样本平均数
- 格式:ppt
- 大小:201.51 KB
- 文档页数:41
第2课时用样本的平均数、方差估计总体的平均数、方差教学目标【知识与技能】会用样本平均数、方差估计总体的平均数方差,并进行简单的分析.【过程与方法】经历用样本平均数、方差估计总体的平均数方差的过程,积累统计经验.【情感态度】培养学生的统计意识,形成尊重事实、用数据说话的态度,认识数据处理的实际意义.【教学重点】会用样本平均数、方差估计总体的平均数方差,并进行简单的分析.【教学难点】理解方差公式,应用方差对数据波动情况的比较、判断.教学过程一、创设情境,导入新课某园艺场采摘苹果,边采摘、边装箱,共装了2 000箱.苹果的市场收购价为4元/kg.现在要估计出这2 000箱苹果的销售收入,我们可以怎样去做?方法一:全面调查,就是一箱箱的称,再根据苹果的总质量估计这2 000箱苹果的销售收入.方法二:采取抽样的方法.该园艺场从中任意抽出了10箱苹果,称出它们的质量,算出平均质量,再估计2 000箱苹果的总质量,从而估计这2 000箱苹果的销售收入.你觉得哪一种方法最合适?【教学说明】教师出示一个实际问题让学生思考,比较两种调查方法,提出自己的观点,激发学生探究的兴趣.二、合作探究,探索新知1.上述问题中,如果10箱苹果的质量分别如下(单位:kg)16,15,16.5,16.5,15.5,14.5,14,14,14.5,15你能估计出2 000箱苹果的销售收入是多少吗?怎样计算?学生尝试解答:(1)算出它们的平均数:x=15.15kg(2)把x作为每箱苹果的平均质量,由此估计出2 000箱苹果的销售收入为:4×15.15×2 000=121 200(元)2.小结:现实生活中,总体平均数一般难以计算出来,通常我们就用样本平均数估计总体平均数.但是要注意:用样本的平均数估计总体的平均数,如果样本容量太小,往往差异较大.【教学说明】学生通过解决问题,体会用样本平均数估计总体平均数的方法和过程,教师强调应该注意的问题.3.我们可以用样本的平均数估计总体的平均数,那么,怎样用样本的方差估计总体的方差呢?问题:甲、乙两台包装机同时包装质量为500克的白糖,怎样比较这两种包装机那一台质量更好呢?4.学生尝试解答:从中各随机抽出10袋,测得实际质量如下(单位:g)甲:501 500 503 506 504 506 500 498 497 495乙:503 504 502 498 499 501 505 497 502 499(1)分别计算两个样本的平均数;(2)分别计算两个样本的方差;(3)哪台包装机包装的质量较稳定?解:(1)x甲=(501+500+503+506+504+506+500+498+497+495)÷10=501,x乙=(503+504+502+498+499+501+505+497+502+499)÷10=501;(2)s2甲=110[(501-501)2+(500-501)2+…+(495-501)2]=12.6,s2乙=110[(503-501)2+(504-501)2+…+(499-501)2]=6.4;(3)∵s2甲=s2乙,∴乙包装机包装10袋糖果的质量比较稳定.5.小结:我们可以用样本的方差来估计总体的方差,从而估计总体数据的波动情况.【教学说明】教师引导学生解决实际问题,经历用样本方差估计总体方差的过程,对解题过程有一个清晰的认识.三、示例讲解,掌握新知【例】王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?【分析】(1)根据平均数的求法求出平均数,再用样本估计总体的方法求出产量总和即可解答.(2)要比较哪个山上的杨梅产量较稳定,只要求出两组数据的方差,再比较即可解答.解:(1)x甲=40(千克),x乙=40(千克),总产量为40×100×98%×2=7 840(千克);(2)s2甲=14[(50-40)2+(36-40)2+(40-40)2+(34-40)2]=38,s2乙=14[(36-40)2+(40-40)2+(48-40)2+(36-40)2]=24,∵s2甲>s2乙,∴乙山上的杨梅产量较稳定.【教学说明】教师要引导学生先观察图像获取相关的信息,然后结合问题尝试进行解答,教师对相关的方法进行总结.四、练习反馈,巩固提高为调查八年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成家庭作业所需时间(单位:min)分别为:60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数.(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过60分钟,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?解:(1)在这8个数据中,55出现了3次,出现的次数最多,即这组数据的众数是55;将这8个数据按从小到大的顺序排列为40,43,55,55,55,60,65,75,其中最中间的两个数据都是55,即这组数据的中位数是55.(2)这8个数据的平均数是56,所以这8名学生每天完成家庭作业的平均时间为56分钟.所以该班学生每天完成家庭作业的平均时间符合学校的要求.五、师生互动,课堂小结1.现实生活中,总体平均数一般难以计算出来,通常我们就用样本平均数估计总体平均数.但是要注意:用样本的平均数估计总体的平均数,如果样本容量太小,往往差异较大.2.我们可以用样本的方差来估计总体的方差,从而估计总体数据的波动情况.课后作业完成同步练习册中本课时的练习.。
