小学四年级数学竞赛试卷及答案2017.4.13
- 格式:doc
- 大小:69.00 KB
- 文档页数:4
小学四年级数学竞赛试卷(附答案)图文百度文库一、拓展提优试题1.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.2.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b 最大是,a﹣b最小是,a﹣b最大是.3.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.4.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.5.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.6.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.7.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?8.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?9.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.10.两数相除,商是12,余数是3,被除数最小是.11.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D 再到A,走了31米,此问长方形ABCD的周长多少米?12.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.13.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..14.(8分)有10张卡片,上面分别写着1,2,3,…,9,10.那么至少取出6张卡片,才能保证取出的卡片中,有两张卡片上的数字之和为11.15.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.【参考答案】一、拓展提优试题1.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.2.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.3.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.4.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.5.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.6.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.7.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.8.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.9.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.10.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.11.解:长方形长比宽多:38﹣31=7(米),长方形宽:(38﹣7×2)÷3,=24÷3,=8(米),长:8+7=15(米),(15+8)×2,=23×2,=46(米),答:长方形ABCD的周长46米.12.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.解:28÷2=1414×14=196答:大正方形的面积是196.故答案为:196.【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.13.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.14.解:10÷2=5(个)5+1=6(个)故填615.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.。
小学四年级竞赛数学试题及答案_图文图文百度文库一、拓展提优试题1.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.2.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高分.3.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.4.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?5.如果,那么=.6.有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是.7.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距米.8.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.9.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式,.10.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.11.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.12.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.13.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?14.若2台收割机3天可以收割小麦450亩,则用7台收割机收割2100亩小麦需要天.15.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.16.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.17.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.18.