方差数学教学设计
- 格式:docx
- 大小:38.11 KB
- 文档页数:3
方差教案初中数学教学目标:1. 理解方差的定义和性质,掌握计算公式。
2. 能够运用方差分析数据,判断数据的稳定性和集中程度。
3. 培养学生的逻辑思维能力和数据分析能力。
教学重点:1. 方差的定义和性质。
2. 方差的计算公式。
教学难点:1. 方差的计算公式的推导。
2. 运用方差分析数据的能力。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾数据的波动情况,引入方差的概念。
2. 提问:数据的波动情况如何衡量?引出方差的概念。
二、新课讲解(15分钟)1. 讲解方差的定义:方差是衡量一组数据波动大小的量。
2. 推导方差的计算公式:方差 = (每个数据值 - 平均数)^2 的平均数。
3. 讲解方差的性质:非负数,单位与原数据单位一致。
4. 通过实例讲解如何计算一组数据的方差。
三、练习与讨论(15分钟)1. 让学生独立完成练习题,巩固方差的计算方法。
2. 组织学生进行小组讨论,分享解题过程和心得。
四、方差的实际应用(15分钟)1. 讲解方差在实际生活中的应用,如质量控制、统计分析等。
2. 通过实例分析,让学生学会如何运用方差判断数据的稳定性和集中程度。
五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结方差的定义、性质和计算方法。
2. 强调方差在实际生活中的重要性。
六、作业布置(5分钟)1. 布置练习题,让学生巩固方差的概念和计算方法。
2. 鼓励学生查阅相关资料,了解方差在实际应用中的例子。
教学反思:本节课通过讲解方差的定义、性质和计算方法,让学生掌握方差的基本概念和应用。
在教学过程中,注意引导学生主动参与课堂讨论,提高学生的逻辑思维能力和数据分析能力。
同时,结合实际情况,让学生了解方差在生活中的应用,增强学生的学习兴趣。
在作业布置方面,注重培养学生的自主学习能力,鼓励学生查阅资料,拓宽知识面。
方差教学设计详案1.了解什么是方差以及方差的意义;2.掌握求取方差的公式以及计算方差的步骤;3.能够运用方差来分析和比较数据的差异性。
教学重点:1.方差的概念和意义;2.方差的计算公式;3.方差的应用。
教学难点:1.方差计算公式的推导;2.方差的应用案例分析。
教学准备:1.教师准备:PPT、黑板、白板、计算器;2.学生准备:笔记本、计算器。
教学过程:引入(5分钟):教师通过提问和讨论引导学生回顾并总结之前学过的均值的概念和计算方法,并与方差有何联系。
正文(30分钟):1. 概念解释:教师介绍方差是统计学中用来衡量数据的离散程度的一个指标,它可以反映数据的集中程度和分散程度。
方差越大,数据的离散程度越大;方差越小,数据的离散程度越小。
方差的计算公式为:计算数据的均值μ;(2)分别计算每个观测值与均值的差;(3)对每个差值进行平方运算;(4)计算平方差的平均值,即为方差。
3. 方差的应用:教师通过实际案例引导学生运用方差来分析和比较数据的差异性。
如:A班和B班的学生分数如下:A班:70, 80, 90, 85, 75B班:75, 85, 95, 90, 80计算A班和B班学生分数的方差,并进行比较和分析。
学生通过计算方差来比较A班和B班学生分数的波动程度,得出结论。
4. 方差计算公式的推导:教师简要讲解方差计算公式的推导过程。
这一部分可以根据学生的理解情况来决定时间分配。
总结(5分钟):教师对本节课的重点内容进行总结,并强调方差的计算过程和应用,帮助学生掌握学习要点。
作业布置(5分钟):布置方差相关的习题作为课后作业,加深学生对方差的理解和掌握。
教学反思:此次课程通过引导学生回顾和总结均值的概念,引出了方差的概念和意义,并通过具体案例和计算演算来帮助学生掌握方差的计算。
初中方差优秀教案教学目标:1. 理解方差的定义和意义,掌握方差的计算方法。
2. 能够运用方差分析数据,判断数据的波动大小。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 方差的定义和意义2. 方差的计算方法3. 方差的运用教学过程:一、导入(5分钟)1. 引导学生回顾平均数的定义和意义,让学生思考平均数在数据分析中的作用。
2. 提出问题:如果我们想要了解数据的波动情况,除了平均数之外,还有其他的方法吗?二、新课导入(15分钟)1. 介绍方差的定义:方差是衡量一组数据波动大小的量。
2. 解释方差的计算方法:方差 = [(每个数据值 - 平均数)的平方和] / 数据个数。
3. 举例说明方差的计算过程,让学生跟随老师一起计算一个示例数据的方差。
