罗格斯
- 格式:doc
- 大小:27.50 KB
- 文档页数:2
《1988年11月9日》(The Ninth of November, 1888)。
描述伦敦市长的游行。
《威尼斯圣马可广场》(Piazza of St Mark‘s Venice)。
这幅作品被英国皇家艺术学院评为“年度绘画作品”。
圣马可广场是威尼斯的中心广场,无数艺术家描绘过这个广场,罗格斯戴尔的这幅作品最为写实。
罗格斯戴尔(William Logsdail,1859-1944)是一位多产的英国画家,美国《时代》评价他的绘画技巧“完美无瑕”。
他的风格是写实主义,很多作品被英国皇家购买,至今无法看到。
罗格斯戴尔的作品在英国皇家艺术学院,英国皇家艺术协会,Grosvenor Gallery画廊,New Gallery 画廊和其他画廊展出。
罗格斯戴尔出生在英国的工业重镇,林肯群(Lincolnshire)的林肯市(Lincoln),这里设计生产过世界上第一辆坦克。
右图是林肯市的林肯博物馆里的Mark IV 型坦克。
当时为了保密,这辆坦克被称为美索不达米亚运水车(Water carrier for Mesopotamia),后来简称为水箱(water tank),最后变成一个单词坦克(tank)。
罗格斯戴尔的父亲是教堂管理人,他小时候曾当过教堂导游。
他先后在英国和比利时学习绘画,多次获奖。
1880年,21岁的罗格斯戴尔上学期间的一幅作品《渔人市场》(The Fish Market)被维多利亚女王买进Osborne House王宫。
1880年秋天,他开始访问威尼斯,并游历了埃及和中东等地,创作了很多当地风情的绘画作品。
1912年,他当选英国皇家肖像画家协会(Royal Society of Portrait Painters)的成员。
1944年,他以85岁的高龄去世。
他的很多作品留存在皇家或者贵族的私人收藏。
《老威尼斯的一个角落》(A Corner of Old Venice)。
《维罗纳的一个院子》(A Courtyard in Verona)。
2929 BondplyMulti-Layer Board Processing GuidelinesMATERIAL DESCRIPTION: 2929 bondply is an unreinforced, hydrocarbon based thin film adhesive system intended for use in high performance, high reliability multi-layer constructions.A low dielectric constant (2.9) and loss tangent (<0.003) at microwave frequencies makes it ideal for bonding multi-layer boards (MLB’s) made using PTFE composite materials such as RT/duroid® 6000 and RO3000® series laminates, filled hydro-carbon r esin c omposites s uch a s R O4000® c ores, a nd s pecialty t hin core laminates. The proprietary cross-linking resin system makes this thin film adhesive system compatible with sequential bond processing while controlled flow characteristics offer excellent blind via fill capability and potentially predictable cutback ratios for designs requiring blind and/or buried cavities. 2929 bondply is compatible with traditional flat press and autoclave bonding. The film is currently available in 0.0015”, 0.002”, and 0.003” thick sheets. Individual sheets can be stacked to yield thicker adhesive layers. The unreinforced thin film can be tack bonded to inner-layers to ease simultaneous machining of cut-outs through core and adhesive layers and to facilitate formation of vias using conductive pastes. An easy to release carrier film protects the adhesive layer from contamination during machining, screening of conductive pastes, and MLB booking. These processing guidelines offer current “best practice” procedures and parameters for bonding MLB’s using 2929 bondply. The recommendations will be updated as additional information becomes available. A Rogers’ Technical Service Engineer (TSE) should be consulted for our latest information. All first-time users are urged to contact a Rogers’ TSE, Sales Engineer (SE), or Applications Development Manager (ADM) for evaluation/ demonstration s amples a nd s pecial h andling i nstructions. A v ideo showing the recommended technique for laying up a multilayer using 2929 Bondply can be viewed in the video section on the Rogers Technology Support Hub: /techub. STORAGE: Materials should be stored between 10 to 30°C (50 to 80°F) and relative humidity less than 60%. The uncured material should be shielded from long-term exposures to UV light. 2929 bondply s hould b e u sed w ithin s ix m onths o f t he d ate o f s hipment.DESIGN CONSIDERATIONS: The post-bond thickness of 2929 bondply can be predicted using the following formula. It should be noted that copper distribution, planarity of platens and caul plates, layer count, compressible padding, etc… will effect the final thickness and uniformity thereof. The following calculation can be used as a starting point to predict post-bond core:core spacing, but fine tuning based upon actual thickness measurements is recommended.Core: core spacing = 2929 + (Side A Cu thk X retained Cu) + (Side B Cu thk X retained Cu) where:Core: core spacing is distance between etched core surfaceson opposing (A & B) sides of 2929 bondply. The distance is measured from the base of copper features.2929 is pre-press thickness of 2929 adhesive.Side A and Side B Cu thickness is the thickness of the copper layers on the A and B side of the 2929 bondply. Typically, 0.5ED would be 0.0007” while 1ED would be 0.0014”.Retained Cu is the percent of copper remaining on surfaceA andB after inner-layer preparation divided by 100. A solid copper plane would be 100%/100 = 1.0.Example:2929 thickness = 0.004”Side A Cu thick = 0.0007” (0.5E)Side B Cu thick = 0.0014” (1E)Side A retained Cu = 0.25 (25%/100)Side B retained Cu = 0.5 (50%/100)Core: core spacing =0.004” + (0.0007 X 0.25) + (0.0014 X 0.5) = 0.0049”Note: Cu:Cu spacing would be0.0049” – (0.0007” + 0.0014”) = 0.0028”FORMATION OF TOOLING HOLES: Tooling holes can be punched or drilled as single sheets or in stacks of multiple sheets. The maximum recommended stack height for punching holes is ten sheets. The maximum recommended stack height for drilling holes is 25 sheets providing a new drill and proper parameters are used.For either hole formation technique, the 2929 sheets should be stacked between layers of pressed phenolic entry material with the PET side on top. A release sheet should be placed between the phenolic sheet and the bottom layer of 2929 to