北京大2013秋2014学期期末考试重点复习
- 格式:doc
- 大小:63.00 KB
- 文档页数:11
1.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,数字0.00000156用科学记数法表示为A .-50.15610⨯B .-61.5610⨯C .-71.5610⨯D .-715.610⨯ 2.下面四个图案中,是轴对称图形的是A B C D 3.下列计算正确的是A .-1-32a a a ÷=B .0103()=C .532)(a a =D . -21124=()4.下列分式中,无论x 取何值,分式总有意义的是A .211x + B .21x x + C .311x - D .5x x- 5.如图,在△ABC 中,∠A =45°,∠C =75°,BD 是△ABC 的角平分线,则∠BDC 的度数为 A .60° B .70° C .75° D .105°6.若分式2a a b+中的 a ,b 都同时扩大2倍,则该分式的值A .不变B .扩大2倍C .缩小2倍D .扩大4倍7.下列各式中,从左到右的变形是因式分解的是A .3353()5x y x y +-=+-B .2(1)(1)1x x x +-=-C .24+44(1)x x x x =+ D .725632x x x =⋅8.用一条长为16cm 的细绳围成一个等腰三角形,若其中有一边的长为4cm ,,则该等腰三角形的腰长为A .4cmB .6cmC .4cm 或6cmD .4cm 或8cm 二、填空题(每小题3分,共18分) 9.计算2144()x y x ⋅-= .B10.如果一个多边形的内角和是外角和的3倍,则这个多边形边数为 .11.如图,AB+AC =7,D 是AB 上一点,若点D 在 BC 的垂直平分线上,则△ACD 的周长为.第11题 第12题12. 如图,AC =AD ,∠1=∠2,只添加一个条件使△ABC ≌△AED ,你添加的条件是 .13.分解因式22(2)a b b +-= .14. 在△ABC 中,∠A =120°,AB=AC =m ,BC =n ,CD 是△ABC 的边AB 的高,则△ACD 的面积为 (用含m ,n 的式子表示).三、解答题(15-19题每小题4分,20题5分,21-22题每小题6分,23-25题每小题7分,共58分)15.如图,ABC △中,AD ⊥BC 于点D ,AD =BD ,C ∠=65°,求∠BAC 的度数.16.计算 11(1)1a a a a-++⋅-.17.如图,AB ⊥BE ,DE ⊥BE ,垂足分别为B ,E ,点C ,F 在BE 上,BF =EC ,AC = DF .BE求证∠A =∠D .18.先化简,再求值:()()()2x y x y x x y +---,其中13x =,3y =.19.分解因式22396a b ab b ++.20.如图,DE ∥AB ,DF ∥AC ,与AC ,AB 分别交于点E ,F .(1) D 是BC 上任意一点,求证DE =AF .B(2) 若AD 是△ABC 的角平分线,请写出与DE 相等的所有线段 .21.解方程 212+121x x x x +=++.22.如图,D 为AB 的中点,点E 在AC 上,将△ABC 沿DE 折叠,使点A 落在BC 边上的点F 处. 求证EF=EC .B23.列分式方程解应用题为提升晚高峰车辆的通行速度,北京市交通委路政局积极设置潮汐车道,首条潮汐车道于2013年9月11日开始启用,试点路段为京广桥至慈云寺桥,全程约2.5千米.该路段实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度平均提高了25%,行驶时间平均减少了1.5分钟.该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶多少千米?24.在平面直角坐标系xoy中,等腰三角形ABC的三个顶点A(0,1),点B在x轴的正半轴上,∠ABO=30°,点C在y轴上.(1)直接写出点C的坐标为;(2)点P关于直线AB的对称点P′在x轴上,AP=1,在图中标出点P的位置并说明理由;(3)在(2)的条件下,在y轴上找到一点M,使PM+BM的值最小,则这个最小值为.25.解决下面问题:如图,在△ABC 中,∠A 是锐角,点D ,E 分别在AB , AC 上,且12DCB EBC A ∠=∠=∠,BE 与CD 相交于 点O ,探究BD 与CE 之间的数量关系,并证明你的结论.小新同学是这样思考的:在平时的学习中,有这样的经验:假如△ABC 是等腰三角形,那么在给定一组对应条件,如图a ,BE ,CD 分别是两底角的平分线(或者如图b ,BE ,CD 分别是两条腰的高线,或者如图c ,BE ,CD 分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.图a图b 图c请参考小新同学的思路,解决上面这个问题..北京市朝阳区2013~2014学年度八年级第一学期期末检测数学试卷参考答案及评分标准2014.1D BB BC B C B一、选择题(每小题3分,共24分)二、填空题(每小题3分,共18分)三、解答题(15-19题每小题4分,20题5分,21-22题每小题6分,23-25题每小题7分,共58分)15904521801804565704AD BC BDA AD BD B BAD BAC B C⊥∴∠=︒=∴∠=∠=︒⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅∴∠=︒-∠-∠=︒-︒-︒=︒⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.解:..Q Q ,,.分分22(1)(1)11=11111211631.1a a a a a a a a a a a a aa +-+-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--+-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.解:原式分分分4⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分 17.,..1,,Rt Rt Rt Rt .3.4BF EC BF FC EC FC BC EF AB BE DE BE ABC DEF AC DF BC EFABC DEF A D =∴+=+=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⊥⊥=⎧⎨=⎩∴≅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅∴∠=∠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅Q Q V V V V 证明:即分在和中分分C F()2222218.