解直角三角的应用(1)--仰角与俯角教案
- 格式:doc
- 大小:282.50 KB
- 文档页数:2
《解直角三角形的应用-----仰角、俯角》教学设计授课人:班级:一、教学任务分析二、教学流程安排视频导入学习新知例题讲解知识应用课堂小结布置作业通过观察火箭击中空中目标,引入本节课主题,增强学生学习数学的兴趣,增加学生的爱国热情,对学生进行德育教育.结合生活实际,让学生了解仰角和俯角概念.并会在简单的几何图形中,认识仰角和俯角,结合三角函数解决简单的应用问题.通过具体例题教学帮助学生如何分析问题、解决问题,归纳解题方法.通过习题考察学生对本节课的掌握情况,体会分析问题的方法,如何用解直角三角形的方法解决实际问题.由学生总结本节课收获.分层次布置作业,有必做题和选做题.三、教学过程设计视频导入师生行为设计意图火箭筒要想准确打中空中目标,对视线和水平线的夹角有精确地要求,这就是本节课将要学习的《解直角三角形的应用---仰角、俯角》师生观看视频,通过实际问题引入课题.数学来源于生活,学会数学知识能解决生活问题,同时对学生进行德育教育.学习新知师生行为设计意图仰角和俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角. 与学生一起学习仰角和俯角的概念,让学生从复杂图中寻找仰角和俯角学习概念、认识概念学以致用(1)如图,在Rt△ABC中,∠C=90°, BC=2,从B 点看A点的仰角为60°, 则AC=____(2)如图,A点看B点的俯角为α,BC=m,则AC=____(3)如图,A,B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a 米,∠BAC=90°,∠ACB=40°,则AB=____ 学生口答解题思路,总结解题方法结合生活实际认识数学条件,会将题目文字条件转化为数学条件例题讲解师生行为设计意图例1: 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高?(结果取整数)3≈1.732学生归纳解题方法1、找出与问题有关的直角三角形,或通过作辅助线构造有关的直角三角形。
解直角三角形及其应用——仰角和俯角教学目标: 1.了解仰角、俯角的概念。
2.将某些实际问题的数量关系,归结为直角三角形知识元素之间的关系,从而利用所学知识解决实际问题。
复习:1.解直角三角形指什么? 解直角三角形主要依据什么?(1)边角之间关系:(2)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系 ∠A+∠B=90°.2.已知:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm .求AB 及BC 的长.新授: 活动一 1、填空:测量时,从下往上看视线与水平线所成的锐角叫做 , 从上往下看视线与水平线的夹角叫做 。
请在右图图中相应的位置分别标明“仰角” 和“俯角”`2. 如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC =1200米,从飞机上看地面控制点B 的俯角α=20°,求飞机A 到控制点B 的距离.(精确到1米,sin20°≈0.3 ,cos20°≈0.9 tan20°≈0.4)的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cossinA BC45°30°活动二1. 热气球的探测器显示,从热气球看一栋高楼顶部的仰角α为30°,看这栋高楼底部的俯角β为60°,热气球与高楼的水平距离为120m ,这栋高楼有多高(结果用根号表示)2.要在C 处建一所学校,小李沿着东西方向的公路AB 以50 m/min 的速度向正东方向行走,在A 处测得点∠CAB=30°,20min 后他走到B 处,测得点∠CBA=45°,若为防止公路上噪音污染,建筑要求到公路的距离不能少于300米,问在C 处建一所学校能否符合要求。
(已知 3 ≈1.7)小结:本堂课你学到哪些知识?检测反馈:1.从高出海平面55米灯塔A处搜到一艘帆船B的求救信号,从灯塔看帆船的俯角为21°,求此时帆船到灯塔的距离BC的长度是多少?(已知sin21°≈0.4 cos21°≈0.9 tan21°≈0.4)2.如图,小明想测量塔CD的高度。
28.2.2解直角三角形的应用(仰角和俯角)教案
中,
D
设计意图:通过分析题意,引导学生构造直角三角形,把已知条件转化到两个直角三角形里,根据已知的边角条件,恰当地选择锐角三角函数关系,解决实际问题,让学生初步认识到解直角三角形在实际问题中的应用;同时通过
一方面让学生进一步认识到解直角三角形在实际问题中的应用,另一方面,让学生意识到通过设未知数,建立方程也是解决实际问题时常用到
处,看另一栋楼楼顶的俯角为30°,看这
BC有多高?