三、课堂练习(15分钟)1. 给学生发放练习题,让学生独立计算给定数据的方差。
2. 引导学生理解方差的意义:方差越小,说明数据越稳定;方差越大,说明数据波动越大。
四、方差的运用(15分钟)1. 提出问题:如何利用方差分析数据?2. 讲解方差的运用:通过比较不同数据集的方差,可以判断数据的波动情况,从而进行数据的分析和决策。
3. 举例说明方差在实际问题中的应用,如:判断一批产品的质量是否合格。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结方差的定义、计算方法和运用。
2. 引导学生思考:方差在实际生活中的应用和意义。
教学评价:1. 课堂练习的完成情况,判断学生对方差的计算方法的掌握程度。
2. 学生对方差的理解和运用能力的评估,通过提问和举例分析学生的回答。
教学资源:1. 方差的定义和意义PPT。
2. 方差的计算方法和运用PPT。
3. 练习题和答案。
教学难点:1. 方差的计算方法的掌握。
2. 方差的意义的理解。
高一数学教案方差【优秀4篇】高一数学教案方差篇一一、教学目的1.使学生进一步理解方差、标准差的意义。
2.使学生掌握利用简化公式计算一组数据的方差的方法。
3.使学生会根据同类问题两组数据的方差(或标准差)比较两组数据的波动情况。
二、教学重点、难点重点:简化计算一组数据的方差公式。
难点:利用方差(或标准差)比较两组数据的波动情况。
三、教学过程复习提问1.什么是一组数据的方差、标准差?2.一组数据的方差和标准差应如何计算?引入新课我们看到,用公式③计算一组数据的方差比较麻烦。
那么,有否较简便的计算方法呢?新课教师应在黑板上进行如下推导:推导上述公式后,可让学生仿①~④四个公式的方法归纳推理出如下结论:一般地,如果一组数据的个数是n,那么它们的方差可以用下面的公式计算:在这时,教师要强调:当一组数据中的数较小时,用公式⑤计算方差比公式③计算少了求各数据与平均数的差一步,因此比较方便。
例2 计算下面数据的方差(结果保留到小数点后第1位):3 -1 2 1 -3 3教师可让学生共同来完成此例。
接下来教师按教材指出,当一组数据较大时,可按下述公式计算方差:其中x1=x1-a,x2=x2-a,…,xn=xn-a,x1,x2,…,xn是原已知的n个数据,a是接近这组数据的平均数的一个常数。
为使学生对公式⑥加深印象,可让学生用公式⑥解下例。
例3 甲、乙两个小组各10名学生的英语口语测验成绩如下(单位:分):哪个小组学生的成绩比较整齐?解后,指出解题步骤有如下三步:(3)代入公式⑥计算方差并比较得解。
小结1.本课介绍了当一组数据中的数值较小时,用以计算方差的简化计算公式⑤.2.本课又学习了当一组数据中的数值较大时,用以计算方差的简化公式⑥.练习:选用课本练习题。
作业:选用课本习题。
补充作业2.甲、乙两组数据的方差之和为13,标准差之和为5,且甲的波动比乙的波动大,求它们各自的标准差。
(答案:S甲=3,S乙=2.)3.在某次数学考试中,甲、乙两校各8个班,不及格的人数分别如下:分别计算这两组数据的平均数与方差。
人教版数学八年级下册20.2第1课时《方差》教学设计一. 教材分析《方差》是人教版数学八年级下册20.2第1课时的重要内容。
方差是描述一组数据波动大小,稳定程度的量。
通过学习方差,使学生更好地理解数据的波动情况,为以后学习概率和统计打下基础。
二. 学情分析学生在学习本课时,已经掌握了平均数、标准差等基础知识,能理解数据的波动情况。
但对方差的概念和计算方法可能存在理解上的困难,需要通过实例来引导学生理解方差的概念,并运用计算公式进行计算。
三. 教学目标1.知识与技能:理解方差的概念,掌握方差的计算方法,能计算一组数据的方差。
2.过程与方法:通过实例分析,引导学生理解方差的意义,培养学生的数据分析能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:方差的概念,方差的计算方法。
2.难点:方差公式的推导,方差在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解方差的概念。
2.小组合作学习:分组讨论,共同完成方差的计算。
3.激励性评价:鼓励学生积极参与,提高学习积极性。
六. 教学准备1.准备相关的生活实例,用于引导学生理解方差的概念。
2.准备方差的计算练习题,用于巩固所学知识。
3.准备多媒体教学设备,用于展示实例和讲解。
七. 教学过程1.导入(5分钟)通过一个生活实例,如学生的身高数据,引导学生思考:如何描述这些数据的波动情况?引入方差的概念。
