运动生物化学 运动训练的机体能量供应
- 格式:ppt
- 大小:1.44 MB
- 文档页数:13
运用生物化学原理揭示人体肌肉运动的主要能量来源[摘要]文章运用了生物化学及运动生物化学原理,论述了人体在运动中,供能的物质来源糖类和脂类。
它们通过生物氧化过程,提供人体运动所需的能量——三磷酸腺苷(ATP)。
[关键词]运动糖类脂类能量来源生物化学是用化学的方法和理论研究物质的组成、结构以及化学变化的一门科学。
运动生物化学是体育科学的一门重要基础学科。
它是在生物化学和生物学的基础上发展起来的,运动生物化学是认识运动时生理机能的锐利机器。
用生化原理、手段揭示和阐明人体运动时的生化机制,也是运动生物化学的重要任务之一。
众所周知,生命在于运动,然而,最明显、最常见的应该是肌肉运动。
那么,肌肉运动收缩时的能量从何而来?一般说来,肌肉活动时的能量直接来源于三磷酸腺苷——ATP,从ATP裂解成ADP和磷酸同时释放能量,就是肌肉收缩的能量来源。
ATP在肌肉中的储存和连续再合成成为维持肌肉收缩,保证肌肉运动进行的重要条件。
然而,ATP又是怎样产生的呢?能量供应是人体生命的基础,所以列宁说“把能量理解为物质的运动”。
人的机体内一切能量都是通过一定的物质形态变化而实现的。
这些物质主要是糖类、脂类。
一、糖类糖类是一大类有机化合物,其化学本质为多羟醛多羟酮及其衍生物或多聚物。
糖类是自然界最丰富的物质之一,广泛分布于几手所有生物体内,其中以植物中含量最多,约为80%~95%。
糖在生命活动中的主要作用是提供能量和碳源。
人体所需能量的50%~70%来自于糖。
食物中的糖类主要是淀粉。
淀粉被消化成基本组成单位葡萄糖后,以主动方式被消化入血。
在机体的糖代谢中,葡萄糖居于主要地位,它的多聚体糖原是糖在体内的储存形式,血液运输的也是葡萄糖。
lmol葡萄糖彻底氧化成二氧化碳和水可释放2840KJ的能量。
其中约40%转化为ATP,以供机体生理活动所需的能量。
现在让我们看看葡萄糖产能的基本过程:葡萄糖入血后,在体内首先需进细胞。
这是依赖葡萄糖转运体实现的。
运动生物化学概论当我们投身于运动的世界,无论是在操场上尽情奔跑,在健身房中挥汗如雨,还是在球场上激烈角逐,身体内部都在发生着一系列复杂而神奇的化学变化。
这些化学变化不仅影响着我们的运动表现,还与我们的健康和体能息息相关。
这就是运动生物化学所研究的领域,它为我们揭示了运动与身体化学反应之间的紧密联系。
运动生物化学,简单来说,就是研究运动过程中身体内化学物质的变化以及这些变化对运动能力和健康的影响。
它涵盖了多个层面的内容,从细胞内的能量代谢,到肌肉的收缩机制,再到营养物质的摄取和利用等等。
让我们首先来了解一下运动中的能量供应。
在运动时,身体需要能量来驱动肌肉的收缩和各种生理活动。
而能量的来源主要有三种:磷酸原系统、糖酵解系统和有氧氧化系统。
磷酸原系统是短时间、高强度运动的主要能量来源,比如短跑、举重等项目。
它就像一个快速反应部队,能够在瞬间提供大量的能量,但持续时间很短。
这个系统主要依赖于肌肉中的磷酸肌酸,当磷酸肌酸分解时,会迅速释放出能量,使肌肉能够在极短的时间内发挥出最大的力量。
糖酵解系统则在持续时间稍长、强度较大的运动中发挥作用,比如400 米跑、800 米跑。
在这个过程中,肌肉中的糖原被分解为乳酸,同时产生能量。
虽然糖酵解系统能够相对快速地提供能量,但由于乳酸的堆积,容易导致肌肉疲劳。
有氧氧化系统则是长时间、低强度运动的主要供能方式,比如长跑、游泳等。
在有氧条件下,糖、脂肪和蛋白质被彻底氧化分解,产生大量的能量。
这个系统的优点是能够持续供应能量,并且不会产生像乳酸那样导致疲劳的物质。