A
E
尽管实际问题的背景发生了变化,
C E。
第1课时仰角、俯角与解直角三角形本课时是在熟练掌握解直角三角形的基础上探究仰、俯角问题,常用来解决实际生活中的测量问题,利用其解决实际问题的一般过程是:“实际问题——数学问题——数学问题的答案——实际问题的答案”.在教学过程中要注意让学生结合具体问题,并且引导学生通过作垂线来构造直角三角形,同时将这一过程与运用方程、函数、不等式解决实际问题的过程进行比较,让学生进一步体会运用数学知识解决实际问题的一般过程.【情景导入】小明班的教室在教学楼的二楼,一天,他站在教室的窗台前看操场上的旗杆,心想:站在二楼上可以利用解直角三角形测得旗杆的高吗?他望着旗杆顶端和旗杆底部,可以测得视线与水平视线之间的夹角各一个,但是,这两个角怎样命名区别呢?如图,∠CAD,∠BAD在测量中各叫什么角呢?【说明与建议】说明:用来源于学生身边的问题吸引他们的注意力,激发他们的好奇心,体会数学来源于生活,并服务于生活,诱发学生对新知识的渴求.建议:两个学生一组,一个学生观察物体,另一个学生根据他观察的视线画出示意图,教师选择合适的时机引出仰角和俯角的概念.命题角度1 利用仰角解决实际问题根据题意,画出示意图,确定已知角,构造直角三角形,再通过解直角三角形解决问题.1.(达州中考)小明为测量校园里一棵大树AB的高度,在树底部B所在的水平面内,将测角仪CD竖直放在与B相距8 m的位置,在D处测得树顶A的仰角为52°.若测角仪的高度是1 m,则大树AB的高度约为11m.(结果精确到1 m.参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)命题角度2 利用俯角解决实际问题根据题意和俯角的位置,构建直角三角形,设出相应的线段,通过解直角三角形构建一次方程,解方程并回答相应的问题.2.(广西中考)如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的俯角为60°,已知楼高AB为30米,则荷塘的宽CD为(30-103)米(结果保留根号).命题角度3 综合利用仰角、俯角解决实际问题通过仰角和俯角添加辅助线,构建直角三角形,解直角三角形,解决实际问题.3.(阜新中考)如图,甲楼高21 m,由甲楼顶看乙楼顶的仰角是45°,看乙楼底的俯角是30°,则乙楼高度约为57m(结果精确到1 m,3≈1.7).三角学的历史早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.古希腊、印度、阿拉伯数学中都有三角学的内容,可大都是天文观测的副产品.例如,古希腊门纳劳斯(Menelaus of Alexandria,公元100年左右)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira,约505―587) 最早引入正弦概念,并给出最早的正弦表;公元10世纪的一此阿拉伯学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasīral-Dīn al-Tūsī,1201—1274)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(Regiomontanus,1436-1476).雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表.雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对16世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响.课题28.2.2 第1课时仰角、俯角与解直角三角形授课人素养目标1.进一步掌握解直角三角形的方法.2.理解仰角、俯角的概念,并能通过作高构造直角三角形进而解直角三角形.3.运用数形结合思想,把实际问题转化为数学问题,培养学生的自主探究精神,并提高合作交流的能力,培养学数学、用数学的思想.教学重点1.能够灵活应用边与边、角与角、边与角之间的关系解直角三角形.2.能将某些与仰角、俯角有关的实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识解决实际问题.教学难点1.如何把实际问题转化为数学问题.2.灵活应用解直角三角形及仰角、俯角等知识解决实际问题.授课类型新授课课时教学步骤师生活动设计意图回顾教师提问:1.解直角三角形的主要依据是什么?学生回答:两锐角之间的关系、三边之间的关系、边角之间的关系.