avoid welding the adhesive to the exit material during formation of the tooling holes. The white tag stock paper used to package 2929 for shipment can be used as the release layer.Tooling holes can be punched as standard. Holes should be drilled using 200 SFM and a 0.0015”/” infeed rate. The default parameters for all drill diameters greater than 0.060” are 20 KRPM spindle speed and 25 IPM infeed. INNER LAYER PREPARATION: Innerlayer metal surfaces should be oxide treated to promote mechanical adhesion. A wide range of oxide alternatives and some reduced black or brown oxides have been used successfully with 2929 Bondply. The thermal capabilites of a given oxide treatment must be understood in order to select the appropriate lamination temperature.Please refer to the specific laminate manufacturers’ data sheets and processing guidelines for any recommended treatment of the etched dielectric surfaces and also to insure the laminates can tolerate the lamination temperature required for 2929 Bondply. MULTILAY ER LAY UP (Reference 2929 instructional video noted on page 1): The uncured adhesive layer is fragile. The release sheet facilitates handling, serves as a protective barrier against contamination, and should not be removed until after the adhesive layer has been punched, machined (cavity designs), and positioned onto the inner-layer surface. Once positioned onto the inner-layer surface, the carrier film should be carefully peeled beginning in one corner and peeling toward the diagonal corner. The preferred method of initiating the separation process involves bending one corner of the adhesive over until the PET carrier is in contact with itself. Pressing on the bend will snap the adhesive layer. The PET carrier can be slid toward the opposing corner while maintaining a slight downward pressure. The free hand should be used to hold down the adhesive layer during removal of the release liner. Special care may be required to avoid tearing of the adhesive layer near tooling holes and cut-outs. Pre-releasing and replacing the PET layer may prove helpful before machining cut-outs or when booking very thin (0.0015”) adhesive layers.Handling, especially of thin (<0.002” thick) layers, can be facilitated through the use of tack bonding. Tack bond is possible using a hot roll laminator at 125°C (275°F), 6” per minute feed rate, and 30 PSI. Tack bonding is also possible at 110°C (230°F) providing the feed rate is slowed to 2” per minute feed rate.Tack bonding can be accomplished using a vacuum lamination system. Parameters would include a 60-90 second dwell with bondline temperatures between 115 to 140°C (240 to 285°F). When possible, tooling holes should be formed after the tack bonding process. When properly applied, the tack bond should remain intact for 2-4 days and the adhesive layer should remain fully functional. Note: As is true with many bonding materials,the use of compressible padding placed internal to the tooling plates is recommended to improve pressure uniformity across the multilayer book. When selecting a press pad material, it is important to insure the material is properly rate for the selected bonding temperature. In addition, some designs may rquire additional conformance. In those cases, the use of skived PTFE or similar products have been used successfully between the multilayer panel and the stainless steel separators plates.MLB BONDING CYCLE: The press cycle should include a 2.5°C - 4.0°C/min (4.5°F - 7.0°F/min) ramp rate from room temperature to 245-250°C (473 to 482°F) and a 90-120 minute dwell at 245-250°C.NOTE: 2929 bondply can be bonded at lower temperatures if required t o c ompensate f or l ess t hermally r obust o xide t reatements.However, the absolute minimum product temperature must be above 224°C (435°F). Dwell time should be 120 minutes when cure temperature is less than 245-250°C (473 to 482°F). The recommended applied pressure for the entire cycle is 400 PSI, although pressure can be increased or decreased through evaluation to control flow of the resin/filler system. Vacuum assistance is preferred, but not required. Cooling can be accomplished in the hot press or after a transfer to a cold press for an accelerated rate of cooling. 2929 bondply is also compatible with a utoclave b onding u sing t he t hermal p rofile d escribed a bove.The information in this process guide is intended to assist you in designing and fabricating PWB’s with Rogers’ circuit materials. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers’ circuit materials for each application.Prolonged exposure in an oxidative environment may cause changes to the dielectric properties of hydrocarbon based materials. The rate of change increases at higher temperatures and is highly dependent on the circuit design. Although Rogers’ high frequency materials have been used successfully in innumerable applications and reports of oxidation resulting in performance problems are extremely rare, Rogers recommends that the customer evaluate each material and design combination to determine fitness for use over the entire life of the end product.These commodities, technology and software are exported from the United States in accordance with the Export Administration regulations. Diversion contrary to U.S. law prohibited.RT/duroid, RO4000, RO3000 and the Rogers’ logo are trademarks of Rogers Corporation or one of its subsidiaries.