2.呈现(10分钟)讲解方差的定义,用公式表示。
并通过动画演示方差的计算过程,让学生直观地理解方差的含义。
3.操练(10分钟)学生分组讨论,共同完成一些方差的计算练习题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成一些方差的计算题,检验自己对方差的理解。
教师选取部分题目进行讲解,巩固所学知识。
5.拓展(10分钟)引导学生思考:方差在实际生活中有哪些应用?让学生举例说明,进一步体会方差的意义。
高一数学教案方差(优秀4篇)高一数学教案方差篇一《标准差与方差》数学教案设计教学目标1、掌握用计算器求平均数、标准差与方差的方法。
2、会用计算器求平均数、标准差与方差。
教学建议重点、难点分析1、本节内容的重点是用计算器求平均数、标准差与方差,难点是准确操作计算器。
2、计算器上的标准差用表示,和教科书中用S表示不一样,但意义是一样的。
而计算器上的S和我们教科书上的标准差S意义不一样。
在计算器上S和是并排在一起的,按同一键,都是统计计算用的。
因S在前,在后,这样要想显示出标准差,就需要发挥该键的统计功能中第二功能,于是就得先按键,再按键。
教学设计示例1素质教育目标(一)知识教学点使学生会用计算器求平均数、标准差与方差。
(二)能力训练点培养学生正确使用计算器的能力。
(三)德育渗透点培养学生认真、耐心、细致的学习态度和学习习惯。
(四)养育渗透点通过本节课的教学,渗透了用高科技产品求方差值的简单美,激发学生的学习兴趣,丰富了学生具有数学美的底蕴。
重点·难点·疑点及解决办法1.教学重点:用计算器进行统计计算的步骤。
2.教学难点:正确输入数据。
3.教学疑点:学生容易把计算器上的键S主认为是书上的标准差S,教科书中的符号S与CZ1206计算器上的符号S的意义不同,而与计算器上的符号相同。
4.解决办法:首先使计算器进入统计计算状态,再将一些数据输入,按键得出所要求的统计量。
教学步骤(一)明确目标请同学们回想一下,我们已学过用科学计算器进行过哪些运算?(求数的方根、求角的三角函数值等),那么用计算器和用查表进行这些运算在运算速度、准确性等方面有什么不同,(计算器运算速度快、准确性高,查表慢,且准确性低).这节课我们将要学习用计算器进行统计运算。
它会使我们更能充分体会到用计算器进行运算的优越性。
这样开门见山的引入课题,能迅速将学生的注意力集中起来,进入新课的学习。
(二)整体感知进行统计运算,是科学计算器的重要功能之一。
数学教案-方差教学设计示例1第一课时素质教育目标(一)知识教学点使学生了解方差、标准差的意义,会计算一组数据的方差与标准差. (二)能力训练点1.培养学生的计算能力. 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力. (三)德育渗透点1.培养学生认真、耐心、细致的学习态度和学习习惯. 2.渗透数学来源于实践,又反过来作用于实践的观点. (四)美育渗透点通过本节课的教学,渗透了数学知识的抽象美及反映在图像上的形象美,激发学生对美好事物的追求,岣哐?STRONG>数学美的鉴赏力. 重点·难点·疑点及解决办法1.教学重点:方差概念. 2.教学难点:方差概念. 3.教学疑点:学生不易理解为什么要用方差去描述一组数据的波动大小,为什么不可以用各数据与其平均数的差的来和来衡量这组数据的波动大小呢?为什么对各数据与其平均数的差不取其绝对值,而将其平方呢?对这些问题教师在剖析方差定义时要讲清楚. 4.解决办法:教师要讲清方差,标准差的意义,即它们都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况. 教学步骤(一)明确目标前面我们学习了平均数、众数及中位数,它们都是描述一组数据的集中趋势的量,这节课我们将进一步学习衡量样本(或一组数据)和总体的另一类特征数——方差、标准差及其计算. 这种开门见山式引入课题,能迅速将学生的注意力集中起来,进入新课讲解. (二)整体感知对于一组数据来说,我们除了关心它的集中趋势以外,还关心它的波动大小.衡量这个波动大小的最常用的特征数,就是方差和标准差. (三)教学过程1.请同学们看下面的问题:(用幻灯出示)两台机床同时生产直径是40毫米的零件,为了检验产品质量,从产品中各抽出10件进行测量,结果如下(单位:毫米)机床甲4039.840.140.239.94040.239.840.239.8机床乙404039.94039.940.24040.14039.9上面表中的数据如图所示教师引导学生观察表格中的数据和图,提出问题:怎样能说明在使所生产的10个零件的直径符合规定方面,哪个机床做得好呢?