教师提问:2.解直角三角形主要有哪两种类型?回顾以前所学内容,为本节课的教学内容做好准备.学生回答:(1)已知两条边;(2)已知一条边和一个锐角(或其锐角三角函数值).活动一:创设情境、导入新课【课堂引入】2012年6月18日,“神舟九号”载人航天飞船与“天宫一号”目标飞行器成功实现交会对接.“神舟九号”与“天宫一号”的组合体在离地球表面343 km的圆形轨道上运行,如图,当组合体运行到地球表面P点的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与P点的距离是多少(地球半径约为6 400 km, π取3.142,结果取整数)?通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,通过求解,初步体会解直角三角形的内涵,引入课题.活动二:实践探究、交流新知1.解决问题:师生活动:教师引导学生分析问题,将实际问题转化为数学问题,并画出示意图.分析问题:从组合体中能直接看到的地球表面的最远点,是视线与地球相切时的切点.如图,本例可以抽象为以地球中心为圆心、地球半径为半径的⊙O的有关问题,其中点F是组合体的位置,FQ是⊙O的切线,切点Q是从组合体中观测地球时能直接看到的最远点,PQ︵的长就是地球表面上P,Q两点间的距离.为计算PQ︵的长需先求出∠POQ(即α)的度数.2.仰角、俯角的应用:例题:热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m.这栋楼有多高(结果取整数)?师生活动:教师带领学生回顾复习题中涉及的仰角、俯角等概念,并引导学生从不同角度思考问题.仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的是仰角,视线在水平线下方的是俯角.设置的实际问题都是从现实生活中提取出来而又高于现实的,既丰富了学生的知识,使他们更有兴趣学习,又让学生进一步经历用三角函数解决实际问题的过程,提高学生运用所学知识解决实际问题的能力.如图,仰角α=30°,俯角β=60°.在Rt△ABD中,α=30°,AD=120 m,所以可以利用解直角三角形的知识求出BD;类似地,可以求出CD,进而求出BC的长度.活动三:开放训练、体现应用【典型例题】例1从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是(A)A.423米 B.143米 C.21米 D.42米师生活动:引导学生能借助仰角构造直角三角形,并分析已知角的对边求邻边,可以利用正切函数来解决.例2如图,小明同学在民族广场A处放风筝,风筝位于B处,风筝线AB长为100 m,从A处看风筝的仰角为30°,小明的父母从C处看风筝的仰角为50°.(1)风筝离地面多少米?(2)A,C两处相距多少米?(结果保留小数点后一位,参考数据:sin30°=0.5,cos30°≈0.866 0,tan30°≈0.577 4,sin50°≈0.776 0,cos50°≈0.642 8,tan50°≈1.191 8)解:提示:过点B作BD⊥AC于点D.(1)风筝离地面50 m.(2)A,C两处相距约128.6 m.师生活动:学生先做,教师再进行讲解,重点总结并归纳构造直角三角形的辅助线作法.【变式训练】1.2020年7月23日,我国首次火星探测“天问一号”探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4 000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.O,C,D在同一直线上,已知C,D两处相距460米,求火箭从A到B处的平均速度.(结果保留整数,参考数据:3≈1.732,1.例1主要考查直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,培养学生解决实际问题的能力.2.例2的解决需要通过添加恰当的辅助线构造直角三角形,将实际问题转化为解直角三角形问题解决,可以培养学生把实际问题转化成数学问题,灵活应用知识解直角三角形的能力.3.变式训练的设置主要用来提升学生分析问题,并将实际问题转化为数学问题的灵活性.2≈1.414)解:由题意,得AD =4 000米,∠ADO =30°,CD =460米,∠BCO =45°, 在Rt △AOD 中,∵AD =4 000米,∠ADO =30°,∴OA =12AD =2 000(米),OD =AD ·cos30°=32AD =2 0003(米).