© 2021 Rogers Corporation, Printed in U.S.A, All rights reserved.POST-MLB BOND PROCESSING: With minor exceptions,bonded MLB’s should be processed using procedures and parameters associated with the core layers. Thin sub-assemblies should be handled carefully after bonding to avoid excessive bending. 2929 can be desmeared chemically or using plasma. A plasma cycle is provided below. The adhesive system does not require special sodium or plasma wettability treatments prior to plating, but 2929 is compatible with these processes should they be required for the core layers.Plasma Desmear CycleFrequency: 40 KHz Voltage: 500-600VPower: 4000-5000Watts Pre-Heat to 60°C using:Gases: 90% O2, 10% N2Pressure: 250mTORRDesmear using:Gases: 75% O2, 15% CF4, 10% N2Pressure 250 mTORR Time 10-15 minutes。
罗格斯大学博士录取难度详细介绍罗格斯大学博士录取难度详细介绍罗格斯大学认可度罗格斯大学国内认可度较高,学校是美国最早成立的第八个高等教育机构,也是美国独立____前的九所私立殖民地学院之一。
同时学历也是受到中国教育部认可的,该大学是在中国教育部认可之列的,所以这所大学所颁发的学士学位和硕士学位等证书都是受到中国教育部的认可的。
罗格斯大学申请难度罗格斯大学申请难度不大,学校本科申请要求高中毕业,高中GPA平均分要求3.5以上,雅思成绩要求6.0分以上,单项最低要求6.0,托福分数最低要79分以上,其中阅读、听力、写作要求22,口语需达24,学校的申请要求与耶鲁大学,哥伦比亚大学,斯坦福大学要求托福100分以上相比,罗格斯大学申请难度不大。
罗格斯大学申请日期:留学申请截止日:12月1日提早行动申请截止日:11月1日罗格斯大学费用详情年均学费:$29160年均生活费:$14530其他费用:$2781罗格斯大学博士申请流程第一步:参加TOEFL,GRE或GMAT考试第二步:将申请材料提交给大学,GRE和TOEFL分数只有通过考试中心ETS寄出,才被认为是正式有效的第三步:联络大学教授,进展套磁第四步:大多数的PhD工程Deadline都是12月1日,即便套词环节非常不理想,到了这个时间也需要提交申请申请材料的。
第五步:收到材料以后,学校会安排面试。
教授直接面试,或者Admission Committee 安排1-2教授Perform Interview,主要是进一步理解研究方向,career plan 以及口语程度等。
罗格斯大学学术合作罗格斯大学纽瓦克校区商学院及公共事业管理学院与东北师范大学达成协议,在东北师范大学净月校区成立了东北师范大学罗格斯大学纽瓦克学院,开设金融学,物流管理〔供给链管理〕,公共事业管理三个专业。
该工程为全国各地的应届高中毕业生提供专业课全英语授课,目前提供4+0、3+1、2+2等形式,毕业后同时授予东北师范大学和罗格斯大学双学士学位。
Data Sheet and Processing Guidelines for RO3000® Series BondplyRogers RO3000® series bondply is an undensifi ed version of RO3000 laminates that can be used to process highlyreliable, homogeneous RO3000 multi-layer boards (MLB’s). The bondply is used in a manner analogous to prepreg in FR-4 constructions and, once bonded, becomes the equivalent of a normal RO3000 core layer.RO3000 series bondply offers electrical and thermal-mechanical advantages over most other adhesive systems that can be used to bond RO3000 material multi-layer constructions. In addition, improvements offered by bondply layers over core-to-core fusion bonding include improved layer-to-layer registration, tighter control over Z-axis spacing of copper layers, better encapsulation of buried metal features at lower applied pressures, and design fl exibility.During a MLB bonding process, the bondply will reduce in thickness to about fi ve mils and closely match predictable electrical properties. A Rogers’ Technical Support Engineer (TSE) should be contacted for design data.PROCESSING GUIDELINES:INNER-LAYER PREPARATION:Cores should be processed through inner-layer as standard. If copper roughening is required (ground or power planes), a microetch or a subtractive process oxide alternative such as Atotech’s Bondfi lm or MacDermid’s MultiBond LE should be used. Traditional additive process oxide treatments lack the thermal stability to survive the high temperature bond conditions.PTFE activation by sodium or plasma treatment should be avoided. All inner-layers should be baked at 125°C to 150°C (257°F - 302°F) for at least one hour prior to MLB bonding.PREPARATION OF MLB BOOK:RO3000 bondply layers require careful handling to avoid tearing. Pinning holes can be punched, drilled, or routed. Entry material should be used during drill or rout to shield the bondply layers from debris.Due to in-plane expansion characteristics, type 304 stainless steel separator plates are recommended. Five to ten mil thick sheets of aluminum should be placed between the multi-layers and the separator plates.Foil bonding of outer-layers is possible but a Rogers’ Technical Service Engineer should be consulted prior to processing foil-bonded constructions.BOND CYCLE:Temperature control is most critical between 600°F (315°C) and 700°F (371°C) during the ramp up, and between 700°F (371°C) 500°F (260°C) during the cool down. The ramp rate to 600°F (315°C) can be up to 10°F (5.5°C)/min, but the ramp from 600°F (315°C) to 700°F (371°C) should be 5°F (2.7°C)/Min. The dwell at 700°F (371°C) should be 30-60 minutes. The cooling rate to 500°F (260°C) should be at a rate of 2°F (1.1°C)/Min. An accelerated cool can be used, but materials should remain in the press until package temperatures are less than 250°F (121°C).Applied pressure will depend upon press (autoclave or fl at bed) equipment and fi ll requirements, but will probably fall into a range of 250 to 500 PSI.OUTER-LAYER PROCESSING:Standard processing guidelines for RO3000 cores would serve as the best starting point for processing homogeneous multi-layer constructions.Chart 2: RO3000 Bondply Speci fi c Gravity vs. Bond PressureThe data in Chart 1 demonstrates the excellent stability of speci fi c gravity over bond pressure of RO3003, RO3006, andRO3010 