有机物分离和提纯的常用方法(实用)
- 格式:pdf
- 大小:404.96 KB
- 文档页数:7
有机化合物的分离和提纯三、色谱法色谱法chromatography色谱法又称“色谱分析”、“色谱分析法”、“层析法”,是一种分离和分析方法,在分析化学、有机化学、生物化学等领域有着非常广泛的应用。
色谱法利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。
色谱法起源于20世纪初,1950年代之后飞速发展,并发展出一个独立的三级学科-色谱学。
历史上曾经先后有两位化学家因为在色谱领域的突出贡献而获得诺贝尔化学奖,此外色谱分析方法还在12项获得诺贝尔化学奖的研究工作中起到关键作用。
历史色谱法从二十世纪初发明以来,经历了整整一个世纪的发展到今天已经成为最重要的分离分析科学,广泛地应用于许多领域,如石油化工、有机合成、生理生化、医药卫生、环境保护,乃至空间探索等。
将一滴含有混合色素的溶液滴在一块布或一片纸上,随着溶液的展开可以观察到一个个同心圆环出现,这种层析现象虽然古人就已有初步认识并有一些简单的应用,但真正首先认识到这种层析现象在分离分析方面具有重大价值的是俄国植物学家Tswett。
Tswett关于色谱分离方法的研究始于1901年,两年后他发表了他的研究成果"一种新型吸附现象及其在生化分析上的应用,提出了应用吸附原理分离植物色素的新方法。
三年后,他将这种方法命名为色谱法(Chromatography),很显然色谱法(Chromatography)这个词是由颜色(chrom)和图谱(graph)这两个词根组成的,派生词有chromatograph(色谱仪),chromatogram(色谱图),chromatographer(色谱工作者)等。
由于Tswett的开创性工作,因此人们尊称他为"色谱学之父",而以他的名字命名的Tswett奖也成为了色谱界的最高荣誉奖。
色谱法发明后的最初二三十年发展非常缓慢。
有机物分离和提纯的常用方法有机物的分离和提纯是有机化学中基础而重要的实验技术之一,其目的是通过分离纯化有机物,去除杂质,得到纯度较高的目标化合物。
下面介绍几种常用的有机物分离和提纯方法。
一、结晶法结晶法是一种常见的有机物分离和提纯方法。
其原理是利用溶液中温度的变化或添加不同溶剂,在适当条件下使目标化合物逐渐析出结晶。
常用的结晶溶剂有水、醇、醚等,其选择需要根据目标化合物的溶解性来确定。
结晶法对于溶解度较高的化合物或纯化程度较高的化合物特别有效。
二、蒸馏法蒸馏法是一种根据不同化合物的蒸汽压差异来分离和提纯的方法。
常见的蒸馏方法包括简单蒸馏、分批蒸馏和真空蒸馏等。
蒸馏法通常用于液体混合物的分离,特别适用于挥发性物质的纯化。
但对于沸点差异较小的化合物,则需要较高的蒸馏技术要求。
三、萃取法萃取法是利用不同化合物在溶剂中的溶解性差异来进行分离的方法。
常见的萃取方法包括单次萃取、反复萃取和连续萃取等。
其原理是利用目标化合物在溶剂中的亲和性,使其转移到溶剂中,从而实现目标物的分离与提取。
萃取法适用于固液、液液或气液混合物的分离,可以有效地去除杂质。
四、析出法析出法是一种通过改变化合物的物理状态来实现分离的方法。
常见的析出方法包括气相析出、液相析出和超临界流体分离等。