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.19.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.20.如图是长方形,将它分成7部分,至少要画条直线.21.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是.22.(8分)传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.23.已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有对.24.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.25.把50颗巧克力分给4个小朋友,每个小朋友分得的巧克力的颗数各不相同.分得最多的小朋友至少可以得颗巧克力.26.甲乙两所学校共有学生864人.新学期开学前,由甲校调入乙校32人,这时甲校还比乙校多48人.原来甲校有个学生.27.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.28.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.29.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.30.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.31.(8分)如图,已知正方形的面积是100m2,图中灰色部分的面积是m2.32.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.33.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.34.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.35.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.36.在□中填上适当的数,使竖式成立.37.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生人.38.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.39.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.40.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b最大是,a﹣b最小是,a﹣b最大是.【参考答案】一、拓展提优试题1.解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.2.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,所以(x+x﹣4)﹣(y+y﹣5)=17,整理,可得:2x﹣2y+1=17,所以2x﹣2y=16,所以x﹣y=8,所以乙比丙得分高;因为x﹣y=8,所以(x﹣4)﹣(y﹣5)=9,所以甲比丁得分高,所以乙得分最高,丁得分最低,所以四人中最高分比最低分高:x﹣(y﹣5)=x﹣y+5=8+5=13(分)答:四人中最高分比最低分高13分.故答案为:13.3.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.4.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.5.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.6.解:23×4+34×3﹣27×6,=92+102﹣162,=194﹣162,=32.答:第4个数是32.故答案为:32.7.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.解:(50+60)×10÷2=110×10÷2=1100÷2=550(米)答:甲、乙两地相距550米.故答案为:550.【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.8.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.9.解:8÷(3﹣8÷3),=8÷(3﹣),=8÷,=24.故答案为:8÷(3﹣8÷3).10.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.11.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.12.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.解:28÷2=1414×14=196答:大正方形的面积是196.故答案为:196.【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.13.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.14.【分析】首先求出每台每天的工作效率,再求出7台1天的工作效率,因为工作量÷工作效率=工作时间,据此解答即可.解:2100÷(450÷3÷2×7)=2100÷(75×7)=2100÷525=4(天),答:用7台收割机收割2100亩小麦需要4天.故答案为:4.【点评】此题属于二次反归一问题,首先用连除求出单一量,再用除法求出部分量.15.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.16.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.17.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.18.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:(31﹣1×2)÷(2×2﹣3)=29÷1=29(次)=87+31=118(个)答:袋中原有黑子 118个.故答案为:118.