bondply.Chart 1: RO3000 Bondply Thickness vs. Bond PressureThe data in Chart 1 demonstrates the uniform thickness over bond pressure of RO3003™, RO3006™, and RO3010™ bondply.Dielectric Constant, εrProcess 3.00 ± 0.04(2) 6.15 ± 0.1510.2 ± 0.30Z-10GHz 23°CIPC-TM-6502.5.5.5Clample Stripline(2) Dielectric Constant, εr Design 3.00 6.5011.20Z-8 GHz - 40 GHzDifferentialPhase LengthMethodDissipation Factor0.00100.00200.0022Z-10GHz 23°C IPC-TM-650 2.5.5.5ThermalCoeffi cient of εr-3-262-395Z ppm/°C10GHz50 to 150°C IPC-TM-650 2.5.5.5Dimensional Stability-0.060.07-0.27-0.15-0.35-0.31XYmm/m COND AIPC TM-6502.2.4VolumeResistivity107105105MΩ•cm COND A IPC 2.5.17.1 SurfaceResistivity107105105MΩCOND A IPC 2.5.17.1 TensileModulus90020681500X,Y MPa23°C ASTM D638Moisture Absorption 0.040.020.05-%D48/50IPC-TM-6502.6.2.1Specifi c Heat0.90.860.8J/g/K Calculated ThermalConductivity0.500.790.95-W/m/K80°C ASTM C518Coeffi cient of Thermal Expansion 171625171724131116XYZppm/°C-55 to 288°CASTMD3386-94Td500500500°C TGA ASTM D3850 Density 2.1 2.6 2.8gm/cm3Flammability94V-094V-094V-0ULLead-Free ProcessCompatible Yes Yes YesCorporation.Shelf Life: Two years from date of shipment(1) References: Internal T.R.’s 1430, 2224, 2854. Tests at 23°C unless otherwise noted. Typical values should not be used for specifi cationlimits.(2) The nominal dielectric constant of an 0.060” thick RO3003 laminate as measured by the IPC-TM-650, 2.5.5.5 will be 3.02, due to theelimination of biasing caused by air gaps in the test fi xture. For further information refer to Rogers T.R. 5242.0.005” (0.13mm)RO3003: 25.5”X18”RO3006: 25.5”X18”RO3010: 25.5”X18”The information in this data sheet is intended to assist you in designing with Rogers’ circuit materials. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fi tness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rog-ers’ circuit materials for each application.These commodities, technology and software are exported from the United States in accordance with the Export Administration regulations. Diversion contrary to U.S. law prohibited.The Rogers’ logo, Helping power, protect, connect our world, RO3000, RO3003, RO3006, and R03010 are trademarks of Rogers Corporation or one of its subsidiaries. ©2016 Rogers Corporation, Printed in U.S.A., All rights reserved.Revised 1258 121216 Publication #92-147。
Copper Foils for High Frequency MaterialsCopper foils, for the wide range of Rogers’ high frequency circuit substrates, are designed to provide optimum performance in high reliability applications.There are various types of copper foil are offered; in a range of weights (thicknesses). Their characteristics differ, and an understanding of these differences is important to ensure the correct selection of copper foil for each application or environmental condition.Copper Foil ManufacturingStandard ED CopperIn an electrodeposited copper manufacturing process, the copper foil is deposited on a titanium rotating drum from a copper solution where it is connected to a DC voltage source. The cathode is attached to the drum and the anode is submerged in the copper electrolyte solution. When an electric field is applied, copper is deposited on the drum as it rotates at a very slow pace. The copper surface on the drum side is smooth while the opposite side is rough. The slower the drum speed, the thicker the copper gets and vice versa. The copper is attracted and accumulated on the cathode surface of the titanium drum. The matte and drum side of the copper foil go through different treatment cycles so that the copper could be suitable for PCB fabrication. The treatments enhance adhesion between the copper and dielectric interlayer during copper clad lamination process. Another advantage of the treatments is to act asanti-tarnish agents by slowing down oxidation of copper.Fig. Electrodeposited Copper Manufacturing ProcessPropertiesRolled CopperRolled copper is made by successive cold rolling operations to reduce thickness and extend length starting with a billet of pure copper. The surface smoothness depends on the rolling mill condition.Fig. Rolled Copper Manufacturing ProcessResistive CopperThe matte side of the ED copper is coated with metal or alloy that acts as a resistive layer. The next process is to roughen the resistive layer with nickel particles.Reverse Treated ED Copper and LoPro Copper FoilReverse treated foils involve the treatment of the smooth side of electrodeposited copper. Treatment layers are thin coatings that improve adhesion of the base foil to dielectrics and add corrosion resistance which makes the shiny side rougher than it was before. During the process of making circuit board panels, the treated side of copper is laminated to the dielectric material. The fact that the treated drum side is rougher than the other side constitutes a greater adhesion to the dielectric. That is the majoradvantage over the standard ED copper. The matte side doesn’t need any mechanical or chemical treatment before applyingphotoresist. It is already rough enough for good laminate resist adhesion.In case of the LoPro™ copper, a thin layer of adhesive is applied on the reverse treated side of the