对于这个问题,学生会马上想到计算它们的平均数.教师可把学生分成两级分别计算这两组数据的平均数.(请两名同学到黑板计算)计算的结果说明两组数据的平均数都等于规定尺寸40毫米.这时教师引导学生思考,这能说明两个机床做的一样好吗?不能!我们再观察上图(给学生充分的时间观察,找出左右两图的区别)从图中看到,机床甲生产的零件的直径与规定尺寸偏差较大,偏离40毫米线较多;机床乙生产的零件的直径与规定尺寸偏差较小,比较集中在40毫米线的附近.这说明,在使所生产的10个零件的直径符合规定方面,机床乙比机床甲要好.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).通过引例的学习,使学生理解为什么要研究数据波动的大小,为提出方差概念做好了准备.2.方差概念教师讲解,为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方分别是,那么我们用它们的平均数,即用③来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据方差越大,说明这组数据波动越大.教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解方差概念时,可能会提出疑问:为什么要这样定义方差?(教师说明,在表示各数据与其平均数的倔离程度时,为了防止正偏差与负偏差的相互抵消)为什么对各数据与其平均数的差不取其绝对值,而要将它们平方?(教师说明,这主要是因为在很多问题里,含有绝对值的式子不便于运算,且在衡量一组数据波动大小的“功能”上,方差更强些)为什么要除以数据个数n?(是为了消除数据个数的影响).在学生理解了方差概念之后,再回到了引例中,通过计算机床甲、乙两组数据的方差,再根据理论说明哪个机床做得更好.教师范解从知道,机床甲生产的10个零件直径比机床乙生产的10个零件直径波动要大. 这样做使学生深刻体会到数学来源于实践,又反过来作用实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.3.例1 (用幻灯出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7 乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1 分别计算这两组数据的方差. 让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名好学生到黑板计算. 解:根据公式②(取),有从知道,乙组数据比甲组数据波动大. 4.标准差概念在有些情况下,需要用到方差的算术平方根④并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量. 教师引导学生分析方差与标准差的区别与联系:计算标准差要比计算方差多开一次平方,但它的度量单位与原数据一致,有时用它比较方便. 课堂练习教材P165中(1)、(2)(四)总结、扩展知识小结:通过这节课的学习,使我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小;而描述一组数据的波动大小的量不止一种,最常用的是方差和标准差.方差与标准差这两个概念既有联系又有区别. 方法小结:求一组数据方差的方法;先求平均数,再利用③求方差,求一组数据标准差的方法:先求这组数据的方差,然后再求方差的算术平方根. 布置作业教材P173中1,2(1)(2)板书设计14.3 方差(一)方差公式③引例例1标准差公式④教学设计示例2 一、教学目的1.使学生了解方差、标准差的意义,会计算一组数据的方差与标准差.2.使学生了解样本方差、样本标准差、总体方差的意义.二、教学重点、难点重点:方差、标准差、样本方差、样本标准差、总体方差的意义.难点:样本方差、样本标准差的计算.三、教学过程复习提问计算一组数据的平均数有哪些方法?引入新课在很多实际问题中,只知道一组数据的平均数是不够的,还需要知道这组数据的波动大小.如何了解数据的波动大小?这正是我们要解决的问题.新课引例两台机床同时生产直径是40毫米的零件.为了检验产品质量,从产品中抽出10件进行测量,结果如下(单位:毫米):表中数据表成如下形式:可在此处让学生用公式②分别计算这两组数据的平均数(还可提问学生a取什么值最好,这样学生能在教师的启发下得到a=40最合适).当学生算出如下平均数:让学生思考,两组数据的平均数都等于规定尺寸40毫米时,甲、乙两机床性能是否都一样好?