【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.19.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.20.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.21.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.解:8÷2=4(人),因为女生比男生多,所以男生的人数一定小于4人,所以男生可能是1人,2人或3人;故答案为:1人,2人或3人.【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.22.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.23.【分析】首先根据5的整除特性可知尾数是0或者5,那么150和5的倍数差依然是尾数是0或者5的数字枚举即可.解:根据5的整除特性可知尾数是0或者5.那么150减去这个数字尾数还是0或者5.可以找到尾数是0或者5的数字是3的倍数.30,60,90,120,15,45,75,105,135共9个数字满足条件.对应的数字就有9对.故答案为:9.【点评】本题是考察数的整除特性,关键在于找到尾数是0或5的数字是3的倍数,枚举即可解决问题.24.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).25.解:因为要使每个小朋友分得的巧克力的颗数各不相同,第一次先分给这4个小朋友的巧克力数依次为:1、2、3、4,从这里可以看出最后那个人是分得鲜花最多的人;那么还剩下50﹣(1+2+3+4)=40颗巧克力;如果这40颗巧克力全给最后这个人,那么他最多可分得4+40=44颗,要想让他分得的巧克力数少,那么剩下的40颗朵,可以再分给每个人10,由此可得出这时每个人的巧克力数为:11、12、13、14,答:分得最多的小朋友至少可以得14颗巧克力;故答案为:14.26.解:甲校比乙校多的人数:32×2+48=112人,甲校的人数:(864+112)÷2,=976÷2,=488(人).答:原来甲校有488人.故答案为:488.27.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.28.解:个位数1~9页共有9个数码;两位数10~99共用2×90=180个数码;此时还剩888﹣9﹣180=699个数码,699÷3=233,699个数码可组成233个三位数,所以上下册共有:233+100﹣1=332页,则下册书有:(332+8)÷2=340÷2,=170(页).即下册书有170页.故答案为:170.29.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.30.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.31.解:根据分析可得,100÷2=50(平方米)答:图中灰色部分的面积是 50m2.故答案为:50.32.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.33.【分析】三条线不重合,不相交时,把长方形分成的部分最少;三条线不重合,但在长方形内两两相交,有3个交点,把长方形分成的部分最多,如下图所示,因此得解.解:由分析可得:故答案为:4,7.【点评】认真分析题意,找出规律是解决此题的关键,线的交点越多,图形被分的部分越多.34.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.35.解:设中间的圆圈中的数是A;根据题意可得:1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,66+4A=90,4A=24,A=6;那么每条线段剩下的两个数的和是:18﹣6=12;又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;分别放到每条线段剩下的两个圆圈中;由以上可得:.36.解:根据题干分析可得:37.解:船:(16+4)÷(5﹣3),=20÷2,=10(条);学生:3×10+16=46(人);答:学校共有学生46人.故答案为:46.38.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.39.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.40.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.。
小学四年级数学竞赛试卷(附答案)一一、拓展提优试题1.三个连续自然数的乘积是120,它们的和是.2.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C 时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米.3.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.4.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.5.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.6.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.7.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.8.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.9.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距米.10.如图是长方形,将它分成7部分,至少要画条直线.11.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.12.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.13.当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年岁.14.