其原理是根据显著的相态差异或溶解度差异,使目标物从混合物中析出。
由于析出法能够在非常温和的条件下进行,因此对于热敏性物质的分离和提纯特别有效。
五、色谱法色谱法是一种通过不同化合物在固定相上的吸附能力差异来进行分离和提纯的方法。
常见的色谱方法包括薄层色谱、柱层析和气相色谱等。
色谱法广泛应用于固体次级代谢产物、天然产物分离纯化以及药物分析等领域,能够高效地分离、纯化复杂混合物。
六、电泳法电泳法是一种利用分子在电场中迁移速度的差异来进行分离和提纯的方法。
常见的电泳方法包括凝胶电泳、毛细管电泳和等电聚焦等。
电泳法适用于DNA、蛋白质等大分子的分离纯化,具有分离效率高、操作简便等优点。
有机物的提纯和分离方法
1.结晶法:结晶法是最常见的有机物提纯方法之一、它利用化合物的
溶解度差异,通过逐渐降低溶剂温度将溶解的化合物结晶出来。
结晶法的
优点是简单易行,但溶解度的差异要足够大。
2.蒸馏法:蒸馏法是一种常见的分离液体混合物的方法。
在蒸馏过程中,将混合物加热至沸腾,蒸汽经冷凝器冷却后得到不同沸点的组分。
蒸
馏法适用于沸点差异较大的组分。
3.萃取法:萃取法是利用物质在两种不相溶的溶剂中的分配系数的差异,将有机物从混合物中分离出来。
通常情况下,使用有机溶剂作为抽提
剂与混合物进行反应,然后通过分离漏斗分离出两相,并利用溶剂的挥发
性去除有机溶剂得到纯净物。
4.色谱法:色谱法是一种通过物质在固定相和流动相中的分配系数差
异将组分分离的方法。
常见的色谱法包括薄层色谱、柱层析、气相色谱和
高效液相色谱等。
5.晶体分离法:晶体分离法是一种利用晶体的形状和大小差异将组分
分离的方法。
通过调整晶体生长条件,例如溶液浓度、温度和晶体生长的
速率等,可以使不同组分的晶体在晶体生长过程中呈现不同的形式和分布,从而实现分离。
另外,还有一些其他的提纯和分离方法,例如过滤、溶解脱色、离子
交换等。
在实际操作中,根据待分离有机物的性质和需求,可以选择适合
的方法进行提纯和分离。
总之,有机物的提纯和分离方法是化学实验室中常用的技术,多种方法可以根据不同的实验要求进行选择。
熟练掌握这些方法,可以有效地提纯和分离有机物,从而得到纯净的化合物。
有机物的十种分离提纯方法
有机物的分离提纯是化学实验中非常重要的一个步骤,可以通过一系列方法将混合物中的目标有机物从杂质中分离出来,得到纯净的有机化合物。
下面列举了十种常用的有机物分离提纯方法。
1.晶体分离:适用于存在结晶性有机化合物的混合物,在适当溶剂中溶解样品,通过逐渐降低温度或加入杂质抑制结晶来分离出目标物质的晶体。
2.萃取:利用两相系统中的物理化学差异,将目标物质从混合物中提取到另一相中。
常见的有机溶剂萃取包括液液萃取和固相萃取。
3.蒸馏:根据不同有机物的沸点差异,将混合物加热至沸腾,通过冷凝再液化得到不同沸点的有机物分离。
4.色谱法:包括气相色谱和液相色谱。
根据溶解度、分配系数、吸附性质等原理,将混合物中的有机物在固定相或移动相中按照一定顺序分离出来。
5.结晶分离:通过溶解混合物,加入合适溶剂后的缓慢结晶,从溶液中分离出结晶纯净有机物。
6.真空干燥:通过在低压下升高温度,将溶液中的溶剂蒸发,得到纯净有机物。
7.洗涤:用溶剂或其中一化合物在混合物中溶解目标物质,然后将其分离出来。
8.冷冻分离:通过低温处理对有机物具有较低溶解度的杂质,使其相对分离出来。
