系统仿真概述
- 格式:pdf
- 大小:2.38 MB
- 文档页数:23
系统仿真1系统仿真概述1.1定义及实质所谓系统仿真(system simulation),就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。
系统仿真的实质是①它是一种对系统问题求数值解的计算技术。
尤其当系统无法通过建立数学模型求解时,仿真技术能有效地来处理。
②仿真是一种人为的试验手段。
它和现实系统实验的差别在于,仿真实验不是依据实际环境,而是作为实际系统映象的系统模型以及相应的“人造”环境下进行的。
这是仿真的主要功能。
③仿真可以比较真实地描述系统的运行、演变及其发展过程。
1.2系统仿真的分类根据仿真所采用的模型划分,可将仿真分为数学仿真和物理仿真两大类。
物理仿真亦称为实物仿真,它是在系统生产出样机后,将系统实物全部或部分的引入回路,由于物理仿真能将系统的实际参数、数学仿真中难以考虑到的非线性因素和干扰因素引入仿真回路,因此物理仿真更接近系统的实际情况,通过仿真可以检验实物系统工作的可靠性,可以准确地调整系统元部件的参数。
数学仿真就是将数学模型编排成模拟计算机的排题图或数值计算机的程序。
这一过程是将原始数学模型转换成仿真模型,通过对计算机模型的运行达到对原始系统研究的目的,数学仿真在系统设计阶段和分析阶段是十分重要的,通过数学仿真可以检验理论设计的正确性。
1.3系统仿真的作用①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。
尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。
②对一些难以建立物理模型和数学模型的对象系统,可通过仿真模型来顺利地解决预测、分析和评价等系统问题。
③通过系统仿真,可以把一个复杂系统降阶成若干子系统以便于分析。
④通过系统仿真,能启发新的思想或产生新的策略,还能暴露出原系统中隐藏着的一些问题,以便及时解决。
系统时间响应及其仿真概述系统时间响应是指系统对于输入信号的变化做出的相应。
它描述了系统在时间上的动态特性,包括系统的稳定性、阻尼比、过渡过程等。
在控制系统中,系统时间响应的分析及仿真是非常重要的,它能够帮助工程师评估系统性能,并进行系统设计和调整。
系统时间响应可以通过分析系统的传递函数得到,传递函数是系统输入和输出之间的关系描述。
通过对传递函数的分析,可以获得系统的零点、极点和阻尼比等参数,进而推导出系统的时间响应。
时间响应通常用单位阶跃响应和单位冲激响应来表示。
仿真是对系统时间响应的模拟,在计算机上通过数学模型和仿真工具来模拟系统的动态特性。
仿真可以方便地对系统进行分析、优化和测试,为系统设计和调整提供参考。
在进行系统时间响应的仿真时,一般需要以下步骤:1. 确定系统的传递函数:通过系统的物理特性和传感器的性质,可以得到系统的传递函数。
传递函数的形式可以是标准形式,如一阶、二阶系统,也可以是非线性的。
2. 选择仿真工具:根据实际情况选择适合的仿真工具。
常用的仿真工具有MATLAB/Simulink、LabVIEW等。
3. 建立仿真模型:根据系统的传递函数建立仿真模型。
在仿真模型中,需要包括输入信号、传递函数和输出信号的关系。
4. 设定仿真参数:确定仿真方式、仿真步长和仿真时间等参数,并进行相应的设定。
5. 运行仿真模型:根据设定的参数,运行仿真模型,并获得系统的时间响应结果。
6. 分析仿真结果:根据仿真结果,对系统的时间响应进行分析,评估系统的性能,并进行可能的调整和优化。