除了能量供应,运动还会对身体内的物质代谢产生影响。
比如,运动可以促进脂肪的分解和代谢。
当我们进行有氧运动时,脂肪被分解为脂肪酸和甘油,然后进入细胞内的线粒体进行氧化分解,为身体提供能量。
这也是为什么有氧运动被认为是减肥的有效方式之一。
同时,运动也会影响蛋白质的代谢。
在运动过程中,肌肉中的蛋白质会发生一定程度的分解和合成。
运动生物化学一、引言运动是生物体活动的基本特征之一,同时也是生物体适应环境变化的重要手段之一。
运动涉及到大量的生物化学反应,从能量代谢到肌肉收缩,都需要复杂的生物化学过程。
了解运动生物化学对于理解运动机制、改善运动表现以及预防运动受伤等方面都具有重要意义。
本文将介绍运动生物化学的基本概念、重要代谢途径以及与运动相关的分子机制。
二、运动生物化学的基本概念2.1 代谢代谢是指生物体内部发生的一系列化学反应,用于维持生命活动所需的能量和物质。
在运动状态下,代谢过程会发生一系列的变化。
例如,运动时身体需要更多的能量供应,因此代谢速率会加快。
2.2 能量代谢能量代谢是指生物体在运动时产生和利用能量的过程。
能量主要由食物摄入,并经过一系列的代谢反应转化为ATP(三磷酸腺苷),提供给肌肉细胞进行收缩和运动。
三、运动生物化学的重要代谢途径3.1 糖酵解糖酵解是细胞内产生能量的最主要途径之一。
在这个过程中,葡萄糖会经过一系列的酶催化反应,最终转化为能量(ATP)、乳酸和水。
糖酵解过程可以在有氧(有氧糖酵解)和无氧(无氧糖酵解)条件下进行。
3.2 脂肪代谢脂肪代谢是指细胞内脂肪分子的分解和利用过程。
脂肪是一种高能物质,通过氧化分解可以释放出更多的能量。
在运动时,脂肪会作为主要能源被肌肉细胞所利用。
3.3 蛋白质代谢蛋白质代谢是指生物体内蛋白质分子的合成和降解过程。
在运动时,蛋白质的分解速率会增加,用于提供必要的氨基酸供能和修复受损组织。
此外,蛋白质在肌肉组织中也起着重要的结构和功能作用。
四、与运动相关的分子机制4.1 ATP的产生ATP是生物体最常用的能量储存和转换分子。
在运动过程中,肌肉细胞通过酵解和氧化反应合成和利用ATP。
针对不同强度和持续时间的运动,ATP的合成和利用机制也会有所不同。
4.2 乳酸的产生与清除在高强度运动过程中,肌肉细胞无氧糖酵解会产生较多的乳酸。
乳酸的积累会导致肌肉疲劳和酸痛感。
乳酸的清除与运动后恢复有着密切的关系,包括乳酸转运、乳酸氧化等多种途径。
一、名词解释:1、运动生物化学:研究体育运动对机体化学组成、化学变化的影响规律以及这些影响和运动能力的关系。
2、必需氨基酸:人体自身不能合成或合成速率低不能满足人体需要,必须从食物中摄取进行补充的氨基酸3、必需脂肪酸:维持哺乳动物正常生长所必需,但机体自己不能合成,必须依赖食物供应的不饱和脂肪酸,称之为必需脂肪酸。
4、蛋白质:由许多氨基酸通过肽键连接而形成的高分子有机化合物。
5、糖异生:非糖物质在肝脏内转变为葡萄糖和糖原的过程。
6、二肽:两个氨基酸由一个肽键连接形成的化合物。
7、酶:是生物细胞产生的具有催化功能的蛋白质。
8、酶活性:酶所具有的催化能力。
9、同工酶:在生化中把催化相同反应,而催化特性、理化性质及生物学性质不同的一类酶。
10、激素:由内分泌细胞合成并分泌的化学物质。
11、生物氧化:有机物质在生物体细胞内氧化分解产生CO2和H2O并释放出大量能量的过程。
12、底物水平磷酸化:指在物质分解代谢过程中,代谢物脱氢后,能量在分子内部重新分布,形成高能磷酸化合物,然后将高能磷酸基团转移到ADP形成ATP的过程。
13、氧化磷酸化:在生物氧化过程中,代谢物脱下的氢经呼吸链氧化生成水时,所释放出的能量用于ADP磷酸化生成ATP的过程。