提出问题让学生议议后,再引导学生看图1,让学生认识到“机床甲生产的零件的直径与规定尺寸编差较大,偏离40毫米线较多;机床乙生产的零件的直径与规定尺寸的偏差较小,比较集中在40毫米线的附近.”这说明,在使所生产的10个零件的直径符合规定方面,机床乙比机床甲要好.这反映出,对一组数据,除需要了解它们的平均水平以外,还常常需要了解它们的波动大小(即偏离平均数的大小).在此处要告诉学生:描述一组数据的波动大小,可以采用不止一种办法.本课介绍“方差”即是一种方法.即:来衡量这组数据的波动大小,并把它叫做这组数据的方差.要强调“一组数据方差越大,说明这组数据波动越大”.条件许可时,还可介绍③式可表示为:接下来可以请两个学生计算引例中机床甲、乙两组数据的方差.从0.026>0.008可以比较出,机床甲生产的10个零件直径比机床乙生产的10个零件直径波动要大.(接下来教师再给出如下例题.) 例1 已知两组数据:分别计算这两组数据的方差.讲此例后,要强调求解步骤为:(1)求平均数;(2)求方差;(3)比较方差得出结论.此后接前面问题说,用来衡量一组数据的波动的方法还可用一组数据的标准差,即公式④(即标准差)也是用来衡量一组数据波动大小的重要的量.在本节引例中,两组数据的标准差,可让学生算一下,得出:说明:计算标准差要比计算方差多开一次平方,但它的度量单位与原数据一致,有时用它比较方便.小结1.本课学了计算一组数据的方差的公式③.2.本课在方差的基础上又学了计算一组数据的标准差的公式④.练习:选用课本练习题.作业:选用课本习题.四、教学注意问题要注意通过例题讲好求方差题目的解题格式.教学设计示例3 一、教学目的1.使学生进一步理解方差、标准差的意义.2.使学生掌握利用简化公式计算一组数据的方差的方法.3.使学生会根据同类问题两组数据的方差(或标准差)比较两组数据的波动情况.二、教学重点、难点重点:简化计算一组数据的方差公式.难点:利用方差(或标准差)比较两组数据的波动情况.三、教学过程复习提问1.什么是一组数据的方差、标准差?2.一组数据的方差和标准差应如何计算?引入新课我们看到,用公式③计算一组数据的方差比较麻烦.那么,有否较简便的计算方法呢?新课教师应在黑板上进行如下推导:推导上述公式后,可让学生仿①~④四个公式的方法归纳推理出如下结论:一般地,如果一组数据的个数是n,那么它们的方差可以用下面的公式计算:在这时,教师要强调:当一组数据中的数较小时,用公式⑤计算方差比公式③计算少了求各数据与平均数的差一步,因此比较方便.例2 计算下面数据的方差(结果保留到小数点后第1位):3 -1 2 1 -3 3 教师可让学生共同来完成此例.接下来教师按教材指出,当一组数据较大时,可按下述公式计算方差:其中x1=x1-a,x2=x2-a,…,xn=xn-a,x1,x2,…,xn是原已知的n个数据,a是接近这组数据的平均数的一个常数.为使学生对公式⑥加深印象,可让学生用公式⑥解下例.例3 甲、乙两个小组各10名学生的英语口语测验成绩如下(单位:分):哪个小组学生的成绩比较整齐?解后,指出解题步骤有如下三步:(3)代入公式⑥计算方差并比较得解.小结1.本课介绍了当一组数据中的数值较小时,用以计算方差的简化计算公式⑤.2.本课又学习了当一组数据中的数值较大时,用以计算方差的简化公式⑥.练习:选用课本练习题.作业:选用课本习题.补充作业2.甲、乙两组数据的方差之和为13,标准差之和为5,且甲的波动比乙的波动大,求它们各自的标准差.(答案:S甲=3,S乙=2.) 3.在某次数学考试中,甲、乙两校各8个班,不及格的人数分别如下:分别计算这两组数据的平均数与方差.四、教学注意问题要注意给学生讲如下三点:1.方差与标准差是衡量样本和总体波动大小的特征数.2.用简化计算公式求方差较为方便.3.对同类问题的两组数据,方差小的波动小、方差大的波动大.。
初中数学方差教案初中数学方差教案作为一名教学工作者,常常要写一份优秀的教案,教案是教学蓝图,可以有效提高教学效率。
如何把教案做到重点突出呢?以下是小编整理的初中数学方差教案,欢迎大家分享。
初中数学方差教案1一、素质教育目标㈠知识教学点⒈使学生理解直线和圆的位置关系。
⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。
㈡能力训练点⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。
⒉在7.1节我们曾学习了“点和圆”的位置关系。
⑴点P在⊙O上 OP=r⑵点P在⊙O内OP<r⑶点P在⊙O外OP>r初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。