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有副.15.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?【参考答案】一、拓展提优试题1.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.2.【分析】由题目中的已知条件,得出甲乙的速度比,进而又得出他们的路程比,这样求出甲到达中点后再与乙共行240米,甲行的路程即CD之间的距离.解:由题意知“甲走360米时乙正好走240米”,甲、乙的速度比是360:240=3:2相同时间内,甲、乙的路程比等于他们的速度比即3:2甲乙共行240米,甲行的路程是240×3÷(2+3)=144(米)故:CD的距离是144米.【点评】解此题的突破口就是能得出他们的速度比,之后就可轻松解答了.3.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.4.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.5.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.6.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.7.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.8.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.9.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.解:(50+60)×10÷2=110×10÷2=1100÷2=550(米)答:甲、乙两地相距550米.故答案为:550.【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.10.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.11.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.12.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.13.【分析】设妈妈与小红的年龄差为x岁,则根据“当小红3岁时,妈妈的年龄和小红今年的年龄相同;”得出小红今年的年龄为:x+3岁;根据“当妈妈78岁时,小红的年龄和妈妈今年的年龄相同”得出小红现在的年龄为:78﹣x岁;根据小红的年龄+年龄差=妈妈的年龄,列出方程即可解决问题.解:设妈妈与小红的年龄差为x岁,则小红现在的年龄是x+3岁,妈妈现在的年龄是78﹣x岁,根据题意可得方程:x+3+x=78﹣x2x+3=78﹣x2x+x=78﹣33x=75x=2578﹣25=53(岁)答:妈妈今年53岁.故答案为:53.【点评】设出年龄差,抓住年龄差不变,分别得出二人现在的年龄是解决本题的关键.14.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.解:假设全是围棋,则象棋就有:(24×14﹣300)÷(24﹣18)=36÷6=6(副);答:其中象棋有6副.故答案为:6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.15.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.。
2017小学四年级数学竞赛试题很多数学成绩优异的学生都喜欢参加数学竞赛,展现自己的数学水平。
一起来做份数学竞赛的试题吧。
下面是店铺为大家整理的2017小学四年级数学竞赛试题,希望对大家有用!2017小学四年级数学竞赛试题一一、书写。
(2分) 要求:①卷面整洁②字迹工整二、填空。
(5小题每空0.5,其余每空1分,共23分)1、由2个百和5个千分之一组成的数写作( ),读作:( )。
2、 2.35中的“3”在( )位上,表示( );“5”所在数位的计数单位是( )。
3、2010年国庆期间,某旅游城市共接待游客634954人。
将横线上的数改写成用“万”作单位的数是( ),保留一位小数约是( )。
4、 ( )厘米=1.6米 21.5平方厘米=( )平方分米5、在( )里填上“>”“<”或“=”。
5.301( )5.31 0.9( ) 5.800( )5.80213×95+5( )213×100 350毫米( )3.5米 58754万( )5.9亿6、计算8×(125×12)=(8×125)×12时,运用了( )律。
7、将18缩小到它的是0.018。
8、在一个三角形中,∠1=46°,∠2=43°,∠3=( ),按角分这是一个( )三角形。
10、根据要求的运算顺序在算式中添上括号。
(1)加乘减27 × 8 + 12 - 10(2)乘加除36 + 4 × 16 211、先把一个数的小数点向左移动三位,再扩大100倍后得10.52,这个数原来是( )。
12、某学校四年级学生举行体操比赛。
四(一)班学生的队列是一个正方形方阵,最外层每边站了8人,最外层一共有( )名学生,整个方阵共有( )名学生。
13、学校门前新修的公路长200米,要在公路两边栽上树,每两棵树之间相距10米(两端都要栽),一共要栽( )棵树。
2017年⼩学四年级数学竞赛试题 很多数学成绩好和喜欢数学的学⽣,都经常会参加数学竞赛,通过⽐赛来展现⾃⼰的数学⽔平。
下⾯是店铺为⼤家整理的2017年⼩学四年级数学竞赛试题,希望对⼤家有⽤! 2017年⼩学四年级数学竞赛试题⼀ ⼀、填空题。
(2*8+4=20分) 1、在计算(200- 36×47)÷44时,先算( ),再算( ),最后算( )法。
2、____、____、_____、_____统称为四则运算。
3、650-320÷80,如果要改变运算顺序,先算减法,那么必须使⽤括号,算式是( )。
4、把下⾯⼏个分步式改写成综合算式. (1)960÷15=64 28=36 64 综合算式_____________________________ (2)75×24=1800 1800=7200 9000 综合算式____________________________ 5、a×6+6×15= ×( + )。
6、填⼀填,找出从正⾯、上⾯、左⾯、右⾯看到的形状。
7、⽤简便⽅法计算376+592+24,要先算( ),这是根据( )律。