9.蒸发浓缩:通过加热溶液使其溶剂部分蒸发,获得更浓缩的有机物。
10.过滤分离:使用不同孔径的滤纸、滤膜或滤网,将混合物中的悬
浮物或杂质分离出来。
这些分离提纯方法可以单独使用,也可以根据实验需要进行组合使用,以达到更高的纯度要求。
在实际操作中,需要根据混合物的成分、性质以
及目标有机物的特点选择合适的方法。
一、研究有机化合物的基本步骤常用的分离、提纯方法包括蒸馏、萃取、重结晶。
二、蒸馏1.蒸馏原理:利用有机物与杂质的沸点差异,将有机化合物以蒸汽的形式蒸出,然后冷凝得到产品。
2.适用对象:互相溶解、沸点不同的液态有机混合物3.适用条件:①有机物的热稳定性较强;②有机物与杂质的沸点相差较大(一般约大于30 ℃)4.实验仪器:铁架台、酒精灯、石棉网、蒸馏烧瓶、温度计、直形冷凝管、牛角管(尾接管)、锥形瓶。
5.实验装置与注意事项①蒸馏烧瓶里盛液体的用量不超2/3,不少于1/3; ②加入沸石或碎瓷片,防止暴沸;③温度计水银球应与蒸馏烧瓶的支管口平齐; ④冷凝水应下口进入,上口流出;⑤实验开始时,先通冷凝水水,后加热;实验结束时,先停止加热,后停止通冷凝水;第03讲 有机物的分离、提纯知识导航知识精讲三、萃取1.原理:(1)液—液萃取:利用待分离组分在两种不互溶的溶剂中的溶解性不同,使待分离组分从溶解度较小的溶剂中转移到溶解度较大的溶剂中。
(2)固—液萃取:用溶剂从固体物质中溶解出待分离组分。
2.萃取剂(1)选择原则①与原溶剂互不相溶;②与溶质、原溶剂均不反应;③溶质在萃取剂中的溶解度远大于原溶剂。
(2)常用萃取剂乙醚(C2H5OC2H5)、乙酸乙酯、二氯甲烷等3.分液:将萃取后的两层液体(互不相溶、密度也不同的两种液体)分离开的操作方法。
4.主要仪器:分液漏斗5.实验装置与注意事项①分液漏斗使用之前必须检漏(在分液漏斗中注入少量的水,塞上玻璃塞,倒置,看是否漏水,若不漏水,正立分液漏斗后将玻璃塞旋转180°,再倒置看是否漏水)。
②使用时需将漏斗上口的玻璃塞打开,或使玻璃塞上的凹槽对准分液漏斗上的小孔。
③漏斗下端管口紧靠烧怀内壁,分液时下层液体从下口流出,上层液体从上口倒出。
四、重结晶1.重结晶原理:利用被提纯物质与杂质在同一溶剂中的溶解度不同而将杂质除去。
2.适用对象:固体有机化合物3.溶剂选择:要求杂质在此溶剂中溶解度很小或溶解度很大,易于除去;被提纯的有机化合物在此溶剂中的溶解度受温度的影响较大,能够进行冷却结晶。
有机物分离和提纯的常用方法1.蒸馏:蒸馏是一种经典的分离和提纯方法,适用于具有不同沸点的有机物混合物。
通过加热混合物,使其中沸点较低的有机物蒸发为气体,然后在冷凝器中冷凝为液体,从而实现分离。
常用的蒸馏方法包括简单蒸馏、真空蒸馏和分馏等。
2.萃取:萃取是利用不同有机物在不同溶剂中的溶解度不同,从而实现分离和提纯的方法。
常见的萃取方法包括常压萃取和反萃取。
常压萃取是将待分离的混合物与适合的溶剂接触,使其中一个或多个有机物溶解到溶剂中,从而实现分离。
反萃取是从溶剂中将之前溶解的有机物重新提取出来。
3.结晶:结晶是通过控制溶液中溶质在溶剂中的浓度,使溶质逐渐从溶液中析出晶体的过程。
通过结晶可以实现有机物的纯化和提纯。
常见的结晶方法包括普通结晶、溶剂结晶和慢性结晶等。