在Rt △BOC 中,∠BCO =45°,∴OB =OC =OD -CD =(2 0003-460)米.∴AB =OB -OA =2 0003-460-2 000≈1 004(米). ∴1 004÷3≈335(米/秒).答:火箭从A 到B 处的平均速度约为335米/秒.2.如图,为了测得某建筑物的高度AB ,在C 处用高为1米的测角仪CF ,测得该建筑物顶端A 的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A 的仰角为60°.求该建筑物的高度AB.(结果保留根号)解:设AM =x 米,在Rt △AFM 中,∠AFM =45°, ∴FM =AM =x.在Rt △AEM 中,tan ∠AEM =AMEM ,则EM =AM tan ∠AEM =33x ,由题意,得FM -EM =EF ,即x -33x =40, 解得x =60+20 3. ∴AB =AM +MB =61+20 3.答:该建筑物的高度AB为(61+203)米.活动四:课堂检测【课堂检测】1.如图,要得到从点D观测点A的俯角,可以测量(A)A.∠DAB B.∠DCE C.∠DCA D.∠ADC2.如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=12米,则树的高AB (单位:米)为(C)A.12sin37°B.12tan37°C.12tan37° D.12sin37°3.如图,AB是一座办公大楼,一架无人机从C处测得楼顶部B的仰角为60°,测得楼底部A的俯角为37°,测得与大楼的水平距离为40米,则该办公大楼的高度是99米.(结果保留整数,参考数据:3≈1.73,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)4.我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M处垂直于海面发射,当火箭到达点A处时,海岸边N处的雷达站测得点N到点A的距离为8千米,仰角为30°.火箭继续直线上升到达点B处,此时海岸边N处的雷达测得B处的仰角增加15°,求此时火箭所在点B处与发射站点M处的距离.(结果精确到0.1千米,参考数据:2≈1.41,3≈1.73)通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.解:由题意,得∠AMN=90°,∠ANM=30°,∠BNM=45°,AN=8千米,在Rt△AMN中,MN=AN·cos30°=8×32=43(千米).在Rt△BMN中,BM=MN·tan45°=43≈6.9(千米).答:此时火箭所在点B处与发射站点M处的距离约为6.9千米.课堂小结1.课堂总结:(1)什么是仰角和俯角?(2)在解答实际问题的过程中,你学会了哪些解题技巧或方法?还有哪些疑惑?教学说明:教师总结仰、俯角问题转化为解直角三角形问题的关键步骤:(1)画图;(2)作垂.2.布置作业:教材第76页练习第1,2题.通过课堂小结的形式,使学生能够对本课时所学知识进行整理,同时明确学习重点.。
解直角三角形的应用之仰角、俯角问题说课材料解直角三角形的应用之仰角、俯角问题说课稿一、教材分析:解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。
本节课主要内容是通过认识仰角、俯角的意义,并结合解直角三角形的基本理论知识去解决生活中的简单实际问题,它是在学习了"锐角三角函数、解直角三角形的条件、方法"的基础上进一步深入教学,使学生能联系新旧知识学有所用。
二、学情分析:(一)学生已具备的知识和技能学生已经学习了二次根式的运算,方程的解法,全等三角形,相似三角形等相关知识,特别是前面锐角三角函数知识的运用,这些都为解直角三角形的应用的学习打下了一定的基础。
(二)学生有待提高的知识和技能由于学生计算能力较差,分析问题能力,将实际问题抽象为数学问题的能力,“数形转化”的能力能力较弱,因此在本节课中特别准备了一些题型相同或相近的问题,帮助学生提升分析问题的能力和灵活应用知识的能力和实数运算的能力。
三、教学方法:先学后教,引导发现,讲透练实四、学习方法:小组合作,探索发现,总结整合五、教学过程:自学讲解(一)导入以复习解直角三角形的相关知识导入,并设计了一道纯数学知识的解直角三角形练习。
设计意图就是为了起到承上启下的作用,为新知打开突破口。
(二)新授1.自学环节:由于教材上的例题比较简单,所以我将例题设计为自学内容,让学生通过自学,对例题中所涉及的此类型问题的解题思路和方法有一个初步感知,然后通过小组讨论来尝试完成我设计的同类型问题(例1)。