通过对系统时间响应的仿真,可以直观地了解系统的动态特性,从而对系统进行设计和调整。
因此,系统时间响应的分析与仿真在控制系统设计和优化中起着重要的作用。
系统时间响应是控制系统中的重要性能指标之一,它描述了系统对输入信号变化的反应情况。
系统的时间响应能够体现系统的稳定性、动态特性以及对不同输入信号的响应速度。
通过对系统时间响应的分析和仿真,可以帮助工程师评估系统性能,并进行系统设计和调整。
sysdesim算例1. sysdesim算例概述1.1 系统仿真的基本概念:- 1.1.1 系统仿真定义:sysdesim(System Design Simulation)是一种通过模拟系统运行过程,评估系统性能和预测行为的方法。
- 1.1.2 仿真对象:在sysdesim中,仿真对象可以是各种系统,包括电子系统、通信系统、交通系统等,用于研究系统的设计和行为。
- 1.1.3 应用领域:sysdesim广泛应用于工程、科学、医学等领域,帮助工程师和研究人员优化系统设计和决策。
1.2 sysdesim算例的目的:- 1.2.1 性能评估:sysdesim算例的主要目的之一是对系统的性能进行评估,包括响应时间、资源利用率、吞吐量等。
- 1.2.2 设计验证:通过sysdesim,设计人员可以验证系统设计的有效性,检查是否满足预定的功能和性能需求。
- 1.2.3 决策支持:sysdesim算例能够为决策提供支持,例如在系统投资、升级或优化方面提供决策依据。
1.3 sysdesim算例的应用范围:- 1.3.1 电子系统设计:在电子系统领域,sysdesim用于验证硬件电路、FPGA设计等,以及评估整体系统的性能。
- 1.3.2 通信网络规划:sysdesim可用于模拟通信网络,评估网络拓扑、流量和延迟,支持网络规划和优化。
- 1.3.3 交通流模拟:在城市规划中,sysdesim可模拟交通流,评估交叉口设计、道路拥堵等情况。
2. sysdesim算例的实施步骤2.1 问题定义与系统建模:- 2.1.1 明确定义问题:在sysdesim算例中,首要任务是明确定义系统的问题和目标,明确仿真的目的。
- 2.1.2 建立系统模型:通过建模工具,将系统抽象为一组组件、输入、输出和其相互关系,构建系统模型。
2.2 参数设置与初始条件:- 2.2.1 设定系统参数:确定sysdesim算例中所用到的系统参数,包括组件特性、初始状态等。
系统仿真技术的介绍(第一章)(一)什么是系统仿真系统仿真技术在国内还是一个新事物,大家不难发现,在5年或者10年前,很少会有人谈到仿真技术,学校也没有这门课程,在网络上搜索,相关的资料也是很少。
可是近2~3年,仿真逐步在国内高校内发展起来,也逐渐在一些世界级的大企业、国家重点单位得到了应用,出现了一部分基于仿真的咨询机构,并且一度海外风险投资基金也欲介入这个潜在的市场。
现在国内在物流、供应链、工业工程等相关的网站、论坛上都能找到系统仿真的踪迹,并且也出现了一些比较有名的仿真论坛,主要有itpub的供应链仿真论坛,道于仿真论坛,还有各大仿真软件公司或者代理开设的专门的讨论区,技术支持区,人气也相当火。
姑且不论我们国内论坛的人气旺盛和实际上仿真技术应用比较低靡的巨大反差,至少也可以说这是一个良好的开端。
系统仿真是工业工程中系统工程的一个小分支,在国外已经有50多年的历史[1955,K.D. Tocher]。
尤其在美国,仿真研究已经广泛应用于企业应用,主要被应用于通讯、制造、服务、卫生、物流和军事等,为这些行业的发展提供了巨大的推动作用。