4.纯化:纯化是指通过对有机物进行一系列的加工和处理,去除其中的杂质,使有机物达到较高纯度的过程。
常用的纯化方法包括重结晶、冻结干燥、溶剂萃取和分离纯化等。
5.凝固:凝固是指通过控制温度使有机物从液态转变为固态的过程。
通过凝固可以实现有机物的分离和提纯。
常见的凝固方法包括冷却和冷冻等。
6.过滤:过滤是将固体颗粒从液体中分离的方法。
常见的过滤方法包括重力过滤、压力过滤和吸滤等。
过滤可以用于分离具有不同粒径和不溶性的固体颗粒。
7.分液:分液是利用具有不同密度的有机物在溶剂中的分层现象进行分离的方法。
常见的分液方法包括漏斗分液和离心分液等。
除了上述常用的分离和提纯方法,还有许多其他的方法,如层析、电离、扩馏和萃取桶等。
这些方法在不同的实验和工业环境中都有广泛的应用。
选择适合的方法取决于具体的有机物性质、分子量、溶解度等因素。
高中化学常见物质分离提纯的10种方法1.结晶和重结晶:利用物质在溶液中溶解度随温度变化较大,如NaCl,KNO3。
2.蒸馏冷却法:在沸点上差值大。
乙醇中(水):加入新制的CaO吸收大部分水再蒸馏。
3.过滤法:溶与不溶。
4.升华法:SiO2(I2)。
5.萃取法:如用CCl4来萃取I2水中的I2。
6.溶解法:Fe粉(A1粉):溶解在过量的NaOH溶液里过滤分离。
7.增加法:把杂质转化成所需要的物质:CO2(CO):通过热的CuO;CO2(SO2):通过NaHCO3溶液。
8.吸收法:用做除去混合气体中的气体杂质,气体杂质必须被药品吸收:N2(O2):将混合气体通过铜网吸收O2。
9.转化法:两种物质难以直接分离,加药品变得容易分离,然后再还原回去:Al(OH)3,Fe(OH)3:先加NaOH溶液把Al(OH)3溶解,过滤,除去Fe(OH)3,再加酸让NaAlO2转化成A1(OH)3。
10.纸上层析2.学习胜在学习规律,思维模式,内在联系,解题模式整理,而不是每天报着书一页页看,当然这前面四点的形成基于对基础知识的精准积累,这就靠每天自己的听课效率和课后同步训练。
会找规律会自己联系知识点之间的相关永远都是提高学习效率,形成知识网络的必经之路!一、构建网络,夯实双基化学学科的特点是碎、散、多、杂,难记易忘。
复习时,要注意指导学生总结归纳,构建网络,找出规律,力求做到"记住-理解-会用"。
高三化学复习内容可分为一般知识和重点知识,复习中必须根据大纲和考纲,对基础知识、基本技能进行准确定位,以提高复习的针对性和实效性,既要全面复习,不留死角,更要突出重点。
指导学生归纳结总时,对不同的内容可采取不同的方式:1、课堂引导归纳对于中学化学的主干知识和重点内容,如氧化还原反应、离子反应、电化学、物质结构、化学反应速率及化学平衡、电解质溶液、有机化学、化学实验等,课堂上教师应引导和启发学生共同讨论,寻找规律,帮助学生构建知识体系,通过网络的建立,揭示概念之间的关系,找到相关概念之间的区别与联系,有重点有针对性地复习,加强对知识的理解,让学生真正得到感悟、并学会迁移,最终达到灵活运用。
苯分离和提纯苯是一种常见的有机化合物,广泛应用于化工、医药、农药等领域。
苯的纯度对于其应用性能至关重要,因此分离和提纯苯是一个重要的工艺过程。
一、苯的分离方法苯的分离可以采用许多不同的方法,下面将介绍两种常见的分离方法。
1. 蒸馏法蒸馏是最常用的苯分离方法之一。