copper. There is a physical layer of the bond enhancement material. Just like the reverse treated electrodeposited copper, the adhesive treated side is bonded to the dielectric layer for better adhesion. Our RO4000 series material are available laminated with LoPro copper foil. Crystalline StructureElectrodeposited copper crystals tend to grow lengthwise in the Z-axis of the foil. Typically, a polished cross-section ofelectrodeposited copper foil has the appearance of a picket fence, with long crystal boundaries perpendicular to the foil plane. Rolled copper crystals are broken and crushed during the cold rolling operation. They are smaller than the electrodeposited crystals, and have irregular, spherical shapes, nearly parallel to the foil plane.Copper Foil Roughness MeasurementsSurface roughness can be measured by mechanical and optical methods. Many sources report the “Rz” (peak to valley”) profile as measured by a mechanical profilometer . However, in our experience, the Sq (RMS) profile as measured by white light interferometry of the treated side of copper foil correlates best with conductor losses. Figure 1 shows the interferometer profile of the ½ oz. ED foil used on Rogers’ PTFE and TMM laminates. Table 1 shows the types of copper foils used on Rogers’ laminate materials along with typical profile information. A recent study (reference 7) has shown that the “top side” profile has a very different structure than the treated side and has very little effect on conductor loss, even in a stripline configuration.Treated SideShiny SideFig 1. Surface topographies of ½ oz electrodeposited foil by white light interferometryAs displayed on Table 1, roughness data of electrodeposited and rolled copper foils with different thicknesses was obtained by using an optical surface profiler. It also shows for which products the individual copper foils are used at Rogers Corporation. The rolled copper with no surface treatment is typically the smoothest.Table 1: Typical Root Mean Square Roughness ValuesElectric Performance of LaminatesIt has been well-known since the earliest days of microwave engineering with wave guides that the conductor surface roughness can substantially affect the conductor loss. In 1949, S.P. Morgan (1) published results of numerical simulations that indicated that a factor of two increase in conductor loss could be caused by surface roughness. Hammerstad and Jensen (2), incorporated Morgan’s model, along with correlated data in microstrip design method. The H&J model became the “textbook” (3) method for calculating the effect of surface roughness on conductor loss. More recently, at higher frequencies and with thinner laminates,it was found that H&J significantly under predicted the increase in conductor loss with surface roughness (5,6). The “Hall-Huray” model (4), developed from a “first principles” analysis, has been recently incorporated into commercial design software.In our experience, with modest adjustments to the input parameters, the Hall Huray model can accurately predict conductor loss over a wide range of laminate thicknesses and frequencies. The Hall-Huray model has been incorporated in Rogers Corporation’s impedance and loss calculator, MWI. We are currently working to develop the best Hall-Huray input parameters for modeling Rogers’ laminates. Please check at Rogers Technical Support Hub on-line or your Rogers Sales Engineer for updates.Rogers copper foils studies (5,6,7) have also shown that the copper profile can affect the propagation constant, with higher profile foils leading to an apparent increase in the effective dielectric constant Figure 3 shows the calculated dielectric constant of 50 ohm TLs on 4 mil liquid crystal polymer (LCP) laminates clad with different foils with Sq values ranging from 0.4 to 2.8 microns. The circuit with the highest profile foil exhibits an increase in DK of nearly 10%. The effect of copper profile on phase response is not accounted for in the Hall Huray model.The effect of copper profile on insertion loss can be quite large (Fig.2). At 90 GHz, the insertion loss of a 50 ohm TL fabricated from a 0.004” thick liquid crystal polymer (LCP) laminates with RA foil (blue line), is 2.2 dB/inch and is nearly perfectly modeled as a smooth conductor. The same substrate clad with ED foil exhibiting with Sq value of 2.0 microns, exhibits an insertion loss of 3.7 dB/inch. Figure 4 shows the morphologies of the roughness treatments on the conductors used to generate the data presented in Figure 2.Fig 2. Comparisons of different copper roughness on the insertion loss of microstrip transmission linesFig 3. Comparisons of different copper roughness on the dielectric constant of microstrip transmission lines0.4 m m RMS 2.0 m m RMS2.8 m m RMSFig. 