8、⼀套校服,上⾐59元,裤⼦41元,购买2套,⼀共需要( )元。
9.在□⾥填上合适的数,然后列出综合算式。
综合算式:综合算式: ⼆、判断题。
( 6分) 1、0除任何数都得0。
( ) 2、185乘97与53的差,积是多少?列式是:185×97-53。
( ) 3、⽐90少2的数的2倍是176。
( ) 4、134-75+25=134-(75+25) ( ) 5、125×4×25×8=(125×8)+(4×25) ( ) 6、被减数与减数相等时,差为0。
( ) 三、选择(把正确答案的序号填⼊括号内)(2*5=10 分) (1)、56+72+28=56+(72+28)运⽤了 ( )A、加法交换律B、加法结合律C、乘法结合律D、加法交换律和结合律 (2)、25×(8+4)=( )A、25×8×25×4B、25×8+25×4C、25×4×8D、25×8+4 (3)、3×8×4×5=(3×4)×(8×5)运⽤了 ( )A、乘法交换律B、乘法结合律C、乘法分配律D、乘法交换律和结合律 (4)、101×125= ( )A、100×125+1B、125×100+125C、125×100×1D、100×125×1×125 (5)、986-297的简便算法是( )。
小學四年級數學競賽試卷(附答案)一、填空。
(共20分,每小題2分)1.被除數是3320,商是150,餘數是20,除數是()。
2.3998是4個連續自然數的和,其中最小的數是()。
3.有一個兩位數,在它的某一位數字的前面加上一個小數點,再和這個兩位數相加,得數是20.9。
這個兩位數是()4.填一個最小的自然數,使225×525×()積的末尾四位數字都是0。
5.在下面的式子中填上括號,使等式成立。
5×8+16÷4-2=206.從1、2、3、4、5、6、7、8、9九個數中,任取3個數組成一組,使它的平均數是5,有()種取法。
7.某地的郵政編碼可用ABCCDD表示,已知這六個數字的和是8,A與B 的和等於2個D,A是最小的自然數。
這個郵政編碼是()。
8.兩個數之和是444,大數除以小數商11,且沒有餘數,大數是()9.把5、11、14、15、21、22六個數填入下面的括號內,使等式成立。
()×()×()=()×()×()10.正方體有6個面,每個面上分別寫有1個數字,它們是1、2、3、4、5、6,而且每個相對面上兩個數的和是7(1和6,2和5,3和4)。
下圖是正方體六個面的展開圖,請填出空格內的數。
二、判斷。
(對的在括號內畫「√」,錯的畫「×」,共10分,每小題2分)11.大於0.9997而小於0.9999的小數只有0.9998。
()12.一張長方形彩紙長21釐米,寬15釐米,先剪下一個最大的正方形,再從餘下的紙上剪下一個最大的正方形。
這時紙的長是6釐米。
()13.一個箱子裡放著幾頂帽子,除2頂以外都是紅的,除2頂以外都是藍的,除2頂以外都是黃的。
箱子中一共有3頂帽子。
()14.一個佔地1公頃的正方形苗圃,邊長各加長100米,苗圃的面積增加3公頃。
()15.有鉛筆180支,分成若乾等份,每份不得少於7支,也不能多於25支,共有7種不同的分法。
小学四年级数学竞赛试卷1(附答案)一、填空。
(共20分,每小题2分)1.被除数是3320,商是150,余数是20,除数是( )。
2.3998是4个连续自然数的和,其中最小的数是( )。
3. 有一个两位数,在它的某一位数字的前面加上一个小数点,再和这个两位数相加,得数是20.9 。
这个两位数是( )4 •填一个最小的自然数,使225X 525X()积的末尾四位数字都是0。
5.在下面的式子中填上括号,使等式成立。
5X 8+16十4-2=206.从1、2、3、4、5、6、7、8、9九个数中,任取3个数组成一组,使它的平均数是5,有( )种取法。
7. 某地的邮政编码可用ABCCD表示,已知这六个数字的和是8, A与B的和等于2个D, A是最小的自然数。
这个邮政编码是()。
8. 两个数之和是444,大数除以小数商11,且没有余数,大数是( )9. 把5、11、14、15、21、22六个数填入下面的括号内,使等式成立。
( )X( )X( ) =( )X( )X( )10. 正方体有6个面,每个面上分别写有1个数字,它们是1、2、3、4、5、6,而且每个相对面上两个数的和是7(1和6,2和5,3和4)。
下图是正方体六个面的展开图,请填出空格内的数。
二、判断。
(对的在括号内画“V”,错的画“X”,共10分,每小题2分)11. 大于0.9997 而小于0.9999的小数只有0.9998。
( )12. 一张长方形彩纸长21厘米,宽15厘米,先剪下一个最大的正方形,再从余下的纸上剪下一个最大的正方形。
这时纸的长是6厘米。
( )13. 一个箱子里放着几顶帽子,除2顶以外都是红的,除2顶以外都是蓝的,除2顶以外都是黄的。
箱子中一共有3顶帽子。
( )14. 一个占地1公顷的正方形苗圃,边长各加长100米,苗圃的面积增加3公顷。
( )1 5 .有铅笔1 80支,分成若干等份,每份不得少于7支,也不能多于25支,共有7种不同的分法。
小学四年级数学竞赛试卷Ⅰ(附答案)一、填空。
(共20分,每小题2分)1.被除数是3320,商是150,余数是20,除数是()。
2.3998是4个连续自然数的和,其中最小的数是()。
3.有一个两位数,在它的某一位数字的前面加上一个小数点,再和这个两位数相加,得数是20.9。
这个两位数是()4.填一个最小的自然数,使225×525×()积的末尾四位数字都是0。
5.在下面的式子中填上括号,使等式成立。
5×8+16÷4-2=206.从1、2、3、4、5、6、7、8、9九个数中,任取3个数组成一组,使它的平均数是5,有()种取法。
7.某地的邮政编码可用ABCCDD表示,已知这六个数字的和是8,A与B的和等于2个D,A是最小的自然数。
这个邮政编码是()。
8.两个数之和是444,大数除以小数商11,且没有余数,大数是()9.把5、11、14、15、21、22六个数填入下面的括号内,使等式成立。
()×()×()=()×()×()10.正方体有6个面,每个面上分别写有1个数字,它们是1、2、3、4、5、6,而且每个相对面上两个数的和是7(1和6,2和5,3和4)。
下图是正方体六个面的展开图,请填出空格内的数。
二、判断。
(对的在括号内画“√”,错的画“×”,共10分,每小题2分)11.大于0.9997而小于0.9999的小数只有0.9998。
()12.一张长方形彩纸长21厘米,宽15厘米,先剪下一个最大的正方形,再从余下的纸上剪下一个最大的正方形。
这时纸的长是6厘米。
()13.一个箱子里放着几顶帽子,除2顶以外都是红的,除2顶以外都是蓝的,除2顶以外都是黄的。