设计意图:想尽可能的凸显学生的主体作用,将本节课的重点通过学生的活动自主完成。
建立解题模型,促使学生划归能力和思想的形成。
同时培养学生自学能力和合作协同能力。
2.讲授环节:变式1是在例1的基础上进行的改编,难度有所增加,思路与之前的例题也有所不同,同时还要结合方程的思想来解答。
武安市第二中学解直角三角形的应用之仰角、俯角问题 学案学习目标:理解仰角、俯角的意义,准确运用仰角、俯角来解决实际问题,提高学生的解题能力。
一、温故知新 (同学们,准备好了吗?起航了!)1、如图,在Rt ⊿ABC 中,∠C=90°,∠B=30°,BC=12,求AB 的长。
2、如图,在⊿ABC 中,∠BAD=45°, ∠CAD=60°AD ⊥BC 于D 点,AD=18, 求BC 的长。
这是两道纯数学问题,那么,把它放到现实情境中会是什么样的呢? 二、探索交流 (大显身手的机会一定不要错过哟!加油!)自学课本88页例4。
三、当堂训练 (相信自己,用事实证明自己——我能行!)1、(2012•昆明)如图,AB 和CD 是同一地面上的两座相距36米的楼房,在楼AB 的楼顶A 点测得楼顶C 的仰角为45°,楼底D 的俯角为30°,求楼CD 的高。
2、(2011•鄂州)如图,一艘核潜艇在海面下500米A 点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B 点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度。
(结果保留根号)四、随堂检测1、(2012•安徽)如图,小明站在A 处放风筝,风筝飞到C 处时的线长为20米,这时∠CBD=60°,若AB= 1.5米。
求此时风筝离地面CE 的高度。
(精确到0.1米,3 ≈1.732)2、(2012•太原)如图,从热气球C 上测得两建筑物A 、B 底部的俯角分别为30°和60°。
如果这时气球的高度CD 为90米.且 点A 、D 、B 在同一直线上,求建筑物A 、B 间的距离。
3、(2011•青岛)某建筑物BC 上有一旗杆AB,由距BC 边40米的D 处观察旗杆顶部A 的 仰角为60°,观察底部B 的仰角为45°,求旗杆的高度。
九年级上学期数学教学设计 第 课时 年 月 日 第 周 星期4.4解直角三角形的应用(1)--仰角与俯角【课堂类型】新知课【教学目标】1、进一步掌握直角三角形的边角关系。
2、理解仰角与俯角的概念,能在实际问题中识别仰角与俯角。
3、学会把实际问题转化为数学模型---解直角三角形,会利用解直角三角形来解决实际问题。
4、进一步积累数学活动的经验,并在学习活动中与人合作交流。
【重点难点】重点:灵活地运用三角函数关系式解直角三角形。
难点:运用解直角三角形的方法解决实际问题。
学会把实际问题转化为数学模型---解直角三角形。
【教学辅助】多媒体【教学过程】让我了解阅读教材第125-126页的内容,自主探究。
回答下列问题:1、如图在Rt △ABC 中,∠C=90°, ∠A,∠B,∠C 的对边分别记作a ,b,c ,边、角之间有什么关系?(1)三边之间的关系: ;(2)两个锐角之间的关系: ;(3)边与锐角之间的关系:2、举例说一说:什么是仰角,什么是俯角?让我尝试根据以上的探究,自主解决下列问题,并与小组成员交流分享你的学习成果:任务一: 理解仰角、俯角的概念当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角。
任务二:利用仰角、俯角解直角三角形直升飞机在跨江大桥AB 的上方P 点处,此时飞机离地面的高度PO =450米,且A 、B 、O 三点在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的长AB .变题1:直升飞机在长400米的跨江大桥AB 的上方P 点处,且A 、B 、O 三点在一条直线上,在大桥的两端测得飞机的仰角分别为30°和45 °,求飞机的高度PO .B云龙示范区云田中学 第四章 锐角三角函数50)变题2:直升飞机在高为200米的大楼AB 上方P 点处,从大楼的顶部和底部测得飞机的仰角为30°和60°,求飞机的高度PO .变题3:直升飞机在高为200米的大楼AB 左侧P 点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水平距离.任务三:综合提升先尝试独立解决,再与小组成员合作交流,解释下列问题:有一块三形场地ABC ,测得其中AB 边长为60米,AC 边长50米,∠ABC =30°,试求出这个三角形场地的面积.