14、糖酵解:糖原和葡萄糖在无氧条件下分解生成乳酸,并合成ATP的过程称为糖的无氧代谢。
15、三羧酸循环:由乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复进行脱氢、脱羧,又生成草酰乙酸的重复循环反应的过程。
16、脂肪动员:储存在皮下或腹腔的脂肪组织中的脂肪,在脂肪酶的作用下分解为脂肪和甘油,并释放入血以供其他组织氧化利用,这个过程称之为脂肪动员。
17、β—氧化:脂肪酸氧化分解时,其碳链的断裂是在β—位碳原子处发生。
18、酮体:脂肪酸在肝内分解氧化时的特有的中间代谢产物。
19、氨基酸代谢库:经食物消化、吸收的氨基酸(外源性氨基酸)与体内组织蛋白质降解产生的氨基酸(内源性氨基酸)混合在一起,分布与体内各处。
由运动生物化学分析篮球运动员的能量供应需求文/王林铜 翟波宇摘要:一般的篮球是通过运球、传球、投篮、上篮等方式形成的对抗性综合团体体育运动项目。
依据篮球运动的运动特点,以及在运动休整过程中生物体内化学物质的变动,其能量的需求与所需补充的营养物质的差异。
本文采用文献综述法对篮球运动员在进行运动时的生物化学变化这一事实,从而剖析篮球运动员的营养物质需要的特性,从运动特点、运动能量消耗供能系统模式以及生理代谢方式等方面对篮球运动员的营养需求进行相关分析论述。
关键词:篮球运动员;能量消耗;营养补充;功能系统篮球属于综合性体育运动,有利于各种篮球活动者建立有非凡的道德和气质,得以健身强体的作用[1]。
在篮球运动的比赛或训练中,运动员均需要反复进行短时最高强度(或接近最高强度)甚至超高强度的运动,间歇期进行低强度运动(积极性恢复)或完全休息(消极性恢复),学者们将这种训练方式称为高强度间歇训练(high-intensity interval training HIT)[2]。
面对如此高强度消耗的训练和比赛,需要根据篮球运动员运动时生物化学的各项指标的变化规律来做好其营养物质的需求供给,提早完善篮球运动员的能量储藏,使运动员在消耗能量时有充足的供应。
一、篮球运动员运动中能量消耗的生物化学特点(一)篮球运动员运动中供能的探究篮球运动时能量供给特点如下,因为篮球运动属于技艺类同场竞技非周期性对抗名目的分类,这就要求运动员在速度、力量、耐力、弹跳等多方面具备较高实质。
篮球运动属于间歇性无氧供能为主的混合供能项目,有氧和无氧供能均有,但以 A TP-CP 系统和糖酵解供能为主[3]。
(二)篮球运动员产生疲劳的原因运动性疲劳产生原因大体上有四个学说,结合篮球运动独特的技术动作要求及供能的特殊性能够这样认为:篮球运动员产生疲劳的基本原因是因为能量物质的耗费和代谢产物在肌肉和血液中的汇集,它产生的部位是外周神经和中枢神经[4]。
运动生物化学整理运动生物化学是一门研究运动与身体化学变化相互关系的科学,它对于我们理解运动过程中的生理机制、营养需求以及训练效果等方面都具有重要意义。
首先,让我们来了解一下运动生物化学的基本概念。
简单来说,它关注的是在运动状态下,我们身体内各种化学物质的代谢和调节。
这些化学物质包括碳水化合物、脂肪、蛋白质、维生素、矿物质以及各种激素等。
碳水化合物是运动中最主要的能量来源之一。
在短时间、高强度的运动中,身体会优先利用肌肉中储存的糖原(一种碳水化合物的储存形式)来提供能量。
随着运动时间的延长,肝脏中的糖原也会被动员出来,维持血糖水平,保障大脑等重要器官的能量供应。
脂肪则是在长时间、低强度运动中逐渐成为主要的供能物质。
脂肪分解产生的脂肪酸可以通过一系列的代谢过程产生能量。
然而,脂肪的氧化供能相对较慢,所以在高强度运动初期,其供能比例较低。
