海量数据处理面试题
- 格式:docx
- 大小:66.94 KB
- 文档页数:7
招聘数据岗位面试题与参考回答(某大型集团公司)面试问答题(总共10个问题)第一题题目:请简要描述您对数据岗位的理解,以及您认为自己具备哪些与数据岗位相关的技能和经验?答案:1.理解描述:•数据岗位,顾名思义,是指专门负责数据收集、整理、分析、处理和解读的岗位。
它要求从业者不仅要有扎实的数据分析能力,还要具备良好的数据敏感度和逻辑思维能力。
•在我看来,数据岗位不仅仅是简单地处理数据,更是通过数据来发现规律、预测趋势、辅助决策的重要角色。
它需要将数据转化为有价值的信息,从而为企业的战略规划和运营管理提供支持。
2.相关技能和经验:•数据分析技能:熟练掌握Excel、SQL、Python等数据分析工具,能够进行数据清洗、整理、分析和可视化。
•编程能力:具备一定的编程基础,能够使用Python、R等编程语言进行数据挖掘和机器学习。
•统计学知识:了解统计学的基本原理和方法,能够运用统计模型进行数据分析和预测。
•逻辑思维:具备良好的逻辑思维能力,能够从海量数据中提炼出有价值的信息。
•沟通能力:能够清晰、准确地表达分析结果,为决策者提供有针对性的建议。
解析:这道题目考察应聘者对数据岗位的理解程度以及自身技能和经验的匹配度。
在回答时,应聘者应首先阐述自己对数据岗位的理解,然后结合自己的实际情况,详细列举自己具备的相关技能和经验。
以下是一些回答时的注意事项:1.结合自身情况:回答时,要结合自己的实际经验,避免空洞的理论描述。
2.突出重点:在列举技能和经验时,要突出与数据岗位相关的关键能力,如数据分析、编程、统计学等。
3.具体实例:可以结合具体的项目或案例,展示自己运用相关技能解决问题的能力。
4.持续学习:强调自己对于新技能和知识的持续学习态度,以适应不断变化的数据岗位需求。
第二题题目:请描述一下您在数据分析项目中遇到过的一个挑战,以及您是如何解决这个挑战的。
答案:在之前的一个数据分析项目中,我面临的挑战是处理一个包含大量缺失值的数据集。
大数据面试知识题库答案1. 什么是大数据?大数据是指规模大、类型多样、复杂度高且无法用传统数据处理技术进行管理和处理的数据集合。
它通常包括结构化数据、半结构化数据和非结构化数据。
2. 大数据的特征有哪些?•大量性:大数据具有海量的数据量,通常以TB、PB、EB为单位进行衡量。
•高速性:大数据的生成速度非常快,要求在有限的时间内能够处理和分析数据。
•多样性:大数据通常包含不同来源、不同类型和不同结构的数据。
•真实性:大数据的数据源来自于真实世界,包含了丰富的信息。
3. 大数据处理的挑战是什么?•存储挑战:大数据的存储需要大规模的存储系统来支持。
•计算挑战:大数据的计算需要高性能的计算平台来实现快速的数据处理和分析。
•处理挑战:大数据的处理需要使用分布式处理框架来实现并行化和高可靠性。
•分析挑战:大数据的分析需要使用数据挖掘和机器学习等技术来挖掘数据中的价值。
4. 大数据的存储技术有哪些?•分布式文件系统:如Hadoop分布式文件系统(HDFS)和谷歌文件系统(GFS),能够实现大规模数据的存储和访问。
•列式存储:如Apache Parquet和Apache ORC,能够提高数据的压缩率和查询性能。
•NoSQL数据库:如MongoDB和Cassandra,能够支持大规模数据的快速写入和查询。
5. 大数据的计算技术有哪些?•分布式计算框架:如Apache Hadoop和Apache Spark,能够实现并行化的大规模数据处理和计算。
•数据流处理:如Apache Flink和Apache Kafka,能够实时地处理和分析数据流。
•图计算:如Apache Giraph和Neo4j,能够处理大规模图数据的计算和分析。
6. 大数据处理的常见算法有哪些?•排序算法:如快速排序和归并排序,在大数据处理中常用于数据的排序和分组。
•聚类算法:如K-means聚类算法和DBSCAN聚类算法,用于将数据划分为不同的类别或簇。
Hadoop面试题目及答案Hadoop面试45个题目及答案1.Hadoop集群可以运行的3个模式?单机(本地)模式伪分布式模式全分布式模式2. 单机(本地)模式中的注意点?在单机模式(standalone)中不会存在守护进程,所有东西都运行在一个JVM上。
这里同样没有DFS,使用的是本地文件系统。
单机模式适用于开发过程中运行MapReduce程序,这也是最少使用的一个模式。
3. 伪分布模式中的注意点?伪分布式(Pseudo)适用于开发和测试环境,在这个模式中,所有守护进程都在同一台机器上Hadoop被安装在cd/usr/lib/hadoop-0.20/。
8. Namenode、Job tracker和task tracker 的端口号是?Namenode,70;Job tracker,30;Task tracker,60。
9. Hadoop的核心配置是什么?Hadoop的核心配置通过两个xml文件来完成:1,hadoop-default.xml;2,hadoop-site.xml。