箱子中一共有3顶帽子。
()14.一个占地1公顷的正方形苗圃,边长各加长100米,苗圃的面积增加3公顷。
()15.有铅笔180支,分成若干等份,每份不得少于7支,也不能多于25支,共有7种不同的分法。
2017年下期四年级数学知识竞赛试卷答案班次姓名计分一、填空。
(50分,每小题5分)1、( )里最大能填几?10( 4 )864≈10万, 9( 9 )≈10亿。
2、找规律填空。
①.1. 2、 4、 7、 11、 16、 22、 ( 29 )。
②.1、 4、 9、 16、 25……这列数中第25个数就是( 625 )。
3、( )里最大能填几?30× ( 4 )﹤ 136、 ( 7 )× 40 ﹤ 282、50 ×( 8 )﹤ 427、 ( 6 ) × 60 ﹤ 414、4、深夜12:00到中午12:00之间。
钟面上的分针与时( 2 )次成直角。
5、一个因数缩小4倍,另一个因数缩小2倍,积就是120,原来积就是( 960 )。
6、一根木头锯断要2分钟,把这根木头锯成6段要( 10 )分钟。
7、小于10000而又与10000最接近的自然数就是( 9999 )。
8、在□÷ 18 = 9……△这个算式中,被除数最大就是( 179 )。
9、一个6位数,它的十万位、千位与百位上都就是0,这个数就是( 505500 ),约等于( 51 )万。
10、一个五位数加上9后,成一个六位数,这个数最大就是(99999 ),最小就是(99991 )。
二、应用题。
( 每题10分)。
1、水果店运来5车苹果,每车装36筐,每筐30千克,一共运来多少千克?5×36×30 = 5400 ( 千克 )2、在计算一道除法题时,把被除法836错写成了893,这样得到的商就是23,余数就是19,正确的商就是多少?(893 – 19 ) ÷ 23 = 38836 ÷ 38 = 223、某工厂第一车间有工人150人,第二车间有工人90人,要使第一车间的人数就是第二车间的2倍,需要从第二车间调多少人到第一车间?10人。
4、甲、乙、丙三个数,它们的平均数就是95,其中甲就是90,乙就是97,求丙?95 × 3 – 90 -97 = 985、有9筐重量相等的橘子,如果从每筐取出25千克,那么剩下的正好等于原来4个筐的重量,原来每筐有多少千克?25 × 9 = 225 ( 千克 )225 ÷ ( 9 – 4 ) = 450 (千克)。
【经典】小学四年级数学竞赛试卷(附答案)图文百度文库一、拓展提优试题1.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则=.2.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S 的正方形有个.3.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.4.有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个.已知这筐桃子的个数不少于120,也不多于150,共有个.5.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.6.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.7.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.8.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.9.一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次下去,多少站以后,车上坐满乘客?10.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.11.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.12.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.13.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?14.(8分)有10张卡片,上面分别写着1,2,3,…,9,10.那么至少取出6张卡片,才能保证取出的卡片中,有两张卡片上的数字之和为11.15.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.【参考答案】一、拓展提优试题1.【分析】根据整数加法竖式计算的方法进行推算即可.解:根据题意,由加法竖式可得:个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;所以,A=1,B=0;由以上推算可得:假设B=5时,5×5=25,向十位进2;十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;所以,A=1,B=5;由以上推算可得:因此两位数是:10或15.故答案为:10或15.【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.2.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.3.【分析】三条线不重合,不相交时,把长方形分成的部分最少;三条线不重合,但在长方形内两两相交,有3个交点,把长方形分成的部分最多,如下图所示,因此得解.解:由分析可得:故答案为:4,7.【点评】认真分析题意,找出规律是解决此题的关键,线的交点越多,图形被分的部分越多.4.【分析】可以看做4个4个地数,少2个;6个6个地数,少2个;8个8个地数,也是少2个.也就是4、6、8的公倍数减2.[4、6、8]=24.可以记作24x﹣2,120<24x﹣2<150.x是整数,x=6.这筐桃子共有24×6﹣2,计算即可.解:[4、6、8]=24.这筐桃子的数量可以记作24x﹣2,120<24x﹣2<150.x是整数,所以x=6,这筐桃子共有:24×6﹣2=142(个).答:这筐桃子共有142个.故答案为:142.【点评】关键是通过把原题转化,运用了求最小公倍数以及解不等式的方法解决问题.5.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.6.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.7.