让我做1.如图1AB 高为50m ,铁塔塔基距楼房地基间的水平距离BD 为100m ,塔高CD为,则下面结论中正确的是( )A .由楼顶望塔顶仰角为60°B .由楼顶望塔基俯角为60°C .由楼顶望塔顶仰角为30° D.由楼顶望塔基俯角为30°2.如图2,在离铁塔BE 120m 的A 处,用测角仪测量塔顶的仰角为30°,已知测角仪高AD =1.5m ,则塔高BE = _________ (根号保留).2. 如图3,从地面上的C ,D 两点测得树顶A 仰角分别是45°和30°,已知CD =200m ,点C 在BD 上,则树高AB 等于 (根号保留).图3【课堂小结】1.把实际问题转化成数学问题,这个转化包括两个方面:一是将实际问题的图形转化为几何图形,画出正确的示意图;二是将已知条件转化为示意图中的边、角或它们之间的关系.2.把数学问题转化成解直角三角形问题,如果示意图不是直角三角形,可添加适当的辅助线,画出直角三角形.【课后巩固】教材126页1、2题【教学反思】九年级上学期数学教学设计第课时年月日第周星期。
九年级上学期数学教学设计第课时年月日第周星期
4.4解直角三角形的应用(1)--仰角与俯角
【课堂类型】新知课
【教学目标】
1、进一步掌握直角三角形的边角关系。
2、理解仰角与俯角的概念,能在实际问题中识别仰角与俯角。
3、学会把实际问题转化为数学模型---解直角三角形,会利用解直角三角形来解决实际问题。
4、进一步积累数学活动的经验,并在学习活动中与人合作交流。
【重点难点】
重点:灵活地运用三角函数关系式解直角三角形。
难点:运用解直角三角形的方法解决实际问题。
学会把实际问题转化为数学模型---解直角
三角形。
【教学辅助】多媒体
【教学过程】
让我了解
阅读教材第125-126页的内容,自主探究。
回答下列问题:
1、如图在Rt△ABC中,∠C=90°, ∠A,∠B,∠C的对边分别记作a,b,c,边、角之间有什
么关系?
(1)三边之间的关系:;(2)两个锐角之间的关系:;
(3)边与锐角之间的关系:
2、举例说一说:什么是仰角,什么是俯角?
让我尝试
根据以上的探究,自主解决下列问题,并与小组成员交流分享你的学习成果:
任务一: 理解仰角、俯角的概念
当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的叫做
仰角,在水平线下方的叫做俯角。
任务二:利用仰角、俯角解直角三角形
直升飞机在跨江大桥AB的上方P点处,此时飞机离地面的高度PO=450米,且A、B、O三点
在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的长AB .
变题1:直升飞机在长400米的跨江大桥AB的上方P点处,且A、B、O三点在一条直线上,
在大桥的两端测得飞机的仰角分别为30°和45 °,求飞机的高度PO .
C
B
云龙示范区云田中学 第四章 锐角三角函数
1003(50) 变题2:直升飞机在高为200米的大楼AB 上方P 点处,从大楼的顶部和底部测得飞机的仰角为30°和60°,求飞机的高度PO .
变题3:直升飞机在高为200米的大楼AB 左侧P 点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水平距离.
任务三:综合提升
先尝试独立解决,再与小组成员合作交流,解释下列问题:
有一块三形场地ABC ,测得其中AB 边长为60米,AC 边长50米,∠ABC =30°,试求出这个三角形场地的面积.
让我做
1.如图1,已知楼房AB 高为50m ,铁塔塔基距楼房地基间的水平距离BD 为100m ,塔高CD
为 m ,则下面结论中正确的是( )
A .由楼顶望塔顶仰角为60°
B .由楼顶望塔基俯角为60°
C .由楼顶望塔顶仰角为30° D.由楼顶望塔基俯角为30°
2.如图2,在离铁塔BE 120m 的A 处,用测角仪测量塔顶的
仰角为30°,已知测角仪高AD =1.5m ,
则塔高BE = _________ (根号保留).
2. 如图3,从地面上的C ,D 两点测得树顶A 仰角分别是45°和30°,
已知CD =200m ,点C 在BD 上,则树高AB 等于 (根号保留).
图3
【课堂小结】
1.把实际问题转化成数学问题,这个转化包括两个方面:一是将实际问题的图形转化为几何图形,画出正确的示意图;二是将已知条件转化为示意图中的边、角或它们之间的关系.
2.把数学问题转化成解直角三角形问题,如果示意图不是直角三角形,可添加适当的辅助线,画出直角三角形.
【课后巩固】教材126页1、2题
【教学反思】。