这些文件都使用xml格式,因此每个xml中都有一些属性,包括名称和值,但是当下这些文件都已不复存在。
10. 那当下又该如何配置?Hadoop现在拥有3个配置文件:1,core-site.xml;2,hdfs-site.xml;3,mapred-site.xml。
这些文件都保存在conf/子目录下。
11. RAM的溢出因子是?溢出因子(Spill factor)是临时文件中储存文件的大小,也就是Hadoop-temp目录。
12. fs.mapr.working.dir只是单一的目录?fs.mapr.working.dir只是一个目录。
13. hdfs-site.xml的3个主要属性?.dir决定的是元数据存储的路径以及DFS的存储方式(磁盘或是远端)dfs.data.dir决定的是数据存储的路径fs.checkpoint.dir用于第二Namenode 14. 如何退出输入模式?退出输入的方式有:1,按ESC;2,键入:q(如果你没有输入任何当下)或者键入:wq(如果你已经输入当下),并且按下Enter。
storm 面试题Storm面试题1. Introduction to StormStorm是一个开源的分布式实时计算系统,用于处理大规模实时数据流。
它是一个可靠和高效的系统,可以将海量数据在分布式集群上进行并行处理,实现实时分析和计算。
本文将介绍Storm的工作原理、应用场景以及面试常见问题。
2. Storm的工作原理Storm使用了一种称为"Topology"的数据处理模型,其中包含多个组件,包括Spout、Bolt和Stream。
Spout负责数据源的读取和发送,Bolt负责数据转换和处理,Stream用于在Spout和Bolt之间传递数据。
Storm的工作流程如下:(1) 数据流入系统,由Spout接收数据并发送给Bolt。
(2) Bolt对接收到的数据进行处理和计算。
(3) 处理完成后,Bolt可以发送数据到其他Bolt,形成数据流的连续处理。
(4) 最后,数据可以被存储到数据库、文件系统或其他外部系统中。
Storm的分布式架构使得它能够处理大规模数据流,并实现高可用性和容错性。
它将工作负载分散到集群中的多台计算机上,并通过消息传递机制实现组件间的通信。
3. Storm的应用场景Storm在实时数据分析和处理方面具有广泛的应用场景,包括但不限于以下几个方面:(1) 金融领域:Storm可以用于实时风险管理、交易监控和欺诈检测。
它能够对流式数据进行复杂计算和规则验证,以实现实时预警和决策支持。
(2) 电信领域:Storm可以用于网络监控和故障诊断,实时分析和处理大量网络数据。
它可以帮助运营商及时发现并解决网络问题,提高网络运行的稳定性和可靠性。
(3) 电商领域:Storm可以用于实时推荐系统、广告投放和用户行为分析。
它能够根据用户的实时行为和偏好生成个性化推荐,提高用户购物体验和销售转化率。
(4) 物联网领域:Storm可以用于实时监测和分析传感器数据,实现设备状态监控和异常检测。
大数据方案面试题目及答案一、题目:请根据以下情景描述,设计一个大数据方案,提供可行的解决方案,并解释其实施步骤和相关技术工具。
情景描述:某互联网公司拥有海量用户,每天生成的数据量庞大,包括用户行为数据、服务器日志、社交网络数据等。
该公司希望通过对这些大数据进行挖掘,为产品改进、用户画像、市场营销等方面提供支持。
要求:1. 分析并说明如何收集、存储和处理这些大数据。
2. 提出针对以上数据的应用场景,并描述需要采用的技术工具。
3. 阐述如何保证数据安全和隐私保护。
二、解决方案:1. 数据收集、存储和处理针对大数据的收集,可以使用流式处理技术,如Apache Kafka,用于高吞吐量的实时数据流处理。
通过构建数据管道,将各种数据源的数据实时导入到数据湖中,例如Hadoop分布式文件系统(HDFS)。
对于大数据的存储,可以采用分布式存储系统,如Hadoop的HBase,用于高可靠性的海量数据存储和快速检索。
数据可以按照数据类型和业务需求进行合理划分和存储,提高查询效率。
大数据的处理可以采用Apache Spark进行分布式计算和数据处理。
Spark提供了强大的数据分析和机器学习库,可用于处理海量数据,实现复杂的数据挖掘任务。
2. 应用场景和技术工具场景一:用户行为数据分析通过收集用户行为数据,使用Spark的机器学习库进行用户画像分析。
可以运用聚类算法、关联规则挖掘等技术,发现用户的兴趣偏好和行为习惯,为产品改进和个性化推荐提供支持。
场景二:服务器日志监控使用Kafka实时收集服务器日志,并将数据导入HBase进行存储。
通过Spark Streaming技术对日志数据进行实时监控和异常检测,及时发现并解决服务器故障。
场景三:社交网络数据分析收集社交网络平台上的用户数据,使用GraphX图计算引擎进行社交网络分析。
通过建立用户关系图,分析用户社交圈子、影响力等,为精准的社交推荐和营销提供依据。
3. 数据安全和隐私保护为了保证数据的安全性和隐私保护,可以采取以下措施:- 数据加密:对敏感数据进行加密处理,确保数据在传输和存储过程中不被窃取。