苯和其他有机物在沸点上有较大的差异,通过控制温度和压力,在适当的蒸馏装置中进行蒸馏,可以使苯和其他杂质分离。
在蒸馏过程中,苯会先于其他有机物蒸发,进而通过冷凝收集得到纯苯。
2. 结晶法结晶法也是一种常用的苯分离方法。
苯和其他杂质在溶解度上有所差异,通过适当的溶剂和温度条件,使苯在溶液中结晶出来,进而分离出纯苯。
结晶法分离苯的优点是操作简单,但对溶剂和温度的选择要求较高。
二、苯的提纯方法苯的提纯方法可以采用以下两种常见的方法。
1. 重结晶法重结晶法是一种常用的苯提纯方法。
首先将苯通过适当的溶剂溶解,然后通过加热溶解,再通过冷却结晶出纯苯。
重结晶法可以去除苯中的杂质,提高苯的纯度。
2. 萃取法萃取法是一种常用的苯提纯方法之一。
通过选择合适的溶剂,将含有苯和杂质的混合物进行萃取。
在适当的条件下,苯可以被溶剂提取出来,从而实现苯的提纯。
三、苯的分离与提纯工艺流程苯的分离与提纯工艺流程可以根据具体情况进行设计,下面是一个常见的工艺流程示例。
1. 分离过程:(1) 将含有苯和其他有机物的混合物经过预处理,去除固体杂质。
(2) 将混合物经过加热,进入蒸馏塔进行蒸馏,控制温度和压力,使苯和其他有机物分离。
(3) 将蒸馏得到的苯进行冷凝收集,得到大部分的苯。
2. 提纯过程:(1) 将蒸馏得到的苯通过重结晶法进行提纯,加热苯溶液使其溶解,然后通过冷却结晶出纯苯。
(2) 通过重复结晶的方式,可以进一步提高苯的纯度。
(3) 若需要更高纯度的苯,可以采用萃取法进行提纯,选择合适的溶剂进行苯的萃取。
四、苯的分离与提纯设备苯的分离与提纯需要使用适当的设备,以保证操作效果和产品质量。
有机物分离和提纯的常用方法分离和提纯有机物的一般原则是:根据混合物中各成分的化学性质和物理性质的差异进行化学和物理处理,以达到处理和提纯的目的,其中化学处理往往是为物理处理作准备,最后均要用物理方法进行分离和提纯。
方法和操作简述如下:1. 分液法��常用于两种均不溶于水或一种溶于水,而另一种不溶于水的有机物的分离和提纯。
步骤如下:分液前所加试剂必须与其中一种有机物反应生成溶于水的物质或溶解其中一种有机物,使其分层。
如分离溴乙烷与乙醇(一种溶于水,另一种不溶于水):又如分离苯和苯酚:2. 蒸馏法��适用于均溶于水或均不溶于水的几种液态有机混合物的分离和提纯。
步骤为:蒸馏前所加化学试剂必须与其中部分有机物反应生成难挥发的化合物,且本身也难挥发。
如分离乙酸和乙醇(均溶于水):3. 洗气法��适用于气体混合物的分离提纯。
步骤为:例如:此外,蛋白质的提纯和分离,用渗析法;肥皂与甘油的分离,用盐析法。
有机物分离和提纯的常用方法 1,洗气 2,萃取分液溴苯(Br2),硝基苯(NO2),苯(苯酚),乙酸乙酯(乙酸) 3, a,制无水酒精:加新制生石灰蒸馏 b,酒精(羧酸)加新制生石灰(或NaOH固体)蒸馏c,乙醚中混有乙醇:加Na,蒸馏 d,液态烃:分馏 4,渗析 a,蛋白质中含有Na2SO4 b,淀粉中KI 5,升华奈(NaCl)鉴别有机物的常用试剂所谓鉴别,就是根据给定的两种或两种以上的被检物质的性质,用物理方法或化学方法,通过必要的化学实验,根据产生的不同现象,把它们一一区别开来.有机物的鉴别主要是利用官能团的特征反应进行鉴别.鉴别有机物常用的试剂及特征反应有以下几种:1. 