蛋白质通常不是主要的能量来源,但在长时间运动、能量供应不足或者肌肉损伤修复时,蛋白质会发生分解,产生氨基酸,为身体提供一定的能量,并参与肌肉的修复和重建。
运动对激素水平也有着显著的影响。
例如,运动时,肾上腺素和去甲肾上腺素的分泌增加,使心跳加快、血压升高,为肌肉提供更多的血液和氧气。
胰岛素则在运动后发挥重要作用,促进糖原的合成和储存,帮助身体恢复能量储备。
再来说说运动与维生素和矿物质。
维生素 B 族在能量代谢中起着关键作用,缺乏可能导致运动能力下降。
维生素C 和E 具有抗氧化功能,能减轻运动产生的自由基对身体的损伤。
矿物质如铁参与氧气的运输,钙对于肌肉收缩和骨骼健康至关重要。
在运动营养方面,合理的饮食搭配对于运动表现和身体恢复至关重要。
运动员需要根据运动的类型、强度和持续时间来调整碳水化合物、脂肪和蛋白质的摄入比例。
例如,耐力运动员需要增加碳水化合物的摄入,以保证有足够的能量储备;力量型运动员则需要适当增加蛋白质的摄入,促进肌肉生长和修复。
运动训练也会引起身体的一系列适应性变化。
运动生物化学在运动训练中的应用运动生物化学是一门研究运动过程中生物体内化学反应的学科,它的研究对象是人体肌肉组织中的生化反应。
运动生物化学研究的对象主要包括肌肉组织中的代谢物、能量转化、酶促反应等方面。
这些研究成果可以应用于运动训练中,对于提高运动员的竞技水平具有重要意义。
在运动训练中,运动生物化学的应用主要体现在以下几个方面:一、能量代谢人体在运动时,需要消耗大量的能量,而能量的产生主要是通过三大能量系统来完成的。
即磷酸肌酸系统、糖原酵解系统和有氧氧化系统。
这三大能量系统的代谢过程涉及到各种酶的参与,运动生物化学的研究可以帮助我们了解这些酶在代谢过程中的作用及其调节机制,从而为制定科学的运动训练方案提供理论依据。
二、肌肉疲劳肌肉疲劳是运动过程中的一种常见现象,其发生的原因涉及到肌肉细胞内的各种代谢物的变化。
运动生物化学的研究可以帮助我们了解肌肉细胞内代谢物的变化规律及其与肌肉疲劳的关系,从而制定出更加合理的训练计划,减少肌肉疲劳的发生。
三、营养调节人体在运动过程中需要消耗大量的能量和营养物质,如果能够合理地补给足够的营养物质,可以提高运动员的竞技水平。
运动生物化学的研究可以帮助我们了解体内营养物质的代谢规律,从而指导运动员进行合理的营养补充,提高运动员的体能水平。
四、药物应用在运动训练中,有些药物可以帮助运动员提高竞技水平,但是这些药物的使用需要严格控制。
运动生物化学的研究可以帮助我们了解药物在人体内的代谢过程,从而指导运动员合理地使用药物,同时也可以帮助我们制定出更加严格的药检标准,保障运动员的健康和公正竞争。
运动生物化学的研究成果可以为运动训练提供重要的理论依据,帮助我们制定更加科学合理的训练计划,提高运动员的竞技水平。
同时,运动生物化学的研究也可以帮助我们更好地保障运动员的健康和公正竞争。
生物化学在体育运动中的作用体育运动是一项需要强大体能和卓越技巧的竞技活动。
为了提高运动员的表现和提升竞技水平,科学家们研究生物化学在体育运动中的作用,并逐渐发现了一系列重要的发现。
本文将以生物化学的角度,探讨一些在体育运动中的作用。
一、能量代谢和ATP的产生体育运动需要大量的能量供应。
在体育运动中,生物化学的一项重要作用是参与能量代谢过程。
细胞内的线粒体通过一系列的生物化学反应,将食物转化为Adenosine Triphosphate(ATP),从而为肌肉运动提供能量。
ATP被认为是能源的“通货”,在运动中不断合成和分解。
二、乳酸消耗和酸碱平衡高强度的体育运动会导致肌肉缺氧,产生大量乳酸。
乳酸的积累会使肌肉酸化,严重影响运动能力和耐力。
生物化学参与了乳酸消耗和酸碱平衡的调节过程。