如何回答面试官关于你的数据报告和分析能力的问题面试官:请介绍一下你在数据报告和分析能力方面的经验和能力。
回答一:数据报告和分析能力是我专业背景和工作经验中的重点之一。
作为一名数据分析师,我负责处理大量的数据,并将其转化为有价值的见解和决策支持。
以下是我在数据报告和分析能力方面的经验和能力。
1. 数据收集和整合:我熟悉各种数据收集方法,包括调查问卷、数据挖掘、网络爬虫等。
我能够迅速有效地从各种来源收集大量的数据,并进行整合和清洗,以确保数据的准确性和完整性。
2. 数据分析工具:我熟练使用多种数据分析工具,包括Excel、SQL、Python和Tableau等。
我能够使用这些工具对数据进行统计分析、建模和可视化,以便更好地理解数据背后的模式和趋势。
3. 数据报告和呈现:我能够将复杂的数据分析结果转化为易于理解和消化的报告和演示文稿。
我具备良好的数据可视化能力,能够运用图表、图形和表格等工具,将数据以直观的方式展示给非技术人员,并能够清晰地解释报告中的结果和见解。
4. 解决问题和推动业务发展:我在过去的工作中,应用数据分析的方法成功解决了各种业务问题。
例如,我分析销售数据发现了一个潜在的市场机会,并提出了一项针对该机会的推广计划。
结果,销售额显著增长。
我相信通过数据分析,可以从海量数据中挖掘出有价值的见解,并将其转化为业务决策和发展的有力支持。
回答二:谢谢您的提问。
数据报告和分析能力是我在工作和学习中的重要能力之一。
以下是我在数据报告和分析能力方面的经验和能力。
1. 数据处理和整理:作为一名数据分析师,我经常处理大量的数据,包括数据的清洗、整合和筛选等工作。
我能够迅速准确地将原始数据整理成符合分析需求的形式,并确保数据的准确性和完整性。
2. 数据分析方法:我熟悉各种数据分析方法,包括统计分析、数据挖掘和机器学习等。
根据不同的分析目的,我可以选择合适的方法和模型来提取数据中的有用信息,并发现数据背后的模式和趋势。
史上最全的大数据面试题,大数据开发者必看在大数据领域,面试常常是求职者获取工作机会的重要环节。
面试官会针对各个方面提问,从技术知识到项目经验,从算法能力到数据处理能力,全方位考察候选人的综合素质。
为了帮助大数据开发者准备面试,本文整理了一份史上最全的大数据面试题,供参考使用。
一、Hadoop基础知识1·Hadoop的核心组件有哪些?分别简要介绍。
2·HDFS的特点和工作原理是什么?3·MapReduce的工作原理是什么?举例说明MapReduce的运行流程。
4·Hadoop集群的搭建步骤和注意事项是什么?5·Hadoop环境中如何进行数据备份和恢复操作?二、Hadoop生态系统1·Hive和HBase有什么区别?适用场景分别是什么?2·Pig和Hive的功能和使用场景有何异同?3·Sqoop和Flume的作用及使用场景有哪些?4·ZooKeeper的作用是什么?简要介绍其应用场景。
5·Spark和Hadoop的区别是什么?它们之间如何共同工作?三、大数据处理技术1·数据采集的方法有哪些?请简要说明每种方法的原理和适用场景。
2·数据清洗的过程和步骤有哪些?如何处理用户输入的脏数据?3·数据存储有哪些方式?请简要介绍每种方式的特点和适用场景。
4·数据挖掘常用的算法有哪些?请简要说明每种算法的原理和适用场景。
5·数据可视化的方法和工具都有哪些?请简要介绍每种方法和工具的特点和适用场景。
四、大数据实战项目1·请简要介绍你参与过的大数据项目,包括项目背景、使用的技术和取得的成果。
2·在项目中如何解决数据倾斜的问题?请具体描述解决方案。
3·在项目中如何保证数据的安全性和隐私性?4·在处理大规模数据时,如何优化性能和提高效率?5·请描述一个你在项目中遇到的难题,并介绍你是如何解决的。
发信人: phylips (星星||一年磨十剑), 信区: Algorithm标题: 面试题目-大数据量专题发信站: 兵马俑BBS (Thu Nov 26 16:30:44 2009), 本站()1. 给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。
2. 有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。
要你按照query的频度排序3. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。
返回频数最高的100个词4.海量日志数据,提取出某日访问百度次数最多的那个IP。
5.2.5亿个整数中找出不重复的整数,内存空间不足以容纳这2.5亿个整数。
6.海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。
7.怎么在海量数据中找出重复次数最多的一个8.上千万or亿数据(有重复),统计其中出现次数最多的前N个数据。
统计可以用hash,二叉数,trie树。
对统计结果用堆求出现的前n大数据。
增加点限制可以提高效率,比如出现次数>数据总数/N的一定是在前N个之内9.1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。