仿真和虚拟现实,有本质的区别,我们经常听到仿真枪,仿真玩具,还有比如工程仿真软件,这些都是和虚拟现实相关的可视化的设计而已。
美国的仿真著名学者Jerry Banks对系统仿真的定义是:“仿真就是实时地对现实世界的流程和系统的运作进行模拟,仿真包含人为地产生系统的“历史”,并通过观察这些“历史”数据来获得它所代表的现实系统的运作的推断。
仿真是解决很多现实世界问题不可获缺的解决工具。
仿真被用来描述和分析系统的行为,提出关于现实系统的what-if的问题,并帮助现实系统的设计。
现存的系统和概念中的系统都可以用仿真来模拟。
”采用系统仿真的方法和传统方法的区别在于仿真属于预测性技术,在不影响实际系统的情况下通过有目的的选取研究的对象,确定研究范围,抽象系统的本质进行一系列策略和参数的模拟。
系统仿真技术系统仿真技术是一种基于计算机模拟的技术,在工程领域中广泛应用。
它可以用于进行设计、测试、优化等工作,其主要目的是提高效率和降低成本,同时也能减少生产和测试过程中的不确定性。
系统仿真技术的应用范围很广,包括航空、航天、汽车、电力、电子、计算机等众多领域。
这种技术可以模拟实际系统的行为,以便更好地理解和分析各种数据,从而预测系统在各种情况下的响应和行为。
本文将会介绍系统仿真的基本概念、主要步骤、应用领域和技术发展等方面的内容。
一、系统仿真技术的基本概念系统仿真是利用计算机模拟实现对具体系统的分析、优化或者结构设计的过程。
该种技术是运用计算机的处理能力,把对象系统的各种现象、规律以及运用要求放到模拟应用系统中加以模拟和研究,从而研究和改进所要模拟的系统。
而系统仿真的基本概念包括以下几个方面:1. 系统:指被仿真的对象,可以是物理系统、经济系统、管理系统等等。
2. 模型:指对系统中关键部分的描述,可以是数学模型、物理模型、仿真软件等等。
3. 数据:指用来反映系统行为情况的信息,可以是温度、速度、功率等等。
4. 仿真:指基于模型来对系统进行模拟和分析,以寻找出最优解或者做出最优决策的过程。
二、系统仿真技术的主要步骤系统仿真的具体操作过程可以划分为以下四个步骤:1. 问题定义:在解决实际问题的过程中,首先需要明确问题的范围和涵义,确立系统仿真的具体目标。
2. 模型建立:建立好仿真模型是开展仿真工作的重要步骤。
建立好的模型可用于了解系统的各个方面,进而进行解决问题的分析和优化。
3. 数据收集:数据收集是系统仿真的关键环节。
只有收集到有意义的数据,才能对模型进行实验验证、分析和优化。
4. 分析与验证:运行仿真模型并收集数据后,需要进行分析、验证和总结,以确定优化方案,实现仿真目标。
三、系统仿真技术的应用领域1. 航空航天领域:仿真技术可以用来预测飞行器在各种气象条件下的空气动力学和控制性能,为飞行员培训提供训练环境。
系统建模与仿真概述System Modeling and Simulation第一章系统建模与仿真概述主要内容•系统与模型-系统建模-系统仿真•系统建模与仿真技术14系统与模型1.1.1系统1.系统的广义定义:x由相互联系、相互制约、相互依存的若干组成部分(要素)结合起来在一起形成的具有特定功能和运动规律的有机整体。
举例:宇宙世界,原子分子,电炉温度调节系统, 商品销售系统,等等。
例一:电炉温度调节系统例二:商品销售系统经理部[市场部I I采购部仓储部销售部I14系统与模型2系统的特性:1)系统是实体的集合+实体是指组成系统的具体对象例如:电炉调节系统中的比校器、调节器、电炉、温度计。
商品销售系统中的经理、部门、商品、货币、仓库等。
+实体具有一定的相对独立性,又相互联系构成一个整体,即系统。