例如,乳酸通过乳酸脱氢酶酶把乳酸转化为产生ATP所需的物质。
乳酸消耗的高效率有助于减少乳酸积累,保持肌肉的酸碱平衡。
三、蛋白质合成和肌肉修复体育运动中的肌肉损伤是常见的。
蛋白质合成和肌肉修复是生物化学在运动中的另一个重要作用。
蛋白质由氨基酸构成,是肌肉组织的主要组成部分。
在运动后,肌肉组织会发生微小损伤,而蛋白质合成则参与了肌肉组织的修复和增长。
科学家们通过研究蛋白质合成机制,探索如何优化肌肉修复过程,提高运动员的恢复能力和肌肉生长速度。
四、神经递质和运动协调体育运动需要良好的协调能力和反应速度。
神经递质是生物化学在运动中的又一重要作用。
神经递质是脑内的化学物质,通过在神经元之间传递信号来协调和控制运动。
乙酰胆碱、多巴胺等神经递质对于体育运动中的肌肉收缩、运动协调和反射起着重要作用。
研究神经递质的作用机制有助于优化运动员的神经系统功能,提高运动的效率和准确性。
综上所述,生物化学在体育运动中发挥着重要作用。
能量代谢和ATP的产生、乳酸消耗和酸碱平衡、蛋白质合成和肌肉修复、神经递质和运动协调等生物化学过程,直接或间接地影响着运动员的体能水平和竞技表现。
运动生物化学分析中长跑时体内有机代谢变化规律作者:王俊俐来源:《当代体育科技》2016年第03期摘要:该文通过对运动生物化学理论的深入研究,浅析人体内三大供能系统的能量供应,及运动时物质和能量代谢规律。
从运动生物化学角度阐述中长跑运动能量供应及代谢规律,目的在于为提高中长跑运动员的能量供给能力和运动能力科学训练提供理论依据和指导。
关键词:运动生物化学供能系统代谢规律运动能力中图分类号:G822.2 文献标识码:A 文章编号:2095-2813(2016)01(c)-0009-031 问题提出科学进步引领着体育运动科学的发展,运动训练由摸爬滚打的经验式逐步走向以理论为指导,理论实践相结合的科学的运动训练,使大家更加注重对理论的研究。
剧烈运动时人们能够感知身体对能量的需要,能量不足难于支撑运动达到大家所期望的要求,而过早产生疲劳。
那么运动中体内发生怎样一系列物质代谢和能量变化,机体又是怎样与环境间的物质进行着交换,运动生物化学以其作为研究对象,进行了科学阐述,如何消除或延缓运动时产生的疲劳,达到预期运动目标,包括现代竞技体育的激烈竞争中运动员在极限范围内怎样才能最大限度的发挥自己的潜能,增加体内能量物质的储备等,对运动员成绩的提高都有着至关重要的作用。
2 研究方法2.1 理论研究运动生物化学理论告诉人们,运动能够改善机体的化学组成,比如可增加机体内的糖量、蛋白质数量,也可以减少体内脂肪,而糖、蛋白质和脂肪是提高身体素质的物质基础,也是提高运动能力的主要因素,运动促进身体的新陈代谢及能量转换,可以提高机体对运动更高的承受力。
运动激烈的短跑项目,有效促进肌肉中的蛋白质、磷酸肌酸CP增多,激发无氧代谢酶活性,改善无氧代谢能量供应过程,使乳酸调节能力得到加强。
而长跑、越野等长时间的激烈运动中,肌肉糖量增多,有氧代谢酶的活性和脂肪代谢能力及有氧代谢能量供给过程得到提高。
与运动能力有关的骨骼肌纤维的组成和代谢机能,也可以从生物化学的角度得到解释,运动过程中能量的供给、转移和利用的能力决定着运动能力高低,运动中能量供应的多少,对机体有氧或无氧代谢能力的影响,与运动项目、强度,训练方法和运动时间都有关系。
运动生物化学复习资料运动生物化学是一门非常重要的学科,它涵盖了运动和生物化学两个领域,是体育学、生物学等学科中的一个重要分支,研究身体在运动过程中所涉及的各种化学反应、代谢途径、能量供应以及相关的生理调节机制。
学好运动生物化学,不仅是体育专业的必修课程,也对其他相关领域的研究具有重要意义。