请问怎么设计和实现?10.一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前十个词。
请给出思想,给时间复杂度分析。
11.一个文本文件,也是找出前十个最经常出现的词,但这次文件比较长,说是上亿行或者十亿行,总之无法一次读入内存,问最优解。
12.有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复要按照query的频度排序13.100w个数中找最大的前100个数14.寻找热门查询:搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。
hadoop spark 面试题1. 介绍Hadoop的MapReduce框架及其工作流程MapReduce是Hadoop的核心组成部分,用于分布式计算与数据处理。
其工作流程如下:- Map阶段:将输入数据切分为固定大小的数据块,并由多个Mapper并行处理。
Mapper根据特定的映射函数,将输入数据中的每对键值对(key-value)转换成中间键值对(intermediate key-value)。
- Shuffle(洗牌)阶段:将Mapper输出的中间键值对根据键进行分组,将相同键的值集中在一起,以便进行后续的Reducer处理。
- Reduce阶段:Reducer并行处理经过Shuffle阶段后的中间键值对。
Reducer对每个键的值集合进行聚合操作,得到最终的输出结果。
2. 什么是Spark?它与Hadoop有何不同?Spark是一个快速且通用的大数据处理引擎,与Hadoop相比有以下不同之处:- 数据处理模型:Hadoop使用MapReduce作为编程模型,而Spark则采用了弹性分布式数据集(Resilient Distributed Dataset,简称RDD)来支持更丰富的数据处理模式,如Map、Reduce、Filter、Join等。
- 内存计算:相比Hadoop的磁盘存储和读写,Spark将数据存储在内存中,并利用内存计算加速数据处理过程,提供更高的性能。
- 执行速度:由于数据存储在内存中,Spark能够在迭代计算等需要多次访问数据的场景下显著提高执行速度。
- 多语言支持:Spark支持多种编程语言(如Java、Scala、Python)进行开发,而Hadoop主要使用Java语言。
3. 解释什么是RDD(弹性分布式数据集),并说明其特点和应用场景RDD(Resilient Distributed Dataset)是Spark中的核心抽象数据类型,代表分布式的、只读的、可容错的数据集合。
大数据常见面试题1. 什么是大数据?大数据是指规模庞大、种类繁多的数据集合,无法使用传统的数据处理工具进行处理和管理。
大数据通常具备四个特征,即海量性、高速性、多样性和价值密度低。
2. 大数据的特点有哪些?大数据的特点包括:数据量巨大,存储和处理难度大;数据来源多样,包括结构化数据和非结构化数据;数据生成速度快,需要实时或近实时分析;数据质量不一,存在噪音和异常数据。
3. 大数据的处理流程是什么?大数据处理流程一般包括数据采集、数据存储、数据清洗、数据分析和数据可视化等步骤。
首先,通过各种方式采集数据,包括传感器、日志文件、社交媒体等;然后将数据存储在分布式文件系统或数据库中;接下来,对数据进行清洗和预处理,包括去重、去噪、归一化等;然后通过各种算法和工具对数据进行分析和挖掘;最后,将分析结果以可视化方式展示,帮助决策者理解数据并做出决策。
4. 大数据处理技术有哪些?大数据处理技术包括分布式存储技术、分布式计算技术和数据挖掘技术。
常用的分布式存储技术包括Hadoop、HBase和Cassandra;分布式计算技术包括MapReduce、Spark和Flink;数据挖掘技术包括关联规则挖掘、聚类分析和分类预测等。
5. 大数据与云计算的关系是什么?大数据和云计算密切相关,云计算提供了大数据处理所需的基础设施和资源,并以灵活的方式提供计算和存储能力。
大数据处理通常需要大规模的计算和存储资源,云计算通过虚拟化和自动化技术,提供了弹性扩展和按需付费等优势,满足了大数据处理的需求。
6. 大数据中的数据挖掘有什么应用?在大数据中,数据挖掘可以应用于推荐系统、欺诈检测、舆情分析、市场营销等领域。
通过分析大数据中的模式和趋势,可以挖掘出用户的兴趣和行为,为用户推荐合适的产品或服务;同时,可以通过分析大数据中的异常和风险,及时发现欺诈行为;此外,还可以通过分析社交媒体数据,了解用户的情感和态度,进行舆情监测和品牌管理。
1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。
所以不可能将其完全加载到内存中处理。
考虑采取分而治之的方法。
s 遍历文件a,对每个url求取,然后根据所取得的值将url分别存储到1000个小文件(记为)中。
这样每个小文件的大约为300M。
s 遍历文件b,采取和a相同的方式将url分别存储到1000各小文件(记为)。