㈢德育渗透点在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。
二、教学重点、难点和疑点⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。
⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。
⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。
三、教学过程㈠情境感知⒈欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。
⒊活动:学生动手画,老师巡视。
当所有学生都把三种位置关系画出来时,用幻灯机给同学们作演示,并引导由现象到本质的观察,最终老师指导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义。
方差数学教学设计
知识与技能
1、了解方差的定义和计算公式。
2. 理解方差概念的产生和形成的过程。
3. 会用方差计算公式来比较两组数据的波动大小。
过程与方法
经历探索方差的应用过程,体会数据波动中的方差的求法,积累统计经验。
情感态度与价值观
1、通过小组活动,提高与人合作、交流的团队意识。
2、培养学生的统计意识,形成尊重事实、用数据说话的态度,认识数据处理的实际意义。
掌握方差的概念、公式、计算及其运用
理解方差的意义,会求一组数据的方差。
问题与情境
师生行为设计意图
活动一
课前小测:
1、什么是极差?
2、极差用来描述数据的什么性质?
教师检查学生小测题的情况,并注意存在的问题。
检查学生对上一节课基础知识的掌握情况,也为本节课的学习做一些铺垫。
活动二
自主探究:
请同学们阅读课本第138—140页的’内容,回答下列问题:
1、哪个队参赛选手年龄的波动大?你是怎么知道的?
2、我们除了用极差来度量数据波动大小,是否还有其它方法呢?学生先独立阅读、
思考,小组再进行讨论、交流。
教师进行巡视,关注学生的情况,并适当给以答疑。
培养
学生的阅读能力和自学能力。
提高学生合作交流意识。
活动三
思考与交流:
1、方差的定义是什么?谁能用自己的话概括一下。
2、方差的计算公式是什么?
3、方差的大小与数据的波动大小有何关系?学生先独立思考,小组再进行讨论、交流。
师生共同归纳本节课的知识点。
通过这个活动,提高学生的概括成归纳能力。
让学生经
历数学知识的形成与应用过程。
活动四:
例题讲解
在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女
演员的身高(单位:cm )分别是甲团 163 164 164 165 165 165 166 167乙团 163 164 164 165 166 167 167 168哪个芭蕾舞团女演员的身高更为整齐?
拓展训练:1、计算下面三组数据的方差,并比较波动大小。
A组:6 6 6 6 6 6B组:5 5 6 6 6 8C组:3 3 6 6 9 9
2、如果样本方差那么这个样本的平均数为 .样本容量为 .
3、一个样本的方差是0,若中位数是a,那么它的平均数是()A、等于a B、不等
于a C、大于a D、小于a
4、国家运动员在参加奥运会前都要经过刻苦训练,教练要对他们的成绩进行统计分析,判断他们的成绩是否稳定,则教练需要知道他们成绩的()A、众
数B、方差C、平均数D、中位数
5、甲同学和乙同学的5次数学测验成绩的平均分都是93分,s2甲=0.8 s2
乙=12,则___的成绩比较稳定。
教师让学生先自学课本,然后再点评,着重突出方差反
映的是数据波动的大小。
5个小题都是比较基础的题目,教师可充分放手让学生去自主完成。
由于题目较简单,教师重点留意班级成绩基础稍薄弱的同学进行辅导。
使学生通过对知识点的运用,加深对
知识点的理解,并对所学知识得以巩固和强化。
前几个小题的设置主要是检查学生能否正
确地计算和简单运用方差的知识来解决问题。
是属于基本过关考查。
考查学生思考、总结的综合能力,培养学生思维能力,同时也是对前后知识的一种综合归纳。
活动五
谈谈你在本节课的收获?
学生思考,回答。
通过此环节,使学生对本节的内容进行及时复习,得以巩固。
活动六
课后作业必做题:课本第144页第1题选做题:若已知一组数据的平均数是 ,方差是s2 ,那么另一组数据的平均数是 , 方差是 .学生根据自己的情况,有选择性地完成课后作业。
通过分层次作业,关注学生的个体差异,使不同的学生得到不同的发展。
感谢您的阅读,祝您生活愉快。