4: SEM images of 1/2 oz copper foils - Treated SideMechanical Performance of LaminatesA. Thermal Shock ResistanceUnder some extreme conditions of rapid thermal cycling, electrodeposited copper may exhibit thermal stress cracks in narrow conductors. Under similar conditions, rolled copper has significantly improved resistance to cracking. Although electrodeposited copper has greater tensile strength and elongation before breaking, rolled copper has better elastic elongation before reaching permanent deformation.B. Foil AdhesionBecause the adhesion of resin systems to metals is predominantly mechanical, bond strength is directly related to the surface roughness of the treated foil side. Typical peel strengths after thermal shock for 1 oz. copper foils toC. Bondability of Stripline Assemblies (PTFE Substrates)The SEM photographs below illustrate the differences in topography and roughness between copper types and etch dielectric surfaces. If the boards are to be adhesive bonded, then for electrodeposited copper, sodium etch or plasma etch of the dielectric surface is not necessary, provided that care is exercised to preserve the surface topography. However, for rolled copper-clad circuit boards, the surface roughness of the dielectric will give a poor mechanical bond, and surface treatment is necessary for reliable chemically bonded assemblies.PropertiesThe different manufacturing methods of the two types of foil lead to differences in the electrical andMechanical properties. The primary differences are listed in Table 2.* Values represent properties after lamination to a PTFE laminate.Rogers Statement on Resistive Foil Visual Appearance and Resistivity ExpectationsRogers Advanced Connectivity Solutions (ACS) produces upon request a select number of copper clad laminates using commercially available, subtractively processed resistive foils. Resistive foil technology enables the use of planar resistors within the circuit boards that are made from our laminate products. The availability of these resistive foils varies dependingon each particular copper clad laminate product offered by ACS. However, in general ACS uses both OhmegaPly® foil from Ohmega Technologies, Inc. (/) and TCR® foil from Ticer Technologies (/). ACS customers are encouraged to research the specific resistive foil products that are available as well as the performance and processing details from each foil supplier prior to placing orders with Rogers.(1) Typical values are mean values derived from populations of measurements involving multiple lots of the specific foil type.The information in this data sheet is intended to assist you in designing with Rogers’ circuit materials. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results s hown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers’ circuit materials for eac h application.These commodities, technology and software are exported from the United States in accordance with the Export Administratio n regulations. Diversion contrary to U.S. law prohibited.The Rogers’ logo, XtremeSpeed RO1200, ML Series, 92ML, StaCool, AD250, AD255, AD260, AD255C-IM, AD300, AD300D-IM, AD320, AD350, AD410, AD430, AD450, AD600, AD1000, CLTE, CLTE-AT, CLTE-XT, CLTE-MW, CuClad, CuClad 217, CuClad 233, CuClad 250, DiClad, DiClad 527, DiClad 870, DiClad 880, DiClad 880-IM, IsoClad, IsoClad 917, IsoClad 933, Kappa 438, LoPro, RO1200, RO3003, RO3006, RO3010, RO3035, RO3203, RO3206, RO3210, RO4003C, RO4350B, RO4360G2, RO4533,RO4534, RO4535, RO4725JXR, RO4730JXR, RO4730G3, RO4830, RO4835, RO4835T, RT/duroid, TC350, TC600, and TMM are trademarks of Rogers Corporation or one of its subsidiaries.OhmegaPly is a registered trademark of Ohmega Technologies, Inc.TCR is a registered trademark owned by Nippon Mining & Metals Co., Ltd.Ticer Technologies is a licensee of the technology and trademark of TCR Wyko is a trademark of Veeco Instruments.© 2021 Rogers Corporation, Printed in U.S.A. All rights reserved.Revised 1530 091721 Publication #92-243References:1. S.P . Morgan, “Effect of surface roughness on eddy current losses at microwave frequencies,” J. Applied Physics, p. 352, v. 20, 19492. E. Hammerstad and O. Jensen, “Accurate models of computer aided microstrip design,” IEEE MTT-S Symposium Digest, p. 407, May 19803. D. M. Pozar, Microwave Engineering, 2nd Edition, Wiley (1998)4. P .G. Huray, O. Oluwafemi, J. Loyer, E. Bogatin, and X. Ye, “Impact of Copper Surface Texture on Loss: A model that works,” DesignCon20105. A.F. Horn III, J. W. Reynolds, P . A. LaFrance, J. C. Rautio, “ Effect of conductor profile on the insertion loss, phase constant, and dispersion of thin high frequencytransmission lines,” DesignCon20106. A. F. Horn, III, J. W. Reynolds, J. C. Rautio, “Conductor profile effects on the propagation constant of microstrip transmission line,” Microwave Symposium Digest(MTT), 2010 IEEE MTT-S International, pp 868-8717. Allen F. Horn III, Patricia A. LaFrance, Christopher J. Caisse, John P . Coonrod, Bruce B. Fitts, “Effect of conductor profile structure on propagation in transmissionlines,”. DesignCon2016。
探究罗格斯学说:背景、核心观点及未来趋势在哲学发展的历史长河中,罗格斯学说以其独特的理论框架和深远的影响力占据着重要地位。
作为一种古老的哲学观点,罗格斯学说在阐述实在的结构和性质方面提供了独特的见解,对于我们理解世界以及人类在其中的地位具有重要意义。
本文将详细阐述罗格斯学说的核心观点、理论框架,并探讨其与其他相关理论之间的异同,最后将对其未来发展趋势和挑战进行深入分析。
一、罗格斯学说概述罗格斯学说,源于古希腊哲学家罗格斯的思想,认为实在由三个不可分割的部分组成:真理、理性和事物。
其中,真理是对于事物的认识,理性是对于真理的认知,而事物则是理性的载体。
这种学说强调了真理、理性和事物之间的相互关系和内在统一性,为我们理解实在的结构和性质提供了独特的视角。
二、独特见解与反思与其他哲学观点相比,罗格斯学说具有一些独特的见解和反思。
首先,它强调了真理、理性和事物之间的内在关系,认为它们是不可分割的整体,这与其他哲学观点往往将它们分开探讨不同。
其次,罗格斯学说对于理性的地位进行了深入探讨,认为理性是认识真理的基础,同时也是事物的重要组成部分,这种观点对于我们理解人类认知的本质以及其在世界中的地位提供了新的视角。
