交换树脂上的交换基团带有正电荷,主要用于分离带负电荷的离子,如阴离子。
而在阳离子交换色谱中,离子交换树脂上的交换基团带有负电荷,主要用于分离带正电荷的离子,如阳离子。
这两种模式的选择取决于待分离物质的性质和需要分离的离子种类。
离子交换色谱原理的关键在于选择合适的离子交换树脂以及溶液的pH值。
离子交换树脂的选择应考虑待分离离子的性质,如电荷、大小和亲和力等。
而溶液的pH值则会影响到待分离离子的电荷状态,进而影响到离子在树脂上的吸附和解吸行为。
因此,合理选择离子交换树脂和溶液的pH值是离子交换色谱分离的关键。
离子交换色谱原理的应用非常广泛,特别是在生物医学领域。
它可以用于分离和纯化蛋白质、核酸、多肽等生物大分子,也可以用于分析离子含量和离子组成。
此外,离子交换色谱还常用于水质分析、环境监测和食品安全领域。
它的高分辨率、高灵敏度和高选择性使得离子交换色谱成为一种不可或缺的分析手段。
总的来说,离子交换色谱原理是一种基于离子交换树脂对离子进行分离的色谱技术。
它利用离子交换树脂的吸附和解吸特性,实现了对离子的高效分离。