水适用于不溶于水,且密度不同的有机物的鉴别.例如:苯与硝基苯.2. 溴水(1)与分子结构中含有C=C键或键的有机物发生加成反应而褪色.例如:烯烃,炔烃和二烯烃等.(2)与含有醛基的物质发生氧化还原反应而褪色.例如:醛类,甲酸.(3)与苯酚发生取代反应而褪色,且生成白色沉淀.3. 酸性溶液(1)与分子结构中含有C=C键或键的不饱和有机物发生氧化还原反应而褪色.例如:烯烃,炔烃和二烯烃等.(2)苯的同系物的侧链被氧化而褪色.例如:甲苯,二甲苯等.(3)与含有羟基,醛基的物质发生氧化还原反应而使褪色.例如:醇类,醛类,单糖等.4. 银氨溶液(托伦试剂)与含有醛基的物质水浴加热发生银镜反应.例如:醛类,甲酸,甲酸酯和葡萄糖等.5. 新制悬浊液(费林试剂)(1)与较强酸性的有机酸反应,混合液澄清.例如:甲酸,乙酸等.(2)与多元醇生成绛蓝色溶液.如丙三醇.(3)与含有醛基的物质混合加热,产生砖红色沉淀.例如:醛类,甲酸,甲酸酯和葡萄糖等.6. 金属钠与含有羟基的物质发生置换反应产生无色气体.例如:醇类,酸类等.7. 溶液与苯酚反应生成紫色溶液.8. 碘水遇到淀粉生成蓝色溶液.9. 溶液与酸性较强的羧酸反应产生气体.如:乙酸和苯甲酸等.10. 浓硝酸与含有苯环的蛋白质反应生成黄色沉淀.在鉴别的过程中对实验的要求是:(1)操作简便;(2)现象明显;(3)反应速度快;(4)灵敏度高.一、相似相溶原理1.极性溶剂(如水)易溶解极性物质(离子晶体、分子晶体中的极性物质如强酸等);2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数有机物、Br2、I2等);3.含有相同官能团的物质互溶,如水中含羟基(—OH)能溶解含有羟基的醇、酚、羧酸二、有机物的溶解性与官能团的溶解性1.官能团的溶解性:(1)易溶于水的官能团(即亲水基团)有—OH、—CHO、—COOH、—NH2。
(2)难溶于水的官能团(即憎水基团)有:所有的烃基(—CnH2n+1、—CH=CH2、—C6H5等)、卤原子(—X)、硝基(—NO2)等。
2.分子中亲水基团与憎水基团的比例影响物质的溶解性:(1)当官能团的个数相同时,随着烃基(憎水基团)碳原子数目的增大,溶解性逐渐降低;例如,溶解性:CH3OH>C2H5OH>C3H7OH>……,一般地,碳原子个数大于5的醇难溶于水。
(2)当烃基中碳原子数相同时,亲水基团的个数越多,物质的溶解性越大;例如,溶解性:CH3CH2CH2OH<CH3CH(OH)CH2OH<CH2(OH)CH(OH)CH2OH。
(3)当亲水基团与憎水基团对溶解性的影响大致相同时,物质微溶于水;例如,常见的微溶于水的物质有:苯酚 C6H5—OH、苯胺 C6H5—NH2、苯甲酸C6H5—COOH、正戊醇CH3CH2CH2CH2CH2—OH(上述物质的结构简式中“—”左边的为憎水基团,右边的为亲水基团);乙酸乙酯CH3COOCH2CH3(其中—CH3和—CH2CH3为憎水基团,—COO—为亲水基团)。
(4)由两种憎水基团组成的物质,一定难溶于水。
例如,卤代烃R-X、硝基化合物R-NO2,由于其中的烃基R—、卤原子—X和硝基—NO2均为憎水基团,故均难溶于水。