这样处理后,所有可能相同的url都在对应的小文件()中,不对应的小文件不可能有相同的url。
然后我们只要求出1000对小文件中相同的url即可。
s 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。
然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。
方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。
将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。
2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。
要求你按照query的频度排序。
方案1:s 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为)中。
这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。
s 找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。
利用快速/堆/归并排序按照出现次数进行排序。
将排序好的query和对应的query_cout输出到文件中。
这样得到了10个排好序的文件(记为)。
s 对这10个文件进行归并排序(内排序与外排序相结合)。
方案2:一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。
这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。
方案3:与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。
3. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。
返回频数最高的100个词。
方案1:顺序读文件中,对于每个词x,取,然后按照该值存到5000个小文件(记为)中。
这样每个文件大概是200k左右。
如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,知道分解得到的小文件的大小都不超过1M。
对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件,这样又得到了5000个文件。
下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。
4. 海量日志数据,提取出某日访问百度次数最多的那个IP。
方案1:首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。
注意到IP是32位的,最多有个IP。
同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。
然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。
5. 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。
方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存内存,还可以接受。
然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。
所描完事后,查看bitmap,把对应位是01的整数输出即可。
方案2:也可采用上题类似的方法,进行划分小文件的方法。
然后在小文件中找出不重复的整数,并排序。
然后再进行归并,注意去除重复的元素。
6. 海量数据分布在100台电脑中,想个办法高校统计出这批数据的TOP10。
方案1:s 在每台电脑上求出TOP10,可以采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。
比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。
最后堆中的元素就是TOP10大。
s 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。
7. 怎么在海量数据中找出重复次数最多的一个?方案1:先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。
然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。
8. 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。
方案1:上千万或上亿的数据,现在的机器的内存应该能存下。
所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。