14系统与模型2)组成系统的实体具有一定的属性属性是指实体所具有的全部有效性,例如状态、参数等。
在电炉温度调芒系统中,温度、温度偏差. 电压等都是属性。
在商品销售系统中,部门的属性有人员的数董、职能范围,商品的属性有生产日期、进货价格.销售日期.售价等等。
X系统处于活动之中+活动是指实体随时间的推移而发生属性变化。
例如: 电炉温度调节系统中的主要活动是控制电压的变化, 而商品销售系统中的主要活动有库存商品数量的变化、零售商品价格的增长等。
14系统当摆型X系统三要素:实体、属性与活动。
系统是在不断地运动、发展、变化的;系统不是孤立存在的;系统边界的划分在很大程度上取决于系统研究的目的。
系统研究:系统分析、系统综合和系统预测O 系统描述:同态、同构+同态:系统与模型之间行为的相似(低级阶段)同构:系统与模型之间结构的相似(高级阶段)同态与同构建模+同构系统:对外部激励具有同样反应的系统十同态系统:两个系统只有少数具有代表性的输入输出相対应14系统与模型——3.系统的分类X按照系统特性分类:+工程系统(物理系统):为了满足某种需要或实现某个预定的功能,采用某种手段构造而成的系统,如机械系统、电气系统等。
第一章控制系统及仿真概述控制系统的计算机仿真是一门涉及到控制理论、计算数学与计算机技术的综合性新型学科。
这门学科的产生及发展差不多是与计算机的发明及发展同步进行的。
它包含控制系统分析、综合、设计、检验等多方面的计算机处理。
计算机仿真基于计算机的高速而精确的运算,以实现各种功能。
第一节控制系统仿真的基本概念1.系统:系统是物质世界中相互制约又相互联系着的、以期实现某种目的的一个运动整体,这个整体叫做系统。
“系统”是一个很大的概念,通常研究的系统有工程系统和非工程系统。
工程系统有:电力拖动自动控制系统、机械系统、水力、冶金、化工、热力学系统等。
非工程系统:宇宙、自然界、人类社会、经济系统、交通系统、管理系统、生态系统、人口系统等。
2.模型:模型是对所要研究的系统在某些特定方面的抽象。
通过模型对原型系统进行研究,将具有更深刻、更集中的特点。
模型分为物理模型和数学模型两种。
数学模型可分为机理模型、统计模型与混合模型。
3.系统仿真:系统仿真,就是通过对系统模型的实验,研究一个存在的或设计中的系统。
更多的情况是指以系统数学模型为基础,以计算机为工具对系统进行实验研究的一种方法。
要对系统进行研究,首先要建立系统的数学模型。
对于一个简单的数学模型,可以采用分析法或数学解析法进行研究,但对于复杂的系统,则需要借助于仿真的方法来研究。
那么,什么是系统仿真呢?顾名思义,系统仿真就是模仿真实的事物,也就是用一个模型(包括物理模型和数学模型)来模仿真实的系统,对其进行实验研究。
用物理模型来进行仿真一般称为物理仿真,它主要是应用几何相似及环境条件相似来进行。
而由数学模型在计算机上进行实验研究的仿真一般则称为数字仿真。
我们这里讲的是后一种仿真。
数字仿真是指把系统的数学模型转化为仿真模型,并编成程序在计算机上投入运行、实验的全过程。
通常把在计算机上进行的仿真实验称为数字仿真,又称计算机仿真。
计算机仿真包括三个基本要素:系统、模型与计算机。
系统级仿真示例-概述说明以及解释1.引言1.1 概述系统级仿真是一种通过模拟和仿真整个系统的方法,旨在准确地预测系统的行为和性能。
系统级仿真可以模拟包括软件、硬件和其他系统组件在内的各种系统,包括电子设备、通信网络和航天器等。
它通过建立模型,使用数学和物理原理,模拟系统中各个组件的交互和行为,从而可以评估系统在不同条件下的性能,优化设计方案,并提前发现潜在问题。