三、液态有机物的密度1.难溶于水,且密度小于水的有机物例如,液态烃(乙烷、乙烯、苯、苯的同系物……),液态酯(乙酸乙酯、硬脂酸甘油酯……),一氯卤代烷烃(1-氯乙烷……),石油产品(汽油、煤油、油脂……)注:汽油产品分为直馏汽油和裂化汽油(含不饱和烃)。
2..难溶于水,且密度大于水的有机物例如:四氯化碳、氯仿、溴苯、二硫化碳有关羧酸的一些小规律(1)有机反应中用浓硫酸的主要反应有:磺化反应,硝化反应,醇的脱水,酯化反应等。
在上述反应中浓硫酸的作用体现在:[ ]A.反应物(如磺化反应)B.催化剂;C.脱水剂或吸水剂。
(2)低碳羧酸的酸性一般比碳酸酸性强,羧酸随碳数增加酸性逐渐减弱:甲酸>乙酸>碳酸>苯酚(3)乙酸乙酯实验:酯化反应是可逆的,逆反应是酯的水解。
酯化反应进行的很慢,硫酸主要起催化剂作用;也能除去生成物中的水,使反应向生成物方向移动。
接收生成乙酸乙酯试管中盛放饱和碳酸钠溶液,导气管口接近碳酸钠溶液的液面,但不能插入液面下。
(4)酯化反应的本质是脱水(羧酸脱-OH,醇脱H),能发生酯化反应的物质:羧酸和醇,无机含氧酸和醇,糖和酸等。
(5)酯化反应是羧酸的一类主要反应。
要较好地掌握这类反应首先把握好基本原理,即脱水的实质是羧酸脱羟基、醇脱氢,同时还应注意抓住反应特征是脱一水还是脱二水,是分子内脱水还是分子间脱水,是所有官能团脱水还是部分官能团脱水。
特征不同则生成物各异,有小分子酯也有高分子酯,有成环酯也有成链酯,还可能生成内酯等多种形式。
因此,要很好地把握各类型的特点,才能使知识迁移,得心应手解决信息题。
(6)有机物中的氢原子与不同原子相连时,显示出的性质是不同的,即使氢原子相连的原子相同,如羟基均为氢氧键相连,而相邻的原子或原子团不同,则性质差异也很大。
例如醇羟基、酚羟基、羧羟基均含-OH,但氢原子的活泼性不同。
学习中应注意它在不同官能团中的活泼性,依据性质确定分子结构。
“氨”、“铵”、“胺”有什么区别1.读音不同、字形不同“氨”读音;“铵”读音;“胺”读音。
2.概念不同氨是氮和氢的一种化合物,分子式为NH3,分子结构呈三角锥形,电子式为,其中氮原子有一对孤对电子,结构式为。
铵是从氨衍生所得的带一个单位正电荷的离子,化学式为NH4+,电子式为,其中氮氢原子间形成了一条配位键,结构式为。
但四个N-H键的键长、键能、键角完全相同,离子的空间构型为正四面体型。
胺是氨的氢原子被烃基代替后的有机化合物。
氨分子中的一个、两个或三个氢原子被烃基取代而生成的化合物,分别称为第一胺(伯胺)、第二胺(仲胺)和第三胺(叔胺)。
它们的通式为:RNH2——伯胺、R2NH——仲胺、R3N——叔胺。
3.性质不同氨是一种无色、有臭味的气体,易溶于水。
氨能够单独存在。
铵相当于正一价金属阳离子,凡是含NH4+的盐叫铵盐。
NH4+不能单独存在,只能在铵盐或氨水中与阴离子共存。
胺类广泛存在于生物界,具有极重要的生理作用。
因此,绝大多数药物都含有胺的官能团——氨基。
蛋白质、核酸、许多激素、抗生素和生物碱,都含有氨基,是胺的复杂衍生物。
浅谈价键知识在解有机试题中的应用1.“价数”守恒原则:在有机分子中C原子的价数为4,每个C形成4个共价键,N原子价数为3,每个N形成3个共价键,O和S原子的价数为2,每个原子形成2个共价键,H和X(卤原子)原子的价数为1,每个原子形成1个共价键。