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.8.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.9.解:设第n站以后车上坐满了乘客,可得:[1+1+(n﹣1)×1]×n÷2=78[2+n﹣1]×n÷2=78,[1+n]×n÷2=78,(1+n)×n=156,由于12×13=156,即n=12.答:12站以后,车上坐满乘客.10.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.11.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.12.解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.13.【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.14.解:10÷2=5(个)5+1=6(个)故填615.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.。
四年级数学知识竞赛试卷
2017.4.13(60分钟完卷)
1、找规律填数。
(1) 1、4、9、16、( )、36...
(2) 2、3、5、9、( )、33...
2、请你将8—14这7个数字填入右图的圆圈中,
使每条直线上三个数之和都相等且最小。
3、把一根木料锯成3段要用6分钟,那么用同样的速度把这根木料锯成6段要用( )分钟。
4、一个自然数,各位上的数字之和是56,这个自然数最小是( )位数,它的最高位数字是( )。
5、小军和爸爸、妈妈同时去同一家美发店理发(只有1个理发师),小军要15分钟,妈妈要1小时,爸爸要25分钟,三人等候时间的总和最少是( )分钟。
6、姐姐有邮票65枚,妹妹有85枚,姐姐要给妹妹( )枚,才能使妹妹的邮票枚数是姐姐的2倍。
7、四(1)班有54名同学。
会下象棋的有26名同学,会下围棋的有16名同学,两种棋都不会下的有18名,两种棋都会下的有( )名。
8、某月中,星期五的天数比星期一的天数多,星期三的天数比星期日的天数多,这个月的2日是星期( )。
9、用1—8这八个数字分别组成两个四位数,使这两个四位数的乘积最大,这两个数分别是( )和( )。
10、用2、0、1、7这四张数字卡片可以摆出( )个不同的四位数。
班级 考号 姓名
11、一把钥匙只能开一只锁,现有5把钥匙和5只锁搞乱了,最多试开()次就能确定哪把钥匙开哪只锁。
12、一个三位小数,精确到十分位是20.0。
这个三位小数最大是(),最小是()。
13、在一条长80米公路的两侧栽树(两端都要栽),每隔8米栽一棵,一共栽()棵树。
14、有同样大小的红、蓝、黄彩灯75只,按先1只红的、再2只蓝的、最后3只黄的这样重复排列着。
蓝色灯共有()只;第57只灯是()色。
15、王师傅要加工一批零件,若每天加工15个,则余下25个;若每天加工20个,则余下5个。
这批零件有()个。
16、李老师买16本笔记本和8支圆珠笔共花去96元,张老师买同样的8本笔记本和16支圆珠笔共花去72元,笔记本和圆珠笔的单价各是()元、()元。
17、布袋里放着大小相同的红、白、黄三种颜色的玻璃球各8个,一次至少摸出()个才能保证有3个颜色相同的球。
18、用18厘米长的铁丝围成一个长方形,长和宽都是整厘米数,可以有
()种不同的围法。
最大长方形的面积是()平方厘米。
19、水果店里原有水果200千克,每天白天卖出50千克,晚上又进货40千克。
照这样算,( )天后水果恰好卖完。
20、甲、乙两车同时从A地出发,甲车10分钟到达B地,乙车12分钟到达B地,甲车每分钟比乙车多行160米。
A、B两地长()千米。
班级考号
姓名
四年级数学知识竞赛试卷
2017.4.13(60分钟完卷)
1、找规律填数。
(1)1、4、9、16、(25 )、36...
(3)2、3、5、9、(17 )、33...
2、请你将8—14这7个数字填入右图的圆圈中,
使每条直线上三个数之和都相等且最小。
3、把一根木料锯成3段要用6分钟,那么用同样的速度把这根木料锯成6段
要用(15 )分钟。
4、一个自然数,各位上的数字之和是56,这个自然数最小是(七)位数,
它的最高位数字是( 2 )。
5、小军和爸爸、妈妈同时去同一家美发店理发(只有1个理发师),小军要
15分钟,妈妈要1小时,爸爸要25分钟,三人等候时间的总和最少是
( 155 )分钟。
6、姐姐有邮票65枚,妹妹有85枚,姐姐要给妹妹( 15 )枚,才能使
妹妹的邮票枚数是姐姐的2倍。
7、四(1)班有54名同学。
会下象棋的有26名同学,会下围棋的有16名同
学,两种棋都不会下的有18名,两种棋都会下的有( 6 )名。
8、某月中,星期五的天数比星期一的天数多,星期三的天数比星期日的天数
多,这个月的2日是星期(四)。
9、用1—8这八个数字分别组成两个四位数,使这两个四位数的乘积最大,
这两个数分别是(8531 )和(7642 )。
10、用2、0、1、7这四张数字卡片可以摆出( 18 )个不同的四位数。
11、一把钥匙只能开一只锁,现有5把钥匙和5只锁搞乱了,最多试开(10 )次就能确定哪把钥匙开哪只锁。
12、一个三位小数,精确到十分位是20.0。
这个三位小数最大是(20.049 ),最小是(19.950 )。
13、在一条长80米公路的两侧栽树(两端都要栽),每隔8米栽一棵,一共栽(22 )棵树。
14、有同样大小的红、蓝、黄彩灯75只,按先1只红的、再2只蓝的、最后3只黄的这样重复排列着。
蓝色灯共有(26 )只;第57只灯是(蓝)色。
15、王师傅要加工一批零件,若每天加工15个,则余下25个;若每天加工20个,则余下5个。
这批零件有(85 )个。
16、李老师买16本笔记本和8支圆珠笔共花去96元,张老师买同样的8本笔记本和16支圆珠笔共花去72元,笔记本和圆珠笔的单价各是( 5 )元、( 2 )元。
17、布袋里放着大小相同的红、白、黄三种颜色的玻璃球各8个,一次至少摸出(7 )个才能保证有3个颜色相同的球。
18、用18厘米长的铁丝围成一个长方形,长和宽都是整厘米数,可以有
( 4 )种不同的围法。
最大长方形的面积是( 20 )平方厘米。
19、水果店里原有水果200千克,每天白天卖出50千克,晚上又进货40千克。
照这样算,( 16 )天后水果恰好卖完。
20、甲、乙两车同时从A地出发,甲车10分钟到达B地,乙车12分钟到达B地,甲车每分钟比乙车多行160米。
A、B两地长(9.6 )千米。