然而,罗格斯学说也存在一些值得反思和改进之处。
例如,它对于真理、理性和事物之间的关系的阐述较为抽象和模糊,使得人们在理解其具体内涵时可能存在困难。
此外,罗格斯学说对于理性的强调可能过于绝对,忽略了其他因素对于认知和理解世界的作用。
三、应用范围与发展前景罗格斯学说在哲学、社会科学等领域都发挥了重要作用。
在哲学方面,它对于实在的结构和性质的阐述为后世哲学家提供了重要思路和灵感来源。
在社会科学方面,罗格斯学说对于人类认知的本质以及其在社会中的地位的探讨也为社会学、心理学等学科提供了借鉴和启示。
未来,随着哲学和社会科学的发展,罗格斯学说的影响将继续扩大。
一方面,学者们可以进一步深入研究罗格斯学说中的核心观点和理论框架,挖掘其在现代哲学和社会科学中的价值。
罗格斯大学是世界上享有盛誉的一所顶尖研究型大学,在罗格斯大学读书的费用不低,每年需要多少呢?来看看详细分析的内容吧!一、留学费用对于住在校园里的学生来说,新布朗什维克校区(Brunswick)本科生的学费,房费和餐费总费用为27,681美元,姆登分校(Camden)本科生的学费将增加到14,836美元,住校学生的总费用约为27,172美元。
纽瓦克分校(Newark)本科生的学费将增加到14,410美元,住校学生的费用约为27,946美元。
州外学生的学费也上涨2.3%,一年学费达31,282美元,再加上食宿的总费用约为43,488美元。
罗格斯大学法学院将为州内学生收取25,077美元的学费,外加2715美元的年费。
纽瓦克的新泽西医学院将向新州内学生收取40,274美元的学费和2,735美元的费用。
新布朗什维克 - 皮斯卡塔韦校区(New Brunswick-Piscataway)的罗伯特伍德约翰逊医学院将向新生收取40,274美元的学费和1,770美元的费用。
二、毕业要求学分要求修满60-240个学分,学生的专业学分是由平时成绩、期末考试成绩和毕业论文成绩综合得来,毕业论文分数要求达到70%。
学校及专业要求完成学校的核心课程和专业的要求,具体可以上官网学院模块查询。
大部分学生会有主修和辅修专业或者双专业,但像business school不太需要。
一般每个学期选15学分左右,基本就是4-5门课。
有些特别难的课可以选择暑假攻克。
三、罗格斯大学强势专业生物医学工程专业罗格斯大学生物医学工程专业毕业生可以设计假肢、人造器官和药品将直接改善了数百万人的生活质量。
它们还设计和制造诊断和治疗设备以及成像设备,为医生和医学研究人员识别和治疗各种疾病和伤害提供工具。
电子和计算机工程专业电子和计算机工程专业站在技术的最前沿,不断地改变着我们快速变化的世界。
从开发先进的导航系统和自动驾驶汽车,到设计"智能"住宅和网络安全系统,电气和计算机工程师对我们的生活方式以及未来几代人的社会继续进步产生了深远的影响。
普渡大学西拉法叶分校与罗格斯大学哪个好?每个学校都有自己的优势专业,具体请咨询留学360专业顾问团队
普渡大学西拉法叶分校
普渡大学西拉法叶校区(Purdue University, West Lafayette)是一所历史悠久,享誉世界的研究性公立大学,有政府特准的土地、海洋和空间使用权,历来以优良的教学质量和适中的收费标准闻名世界。
该校于1869年由约翰·普渡捐资、印第安纳州划拨土地建造。
西拉法叶校区是主校区,也就是我们通常所指的普渡大学。
罗格斯大学
罗格斯大学(Rutgers University),简称RU或Rutgers,全名为新泽西州立罗格斯大学(Rutgers, The State University of New Jersey),前身是成立于1766年的皇后学院(Queen‘sCollege),是一所在世界上享有盛名的一流公立研究型大学,也是新泽西州规模最大的高等学府,其学术声誉在州内仅次于普林斯顿大学(Princeton University)。
罗格斯大学新布朗斯维克分校地理优势解析地理优势:罗格斯大学-新布朗斯维克分校(Rutgers University,New Brunswick Campus)是罗格斯大学的主要分校,也是罗格斯大学三个分校中面积最大,排名最高的校园,位于新布朗斯维克和皮斯卡特维,新泽西州。
新布朗斯维克/皮斯卡特维校区(New Brunswick/Piscataway Campus)(NB主校区)面积十分庞大,位于新泽西州中部,距纽约曼哈顿仅45分钟车程,是罗格斯大学最大也是最主要的校区。
校区环绕着New Brunswick市,并跨河延申至Piscataway市,计算机、统计等重要院系均设置在此校区;NB主校区又细分为四个校区:Busch、 Livingston、College Avenue、Cook/Douglass。
由于NB主校区庞大而分散,因选课而异上课时可能需在四个校区间来往,NB主校区拥有东部地区最为庞大的校车系统,校车线路有几十条之多车次间隔平均5-10分钟,往来交通十分方便。
地理优势:新泽西州New Jersey东临大西洋,北接纽约州,西南与宾州接壤,总面积为20295平方公里,人口为800万。
新泽西州有21个县,主要城市有纽瓦克、泽西市、毛里斯镇、卡姆登、帕特森等,其中最大的城市为纽瓦克市。
该州首府为特兰顿市(Trenton)。
新泽西州处在人口集中、经济发达的美国“东北走廊”的中心地带。
东北走廊系指连接缅因州、波士顿、康州、纽约市、新泽西州、宾州、华盛顿特区、巴尔的摩市以及弗吉尼亚南部地区的一大片区域。
2003年新泽西州州国民生产总值为3974亿美元,在全美各州名列第八。
2004年美国《财富》杂志(Fortune)评选的全美最大的500家大公司在新泽西州有23家,罗格斯大学在全美各州中列第7位。
新泽西州各类企业20余万家,就业人数达364万人。
其中四分之一的人拥有大学或大学以上的学历。
全州共有14余万科技人才,州内共有55所大专院校。
【天道世界名校介绍】罗格斯大学Rutgers,the State University of New Jersey学校网址:地理位置:New Brunswick校区位于新泽西州中部,距纽约曼哈顿仅45分钟车程,是罗格斯大学最大也是最主要的校区。
校区环绕着New Brunswick市,并跨河延申至Piscataway市,计算机、统计等重要院系均设置在此校区;NB主校区又细分为五个小校区:Busch、Livingston、College Avenue、Cook与Douglass,由于NB主校区庞大而分散,因选课而异上课时可能需在5个校区间来往,NB主校区内的校车系统发达,上课往来交通方便。
Newark校区位于Newark市中心,占地约三到四个街区,以商学、医学院系为主,MBA总部即位于此校区;Newark为新泽西州第一大城市,亦是主要国际机场Newark International Airport 的所在地,与纽约市约半小时车程。
肯顿校区(Camden Campus),位于新泽西州中西部,与美国独立发源地费城仅有一河之隔。
在此有法学、商学、以及艺术学院。
新泽西州立水族馆亦设于此。
学校简介:校训:Sun of righteousness, shine upon the West also吉祥物:Scarlet Knights公立大学,1766年建立,殖民地时期唯一两所后来成为公立大学的学校之一。
Rutgers 大学,全称是Rutgers, The State University of New Jersey ,中文翻译为罗格斯大学,或者罗格斯州立大学。
58000+学生,28个学院,100多个本科学位,100多个硕士学位,90多个博士和职业学位,4000+本科生课程Rutgers实际上是一个人的姓,恩。
此人乃Colonel Henry Rutgers,是美国独立战争的英雄。
Rutgers最早叫做Queen's College,始建于1766年,是美国第八所大学,由当时新泽西州殖民时代的最后一任州长,也就是本杰明·富兰克林的私生子W.富兰克林签署同意建立。
论罗杰斯教学过程的本质观罗格斯教学过程的本质观是一种以学生为中心的教学方法,强调学生在教学过程中的积极参与和自主学习。
这一观点反映了罗格斯教育理念的核心思想,即人本主义教育理念。
罗格斯教育理念强调了学生的自主性和主动性,认为每个学生都是独特的个体,有着自己的需要、兴趣和潜力。
教师的角色不再是知识的传授者和权威,而是学生的引导者和支持者。
罗格斯认为,只有在学生自主的学习环境下,学生的兴趣、创造力和动机才能得到最大的激发和发展。
因此,在罗格斯教学过程中,教师需要通过创造合适的学习环境和情境,让学生积极参与学习,建立起积极的互动关系。
罗格斯教学过程的核心是“学生中心”,这意味着学生是学习过程的主体,他们应该成为自己学习的主导者。
教师在这种情况下更像是一个“合作伙伴”而非主导者,在学习中充当着指导者的角色。
教师需要积极地与学生互动,促进他们的思维发展和自主学习。
在罗格斯教学过程中,学生的需求和兴趣被放在首位。
教师需要了解学生的需求和背景,根据学生的不同需求,创造不同的学习机会和情境。
例如,教师可以制定个别化的学习计划,支持学生的兴趣和天赋的发展,使每个学生都能得到适合自己的学习体验。
罗格斯教学过程还强调了学生的自我评价和自我反思的重要性。
学生在学习过程中被鼓励主动地评估自己的学习成果和学习进展,找出自己的优点和不足,并制定进一步的学习目标。
这种自我评价和自我反思能够提高学生的学习动力和学习效果,增强他们的学习能力和学习习惯。
总之,罗格斯教学过程的本质观体现了人本主义教育的核心理念,即以学生为中心,重视学生的个性和需求,促进学生的自主学习和自我发展。
这一观点对传统的教学模式进行了颠覆性的改变,强调了教育者和学习者之间的平等合作关系,培养学生的创造力和自主性,进而实现真正意义上的教育目标。
罗格斯大学院校设置和介绍美国罗格斯大学介绍美国罗格斯大学(RutgersUniversity),简称RU或Rutgers,全名为新泽西州立罗格斯大学(Rutgers,TheStateUniversityofNewJersey),前身是成立于1766年的皇后学院(Queen'sCollege),是一所在世界上享有盛名的顶尖公立研究型大学,也是新泽西州规模最大的高等学府,其学术声誉在州内仅次于普林斯顿大学(PrincetonUniversity)。
罗格斯大学是美国最早成立的第八个高等教育机构,也是美国独立革命前的九所私立殖民地学院之一,新泽西州州议会分别于1945年和1956年通过法案将罗格斯大学指定为公立的新泽西州州立大学。
学校由三个校区组成,主校区位于新泽西州新布朗斯维克市(NewBrunswick),另两个分校区位于纽瓦克(Newark)和肯顿(Camden),三个校区共有约48,000名在校学生,提供跨175个系别、29所学院的超过100个学士学位、100个硕士学位以及80个博士学位。
罗格斯大学是北美顶尖大学学术联盟美国大学协会(AAU)的62所成员校之一,也是十大联盟(BigTenConference)成员之一,被美国社会誉为“公立常春藤”大学。
2013年,CWUR世界大学排名中心将罗格斯大学排为全球33名,2015年,罗格斯大学被《美国新闻与世界报道》(USNews)发布的世界大学综合排名评为全球第55名,在2017年上海交大ARWU世界大学学术排名中位列全球第79名。
罗格斯大学优势有哪些?1.罗格斯大学在USNews公布的公立大学排名上排第25名,该校的工程学专业排名前50,本科商学专业毕业生的企业雇主青睐度排名全美第3。
2.每年有4000多个实习机会向罗格斯大学学生开放,这些实习工作帮助学生获得有价值的工作经验和行业相关的一手市场资料;另外,学校还为学生提供合作教育经历,这个项目能够让学生得到学分和工资并在课堂外获得实践经验。
罗格斯新泽西州立大学关键词:公立大学研究型院校简介罗格斯新泽西州立大学位于气候宜人的新泽西州,是该州的最大高等学府。
罗格斯新泽西州立大学位于美国东部,有三个校区,共5万人其中3300人国际学生。
该校提供范围非常广泛的学科和课程,有超过200个本科及研究生专业的课程。