2.每个碳原子最多可结合4个氢原子,每个氮原子最多结合3个氢原子,每个氧原子最多结合2个氢原子,,当除氢原子外的其它原子间都以单键结合时,形成的化合物中氢原子数最多,且n个原子间可形成n-1个单键。
每减少2个氢原子,相应地其它原子间增加一个共价键。
当碳原子个数为n时,氢原子的个数的最大上限值为2n+2个。
在此基础之下,如果在分子结构中多一个C=C键,或多一个环状结构时,在分子组成中都要减少2个氢原子,而增加一个C≡C键就要减少4个氢原子。
=对于,价键总数即共用电子对总数=,非=。
于,=,=。
若只含=,若C≡C,叁键数,其余类)烷烃通式为,共价键数=。
当然,此小题可用数列知识求解,,则,。
)单烯烃通式为,共价键数为==3m饱和一一元醛通式为,共价键数=。
例2 在烃分子结构中,若每减少中2个氢原子,则相当于碳碳间增加一对共用电子对。
试回答下列问题:(1)分子结构为C n H2n+2烃分子中碳碳间共用电子对数为。
(2)分子结构为C n H2n+6烃分子中碳碳间共用电子对数为。
(3)C x可以看作是烃减氢后的产物,若某物质分子中碳碳间的共用电子对数为160,则符合条件的碳单质的分子式为;符合条件的单烯烃的分子为。
解析:(1)烷烃通式为,碳碳间共用电子对数=。
(2)解答过程同(1),答案为n+3。
(3)可以为是,160=,x=80。
符合该条件的碳单质的分子式为C80 ,若为单烯烃,碳碳间共价键数为==160。
m=160。
符合该条件的单烯烃为。
题型2 求分子组成中原子数或原子团数及其相互关系例3 (1)由两个C原子、1个O原子、1个氮原子和若干个H原子组成的共价化合物,H的数目最多是个,试写出其中一例的结构简式。
(2)若共价化合物只含C、N、H四种元素,且以n(C)、n(N)分别表示C和N的原子数目,则氢原子数目最多等于。
(3)若共价化合物只含C、N、O、H四种元素,且以n(C)、n(N)、n(O)分别表示C、N和O的原子数目,则氢原子数目最多等于。
解析:(1)C、O、N相互之间未成键时,两个C原子最多可结合8个H原子,1个O原子最多可结合2个H原子,1个氮原子最多可结合3个H原子。
C、O、N相互之间成键形成化合物时,要使H原子数最多,则它们之间必须以单键结合,且单键数为(2+1+1-1)=3,则H原子数目最多=8+2+3-3×2=7,其中一例的结构简式为:HO-CH2-CH2-NH2(2)C、N相互之间未成键时,n(C)个C原子最多可结合4n(C)个H原子,n(N)个N原子最多可结合3n(N)个H原子,C、N相互之间成键形成化合物时,要使H原子数最多,则它们之间必须以单键结合,且单键数为n(C)+n(N)-1,则H原子数目最多=4n(C)+3n(N)-[n(C)+n(N)-1]×2 =2n(C)+n(N)+2(3)C、N、O相互之间未成键时,n(C)个C原子最多可结合4n(C)个H原子,n(N)个N原子最多可结合3n(N)个H原子,n(O)个O原子最多可结合2n(O)个H原子,C、N、O相互之间成键形成化合物时,要使H原子数最多,则它们之间必须以单键结合,且单键数为n(C)+n(N)+n(O)-1,则H原子数目最多为:4n(C)+3n(N)+2n(O)-[n(C)+n(N)+n(O)-1]×2 =2n(C)+n(N)+2当然,此题也可先解出(3)小题,把相关数据代入即可解出(1)和(2)两问,这样解更快捷。