样本平均数的方差的推导:
假定从任意分布的总体中抽选出一个相互独立的样本,则有
即每一个样本单位都是与总体同分布的。
在此基础上,
证明样本平均数以总体平均数为期望值。
接着,再以此为基础,推导样本平均数的方差。
在此,需要注意方差的计算公式为:
以下需要反复使用这一定义:
在证明中,一个关键的步骤是,其原因在于这一项事实上是与的协方差。
由于任意两个样本都是相互独立的,因此其协方差均为0。
如果采用的是无放回的抽样,则样本间具有相关性,协方差小于0。
此时样本均值的方差为
样本方差的期望:
证明了样本平均数的方差公式后,我们可以来分析一下样本方差的情况。
先构造一个统计量为,我们来求它的期望。
根据方差的简捷计算公式:,可得
其中,同样运用简捷计算公式,可以得到:
;
原式化为
等式的两端同除以右侧的系数项,得到
令
则有。
● 本章重点:1.了解总体、样本、均值、加权平均数、方差、标准差、众数和中位数等概念,会作频数直方图和频率直方图.2.掌握均值、加权平均数、方差、标准差、众数和中位数的计算方法.● 知识要点:1. 样本均值:∑=i x nx 1 2. 加权平均: 0,1,11>==∑∑==i ni i n i i i p p p x x3. 方差:∑∑==-=-=n i i n i i x x n x x n s 1221221)(1 标准差(均方差)2s s =4. 中位数:将数据),,2,1(n i x i=由小到大重新排列为**2*1n x x x ,,, ,其中位数(处于中间位置的数)⎪⎩⎪⎨⎧+=++为偶数为奇数n x x n x m x n n n )(21*12*2215. 众数:重复出现次数最多的那个数给定一组数据x 1, x 2, …, x n ,则这组数据的均值、方差和标准差分别为:∑==n j j x n x 11,∑=-=n j j x x n s 122)(1,∑=-=n j j x x n s 12)(1若存在一组数p 1, p 2, …, p n ,满足11=∑=n j j p ,则数据x 1, x 2, …, x n 的加权平均数为, ∑==n j j j x p n x 11● 例题示范 例1 设有一组5个数据: x 1=0.051, x 2=0.055, x 3=0.045, x 4=0.065, x 5=0.048. 记 0528.05151==∑=k k x x , 则∑=-51)(51k k x x =( )A.0B.0.0528C.150⨯.0528D. 1500000(.051.055.045.065.048)++++解 因为∑=-51)(51k k x x =∑∑==-51515151k k k x x =x x -= 0所以,应该选A .例2 一组数据19,16,22,25,35,20,32,24的中位数是( ).A . 22B . 23C . 24D . 25解 因为将这组数据按大小顺序排列:35,32,25,24,22,20,19,16,所以这些数据的中位数为23)2224(21=+所以,应该选B .例 3 设一组数据1x =0, 2x =1, 3x =2,它们的权数分别为1.01=p ,6.02=p , 3.03=p ,则这组数据的加权平均数是x = .解 加权平均数x =∑=31j j j x p =23.016.001.0⨯+⨯+⨯= 1.2 所以,应该填写:1.2。
生物统计学两个样本平均数假设检验假设检验是一种基于样本数据来进行参数推断的统计方法,其基本思想是根据样本数据对总体参数进行估计,并根据估计结果进行参数假设的判断。
对于两个样本平均数的假设检验,通常分为独立样本和配对样本两种情况。
对于独立样本平均数假设检验,我们需要考虑两组样本来自于同一总体的情况。
首先,我们需要建立假设,通常分为零假设和备择假设。
零假设(H0)表示两个样本的平均数无显著差异,备择假设(H1)表示两个样本的平均数存在显著差异。
接下来,我们需要选择合适的统计检验方法。
当两个样本均为正态分布且方差已知时,可以使用Z检验;当两个样本均为正态分布但方差未知时,可以使用t检验;当两个样本均不服从正态分布时,可以使用非参数检验方法,如Wilcoxon秩和检验。
然后,我们需要计算检验统计量的值。
对于Z检验,检验统计量为差值的标准差除以差值的均值,再除以标准差的平方根。
对于t检验,检验统计量为差值的均值除以差值的标准差除以样本容量的平方根。
对于Wilcoxon秩和检验,检验统计量为两个样本的秩和之差。
最后,我们需要根据显著性水平来进行判断。
显著性水平是我们事先设定的,通常为0.05或0.01、我们可以计算出检验统计量对应的P值,P值表示在零假设成立的情况下,观察到样本数据或更极端情况出现的概率。
当P值小于显著性水平时,我们拒绝零假设,认为两组样本的平均数存在显著差异;当P值大于等于显著性水平时,我们接受零假设,认为两组样本的平均数无显著差异。
配对样本平均数假设检验是用于比较同一组样本在不同条件下的平均数是否存在显著差异。
其检验方法与独立样本平均数假设检验类似,只是在计算检验统计量时需要考虑两个样本之间的配对关系。
总之,两个样本平均数假设检验是生物统计学中常用的一种方法,通过对两组样本数据进行比较来判断它们的平均数是否存在显著差异。
我们需要建立适当的假设、选择合适的统计检验方法、计算检验统计量的值,并根据显著性水平来进行判断。