系统级仿真在现代科学和工程领域具有广泛的应用。
在电子设备领域,它可以用于评估电路的信号传输、功耗和热管理等性能,优化电路设计。
在通信网络领域,它可以用于评估网络的吞吐量、时延和容错性能,优化网络拓扑和协议设计。
在航天器设计领域,它可以用于评估航天器的轨道和稳定性,指导设计和操作策略的制定。
系统级仿真的优势在于可以提供全面的系统性能评估,减少实际测试的成本和时间。
它可以模拟不同组件的复杂交互,捕捉系统的细节和动态行为。
同时,系统级仿真还可以提供设计优化的方案,帮助工程师和科学家在设计阶段识别和解决问题,提高产品质量和性能。
然而,系统级仿真也面临着一些挑战。
首先,构建系统模型需要对系统的结构和行为有深入的理解,需要耗费大量的时间和资源。
其次,系统级仿真需要涉及多个层面的模型,包括物理、逻辑和控制层面,需要统一各个模型之间的交互和数据传输。
此外,系统级仿真需要合理选择仿真的精度和规模,以保证结果的准确性和可信度。
总之,系统级仿真在科学和工程领域具有重要的作用。
它可以帮助我们深入理解系统的行为和性能,并为优化设计和决策提供有力的支持。
随着科学技术的不断进步,系统级仿真在未来的发展中将继续发挥重要的作用,并为解决复杂问题和推动科学进步做出贡献。
文章结构部分是对整篇文章的框架进行介绍,让读者了解到接下来的内容有哪些主要部分。
以下是文章结构部分的内容示例:1.2 文章结构本文按照如下结构进行展开:1. 引言:首先介绍系统级仿真的概念、背景和意义,以及本文的目的和主要内容。
仿真简介及其应用11.1 仿真的定义我们这里所述的仿真,并不是针对一些设备的机械的动作的仿真,而是指系统仿真。
系统仿真是评估对象系统(例如制造系统、物流仓储、生产计划等)的整体能力等为目的的一门专业技术。
(备注:计算机没有普及以前, 进行物流系统仿真, 普遍采用数学方法建立数学模型。
)系统仿真的发展基本上是伴随着仿真软件和优化算法的发展而成长的。
而随着技术的发展和成熟,以及与其他信息技术的集成,而这种集成化的仿真技术也是未来发展的主要方向,目前,我们将集成化的系统仿真在制造行业的应用称之为数字工厂。
数字工厂的定义如下:在仿真环境中构建与现实工厂相对应的、完整的数字工厂,实现对实际生产过程的实时动态监测;同时基于仿真分析系统,可实现对规划方案前期的验证和优化,实现生产数据的多维分析,支持资源配置方案评估、多层次计划验证和优化等业务决策。
1.2 仿真的发展仿真,也称为模拟, 通俗来讲, 它就是按照客观的实际情况, 把所要研究的问题或对象构造成模型, 然后在模型上进行实验或试验, 以观察一项设计或计划方案, 在接近于实际的条件下, 其工作或运行情况是否合乎主观的意图或要求, 或者是同时分析比较几个设计或计划方案, 以确定其中哪一个方案更符合主观的意图或要求, 具有更好的技术性能或经济效果, 从而确定选择其中一个较好的设计或计划方案。
仿真技术是在世纪年代末以来, 伴随着计算机技术的发展, 仿真技术最初主要应用于航空、航天、原子反应堆等价格昂贵、周期长、危险性大、实际系统试验难以实现的少数领域, 后来逐步发展到电力、石油、化工、冶金、机械等一些主要工业部门, 并进一步扩大到今天的社会系统、经济系统、交通运输系统等一些非工程系统领域。
现代系统仿真技术和综合性仿真系统已经成为复杂系统, 特别是高技术产业中不可缺少的分析、研究、设计、评价、决策和训练的重要手段, 其应用范围还在不断扩大。
2随着全球范围内市场竞争的加剧,缩短产品的设计周期、生产周期、上市周期,降低开发成本已成为企业追逐的目标。