下面是一份运动生物化学的复习资料,希望对各位同学的学习有所帮助。
一、简单的生物化学知识1. 生物分子:碳水化合物、脂类、蛋白质、核酸等2. 酶:定义、作用、分类、酶系统、调节3. 代谢途径:糖原、糖酵解、无氧酵解、有氧代谢4. 能量供应:三磷酸腺苷(ATP)、磷酸肌酸系统、糖原、脂肪酸、氧化磷酸化二、运动生理学的基本概念1. 运动生理学的定义、发展历程和研究方法2. 运动生理学的几个重要概念:负荷、强度、持续时间、运动方式、运动时机、训练状态等3. 运动对人体的影响:呼吸、心率和循环、体温、能量代谢等三、运动代谢的基本过程1. 糖原的合成和分解过程2. 糖酵解和无氧酵解的过程3. 有氧代谢的过程:三大环节、卡路里4. 磷酸肌酸的合成和分解过程5. 脂肪酸代谢的过程:形成和分解三酰甘油、有氧和无氧代谢四、运动能量的供应和调节1. ATP的合成和分解2. 糖原在运动中的供应3. 脂肪酸在运动中的供应4. 氧化磷酸化的作用和调节五、训练对代谢的影响1. 运动对能量代谢的影响:强化有氧代谢、调节内源性代谢2. 运动对心血管代谢的影响:改善心脏肌肉、增加心血管能力、改善循环系统3. 运动对酶的影响:调节酶活性、提高酶活力六、运动中的生理反应1. 运动对心血管系统的影响:心率、血流、心脏排出、血压等2. 运动对呼吸系统的影响:肺功能、通气量、呼吸深度等3. 运动对内分泌系统的影响:肾上腺素、胰岛素、生长激素等4. 运动对神经系统的影响:交感神经、副交感神经、心理状态等七、运动中的代谢异常和运动损伤1. 运动中的代谢异常:酸中毒、低血糖、肥胖等2. 运动中的运动损伤:骨折、肌肉损伤、拉伤等以上就是运动生物化学的复习资料,希望同学们能够认真学习,提高知识水平。
人体运动时的能量供应系统1.人体运动的能量来源有三种:磷酸原系统、糖酵解系统和有氧氧化系统。
根据运动的强度和时间的长短,每种系统起的作用不同。
人体能量来源最终体现在能量物质ATP (三磷酸腺苷)上。
即:ATP 是我们人体利用能量的直接形式,当人体需要能量时,ATP 在酶的作用下,脱掉一个磷酸变成 ADP 并释放出能量。
这个能量提供了我们机体所有的生命活动的能源,包括:化学能、机械能、生物能等。
(1)磷酸原系统是通过体内的高能物质磷酸肌酸在磷酸肌酸激酶的作用下将高能磷酸键转给ADP ,这时 ADP 结合一磷酸变成 ATP。
由于磷酸肌酸在体内的储存量很少,所以它只能提供肌体很短时间的运动能量;(2)糖酵解系统也就是体内糖类(血液中的葡萄糖、肝脏中的肝糖原和骨骼肌中的肌糖原和糖异生途径)在肌体供氧不足的情况下产生的无氧氧化而产生能量。
同样,由于是无氧酵解,产生的能量也不是很多(一分子的葡萄糖经糖酵解产生3 个ATP),但是因为体内的糖原储备比磷酸肌酸要多得多,所以糖酵解可以提供比磷酸原系统更长时间的运动能量;(3)有氧氧化系统顾名思义是在氧供应充足的条件下发生的,是机体内最大的能量供应系统,它可以由体内的糖储备(一分子葡萄糖有氧氧化产生 36/38 个 ATP)和脂肪分解(一分子的软脂酸氧化分解产生 129ATP)来产生。
由于人体氧的供应和利用有其局限性(最大摄氧量),当机体在短时间进行大强度的运动时,氧供应不足,有氧氧化系统不能或只能部分参加机体的能量供应;相反地,在长时间和低强度的运动中,氧供应充足,有氧系统可以成为机体主要的能量供应系统。
(4)尽管机体的磷酸肌酸储备很少,但是它可以马上调动起来,所以在大强度具爆发性的运动开始(7~8 秒左右),主要是磷酸原系统提供能量;同时,糖酵解系统也启动起来,它可以提供 2 分钟之内的大强度运动;如果机体继续维持大强度的运动,糖酵解能量供应也跟不上,机体就因为能量供应不上而运动能力下降了。