最受欢迎的专业是商务管理的课程,会计课程,财务课程,公共政策及公共管理专业历史发展创立者:校训和校徽官网:/办学条件综合排名:春季学期入学申请截止日期10月1日夏、秋季学期提前申请截止日期11月1日夏、秋季学期常规申请截止日期12月1日办学理念:学术声誉:国际教育者协会宣布,罗格斯大学获得2014年度参议院保罗西蒙国际化奖,该奖项颁发给在校园国际化方面有突出和创新性贡献的学校,并且在综合国际化方面最具影响力的大学。
罗格斯大学获得该项殊荣因其将国际化教育的理念渗透到大学教育和生活的各个方面。
“综合国际化”是有计划、有战略的将国际化的、跨文化的、全球的思想与高等教育的精神和成果融合到一起。
近年来,罗格斯大学招收众多国际学生,在全球范围开展许多具有创新性的国际服务学习项目,与国外很多知名大学建立了合作伙伴关系以及为师生拓展了全球项目。
该校也是美国的少数几所拥有国际化研究、国际化教育和国际化服务的大学之一,他们认识到教师在国际化事务中的重要价值。
另外,罗格斯大学是同联合国公共信息部门建立正式关系的27所大学之一,该合作关系使得罗格斯大学的师生有机会参加联合国会议、实习和重要国际事务的交流。
罗格斯大学还发起了联合国校友互助群和联合国学生俱乐部以便将罗格斯与联合国建立更加紧密的联系。
知名人物:知名华人:特色学制:师资力量:硬件设备:校园生活(图文形式呈现)校园环境(图)气候状况:新泽西州南部的气候较北部来的温暖。
南部与北部七月的平均温度分别是二十四度与二十一度,一月的均温则分别为一点一度与二点二度。
本土生活:语言环境:英语为主,其他地方方言校园安全:卫星校园:周边玩乐(图)景点篇:新不伦瑞克旅游景点菲利普斯堡旅游景点Saddle Brook旅游景点威霍肯旅游景点Carneys Point旅游景点切里希尔旅游景点Cinnaminson旅游景点库克斯敦旅游景点东卢瑟福旅游景点East Windsor旅游景点Edison旅游景点Egg Harbor Township旅游景点伊丽莎白旅游景点Fair Lawn旅游景点费尔菲尔德旅游景点法明代尔旅游景点美食篇:学习环境(图):住宿(图):学生组织(图):专业设置学院设置:本科专业:医学及护理,历史与文化研究,语言学及文学,数学及统计,社会科学,计算机与信息科学自然科学,新闻传媒,法律专业,商业与金融,公共行政管理,艺术设计与建筑,环境保护,教育学,哲学及宗教研究,工程,生物及生物医学,表演艺术,农学,心理学研究生专业:特色院系:入学条件:托福79SAT1720IELTS 6.5肯顿校区、新不伦瑞克和皮斯卡塔韦校区对雅思或托福成绩要求如下本科:TOEFL 75 或雅思6.5分研究生:TOEFL 95或雅思7分夏、秋季学期提前申请截止日期11月1日夏、秋季学期常规申请截止日期12月1日申请材料:申请表初三成绩单学校Essay高中成绩单SATI成绩单财力证明表托福成绩单高中毕业证资助人收入证明银行存款证明艺术或建筑补充材料录取比率:60%留学费用(2015年)担保金(估值):万奖学金排行榜世界排名:你问我答(针对没有去过罗格斯大学的同学解答疑问,)例如:这学校的优势在哪里?中国学生选择罗格斯大学的六个原因:1. 罗格斯大学在US News公布的公立大学排名上排第25名,该校的工程学专业排名前50,本科商学专业毕业生的企业雇主青睐度排名全美第3。
罗格斯生物统计博士案例今天来给你讲讲罗格斯生物统计博士的案例呀。
有这么一个同学,我们就叫他小A吧。
小A那可是对生物统计爱得深沉。
他本科的时候呢,学的是数学和生物的双学位,就像一个武林高手同时修炼两门绝世武功一样。
这两门学科的结合让他对生物统计这个交叉领域产生了浓厚的兴趣。
小A决定申请罗格斯大学的生物统计博士项目。
他知道这个项目可不简单,竞争超激烈的。
那他都做了些啥准备呢?他的成绩那是相当不错。
GPA就像他的战斗值一样,高高的,在众多申请者中脱颖而出。
然后就是科研经历啦。
他跟着学校的教授做了一个关于生物种群增长模型和统计分析的项目。
在这个项目里,他就像一个侦探一样,从一堆复杂的数据里寻找生物种群变化的秘密。
他得收集野外生物的数据,有时候在大太阳下观察小昆虫,一蹲就是好几个小时,那画面就像一个执着的守望者。
他把收集到的数据用各种统计方法分析,这个过程就像解超级复杂的谜题,有时候一个数据出错了,就得重新来一遍。
不过他可没放弃,最后成功做出了一个很棒的模型,这个项目在他的申请中就像一颗闪闪发光的星星。
推荐信也很关键呢。
他找了他的导师和项目里合作过的一位资深研究员给他写推荐信。
他的导师对他赞不绝口,说他是自己教过最有毅力和创造力的学生。
这推荐信就像是他的强力推荐信,把他推向了罗格斯大学的大门。
小A还考了GRE,为了考这个试,他也是下了苦功夫。
背单词背得都快魔怔了,走在路上看到个什么东西都能联想到GRE单词。
不过功夫不负有心人,他的GRE分数也很理想。
到了面试环节,小A紧张得不行。
就像要去见超级英雄的大boss一样。
但是他一开口,就把自己对生物统计的热情和对未来研究的想法滔滔不绝地说了出来。
他讲了自己如果能进入罗格斯大学的博士项目,想研究如何用新的统计方法来解决基因编辑技术中的一些数据问题。
面试官都被他的热情和想法打动了。
最后呢,小A成功被罗格斯大学的生物统计博士项目录取了。
他就像一个勇敢的冒险者,经过重重关卡,终于到达了宝藏之地。
BF-2000 - Plastics - ComponentCOMPANYROGERS CORP171 W Saint Charles RdCarol Stream, IL 60188-2013 United StatesMODEL INFOBF-2000Silicone (SI), addition-cure, vinyl, platinum catalyzed, cellular, extra soft, furnished as rollsFLAMMABILITY PROPERTIES VALUETEST METHOD FlammabilityANSI/UL 942.2 mm, Color: BK V-0 2.6 mm, Color: BKHF-1V-012.7 mm, Color: BK HF-1V-0ISO/IEC FLAMMABILITY PROPERTIES VALUETEST METHOD FlammabilityIEC 60695-11-102.2 mm, Color: BK V-0 2.6 mm, Color: BK V-0 12.7 mm, Color: BKV-0FlammabilityISO 97722.6 mm, Color: BKHF-1Plastics - ComponentFile Number: E83967Yellow Card®12.7 mm, Color: BK HF-1THERMAL PROPERTIES VALUE TEST METHOD Relative Thermal Index - Electrical Strength UL 746B2.2 mm150°C2.6 mm150°C12.7 mm150°CRelative Thermal Index - Mechanical Impact UL 746B2.2 mm150°C2.6 mm150°C12.7 mm150°CRelative Thermal Index - Mechanical Strength UL 746B2.2 mm150°C2.6 mm150°C12.7 mm150°CPHYSICAL PROPERTIES VALUE TEST METHOD Density Range160 to 240kg/m³Report Date: 1991-02-12Revision Date: 2020-09-18 The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Certified and covered under UL's Follow-Up Service. Always look for the Mark on the product.UL permits the reproduction of the material contained in the Online Certification Directory subject to the following conditions: 1. The Guide Information, Assemblies, Constructions, Designs, Systems, and/or Certifications (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from UL" must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "© 2021 UL LLC"。
作为话语模式或思维方式的罗格斯在古希腊文化中的体现
2010910002 姜明花
"逻各斯"出自古希腊语,为λoyos(logos)的音译,因为它有很多含义,汉语里很难找到相对应的词。
”罗格斯“中文可译为“道“是运行与并贯穿着自然界和人类社会的辩证规律。
著名哲学史家格思里在《希腊哲学史》第一卷中详尽地分析了公元前五世纪及之前这个词在哲学、文学、历史等文献中的用法,总结出十种含义:(1)任何讲出的或写出的东西;(2)所提到的和与价值有关的东西,如评价、声望;(3)灵魂内在的考虑,如思想、推理;(4)从所讲或所写发展为原因、理性或论证;(5)与"空话"、"借口"相反,"真正的逻各斯"是事物的真理;(6)尺度,分寸;(7)对应关系,比例;(8)一般原则或规律,这是比较晚出的用法;
(9)理性的能力,如人与动物的区别在于人有逻各斯;(10)定义或公式,表达事物的本质。
那么罗格斯在古希腊文化中怎么体现呢?首先,赫拉克利特指出,“罗格斯”不仅永恒存在着,而且“万物都根据这个罗格斯生成”,”罗格斯乃是共同的”。
谁不认识并进而服从罗格斯,谁就无法获得智慧,把握真理,相反,“如果不听从我而听从这个罗格斯,就会一致说万物是一,就是智慧”。
在赫拉克利特看来,万物虽然是运动变化的,但在它们之中却有一种永恒的必然性,规律性在支配着万物的变化过程,“罗格斯”就是世界上一切事物运动变化所遵循的最普通的规律。
赫拉克利特相信或是原质,其他万物都是由火而生成的:“这个世界对一切存在物都是同一的,它不是任何神或任何人所创造的;它过去,现在和未来永远是一团永恒的活火,在一定的分寸上燃烧,在一定的分寸上熄灭”。
这种变化看成是有“分寸”的,这个“分寸“就是规律,他称之为“罗格斯”。
到了巴门尼德,出现了与上述不同的提问方式。
如果说以前的哲学家是试图去说明什么是真理,什么是世界的本原的话,“马门尼德的全部哲学的宗旨在于寻求一条通向真理的途径”。
阿那克萨哥拉在物质性的东西中探寻万物的本原,不过他把本原看作是虽有各种形状,颜色和味道,但却把可见的“种子”。
阿那克萨哥拉第一次明确而公开地把精神性的东西——“努斯”或“理智”作为本原,从而为后来的哲学革命尊定了基础。
在苏格拉低以前,希腊的哲学主要研究宇宙的本原是什么,世界是由什么构成的等问题,后人称之为“自然哲学”。
苏格拉低认为再研究这些问题对拯救国家没有什么现实意义。
出于对国家和人民命运的关心,他转而研究人类本身,即
研究人类的伦理问题,如什么是正义,什么是非正义;什么是勇敢,什么是国家具有什么品质的人才能治理好国家,治国人才应该如何培养,等等。
后人称苏格拉低的哲学为“伦理哲学”。
他为哲学研究开创了一个新的领域,使哲学“从天上回到了人间”,在哲学史上具有伟大的意义。
柏拉图认为世界由“理念世界”和“现象世界”所组成。
理念的世界是真实的存在,永恒不变,而人类感官所接触到的这个现实的世界,只不过是理念世界的微弱的影子,它由现象所组成,而每种现象是因时空等因素而表现出暂时变动等特征。
由此出发,柏拉图提出了一种理念论和回忆说的认识论,并将它作为其教学理论的哲学基础。
古希腊人最伟大的贡献在人类精神方面,是他们给后人提供了一种理性的思维方式以及后来作为近代科学源泉的科学理论和科学思想。