然后就是取出前N个出现次数最多的数据了,可以用第6题提到的堆机制完成。
9. 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。
请怎么设计和实现?方案1:这题用trie树比较合适,hash_map也应该能行。
10. 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。
方案1:这题是考虑时间效率。
用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度)。
然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(n*lg10)。
所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大的哪一个。
11. 一个文本文件,找出前10个经常出现的词,但这次文件比较长,说是上亿行或十亿行,总之无法一次读入内存,问最优解。
方案1:首先根据用hash并求模,将文件分解为多个小文件,对于单个文件利用上题的方法求出每个文件件中10个最常出现的词。
然后再进行归并处理,找出最终的10个最常出现的词。
12. 100w个数中找出最大的100个数。
方案1:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。
复杂度为O(100w*lg100)。
方案2:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。
复杂度为O(100w*100)。
方案3:采用局部淘汰法。
选取前100个元素,并排序,记为序列L。
然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。
依次循环,知道扫描了所有的元素。
复杂度为O(100w*100)。
13. 寻找热门查询:搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。
假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。
一个查询串的重复度越高,说明查询它的用户越多,也就越热门。
请你统计最热门的10个查询串,要求使用的内存不能超过1G。
(1) 请描述你解决这个问题的思路;(2) 请给出主要的处理流程,算法,以及算法的复杂度。
方案1:采用trie树,关键字域存该查询串出现的次数,没有出现为0。
最后用10个元素的最小推来对出现频率进行排序。
14. 一共有N个机器,每个机器上有N个数。
每个机器最多存O(N)个数并对它们操作。
如何找到个数中的中数?方案1:先大体估计一下这些数的范围,比如这里假设这些数都是32位无符号整数(共有个)。
我们把0到的整数划分为N个范围段,每个段包含个整数。
比如,第一个段位0到,第二段为到,…,第N个段为到。
然后,扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N 个机器上。
注意这个过程每个机器上存储的数应该是O(N)的。
下面我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于,而在第k-1个机器上的累加数小于,并把这个数记为x。
那么我们要找的中位数在第k个机器中,排在第位。
然后我们对第k个机器的数排序,并找出第个数,即为所求的中位数。
复杂度是的。
方案2:先对每台机器上的数进行排序。
排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。
找到第个便是所求。
复杂度是的。
15. 最大间隙问题给定n个实数,求这n个实数在实轴上向量2个数之间的最大差值,要求线性的时间算法。
方案1:最先想到的方法就是先对这n个数据进行排序,然后一遍扫描即可确定相邻的最大间隙。
但该方法不能满足线性时间的要求。
故采取如下方法:s 找到n个数据中最大和最小数据max和min。
s 用n-2个点等分区间[min, max],即将[min, max]等分为n-1个区间(前闭后开区间),将这些区间看作桶,编号为,且桶的上界和桶i+1的下届相同,即每个桶的大小相同。
每个桶的大小为:。
实际上,这些桶的边界构成了一个等差数列(首项为min,公差为),且认为将min放入第一个桶,将max放入第n-1个桶。
s 将n个数放入n-1个桶中:将每个元素分配到某个桶(编号为index),其中,并求出分到每个桶的最大最小数据。
s 最大间隙:除最大最小数据max和min以外的n-2个数据放入n-1个桶中,由抽屉原理可知至少有一个桶是空的,又因为每个桶的大小相同,所以最大间隙不会在同一桶中出现,一定是某个桶的上界和其后某个桶的下界之间隙,且该量筒之间的桶(即便好在该连个便好之间的桶)一定是空桶。
也就是说,最大间隙在桶i的上界和桶j的下界之间产生。
一遍扫描即可完成。
16. 将多个集合合并成没有交集的集合:给定一个字符串的集合,格式如:。