()()2=22231,331=23337.4x y x y x x y x y x xy xy y x y +-----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==⨯⨯-=-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅解:分分当时,原式分222=(96)2(3)149..b a ab b b a b ++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅解:原式分分20.(1)证明:连接AD .∵DE ∥AB ,∴∠F AD =∠EDA . ∵DF ∥AC ,.,.2.3(2)(.5EAD FDA AD DA AFD DEA DE AF AF AE FD ∴∠=∠=∴≅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅∴=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅Q V V 分分,,说明:每少一个扣1分)分212121.2.1(1),1+2(1)(21).21.41,(1)0x x x x x x x x x x x x x x ++=++++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-+=解方程解:方程两边乘得分解得分检验:当时,因此15.6x =-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅不是原分式方程的解.分所以,原分式方程无解分22.,1 2..3.21231.3ADE FDE BD AD DF B ADF B B ≅∴∠=∠∴==∴∠=∠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅∠=∠+∠=∠+∠∴∠=∠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅证明:由题意可知,分又,分V V Q∴DE ∥AB .BB54656,4..6C C EF EC ∴∠=∠∠=∠∠=∠∴∠=∠∴=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅Q ,.又分23.11.5=402.5 2.513(125%)402.521,4020.x x x x x x -=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+-==⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅解:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶千米.分钟小时,根据题意,得分整理,得解得520,400.20.6207x x x ⋅⋅⋅⋅⋅⋅⋅⋅⋅=≠=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分检验:当时所以,原分式方程的解为分答: 该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶千米.分24.(1)(0,3),(0,-1). ………………… …2分(2) 如图,连接BC ,过点A 作垂足P 即为所求....理由:根据题中条件,可知∠所以,直线AB 是∠CBO∠CBO 的一边OB 所在的直线x ∠CBO 的另一边BC 所在的直线上.根据角平分线的性质,过点A 作AP ⊥AP=AO 此时直线BC 上其它点与点A 即大于1,所以只有垂足P 为所求.25...2,..BD CE OD OF OE DCB EBC OB OC BOF COE OBF OCE ==⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅∠=∠∴=∠=∠∴≅证明:如图,在上截取分,Q Q V V 3.4.1,2.BF CE FBO ECO EBC OCB A DFB FCB FBC FBO EBC DCB FBO A ∴=∴∠=∠∠=∠=∠∴∠=∠+∠=∠+∠+∠=∠+∠分分Q B13-14学年第石景山区2013—2014学年第一学期期末考试试卷初二数学一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确选项前的字母填在题后括号内) 1.16的算术根是( ).A .4B .4-C .4±D .8±2有意义,则x 的取值范围是( ). A .1x >B .1x ≥C .1x ≥且32x ≠D . 1x >且32x ≠ 3.下列图形不是..轴对称图形的是( ). A .线段 B .等腰三角形C .角D .有一个内角为60°的直角三角形 4.下列事件中是不可能事件的是( ).A .随机抛掷一枚硬币,正面向上.B .a 是实数,a =-.C .长为1cm ,2cm ,3cm 的三条线段为边长的三角形是直角三角形.D .小明从古城出发乘坐地铁一号线去西单图书大厦.5. 初二年级通过学生日常德育积分评比,选出6位获“阳光少年”称号的同学.年级组长李老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小君等6位同学.这些奖品中3份是学习文具,2份是体育用品,1份是科技馆通票.小君同学从中随机取一份奖品,恰好取到体育用品的可能性是( ).A.16 B .13 C. 12 D. 236.有一个角是︒36的等腰三角形,其它两个角的度数是( ).A. ︒︒108,36B.︒︒72,36 C. ︒︒72,72 D. ︒︒108,36或︒︒72,727.下列四个算式正确的是().A.B.C=D.-8.如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB =4, AC=3,则△ADF周长为().A.6B.7C.8D.109.如图,滑雪爱好者小明在海拔约为121米的B处乘雪橇沿30°的斜坡下滑至A处所用时间为2秒,已知下滑路程S(米)与所用时间t(秒)的关系为210S t t=+,则山脚A处的海拔约为(). ( 1.7≈)A.100.6米B.97米C.109米D.145米10.如图,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,点E、F、M、N是AD 上的四点,则图中阴影部分的总面积是().A.6 B.8 C.4 D.12二、填空题(本大题共6个小题,每小题4分,共24分,把答案填在题中横线上)11.约分:22515mnm n-=_____________.12.若整数p满足:⎪⎩⎪⎨⎧-<<.12,72ppp则p的值为_________.13. 若分式55qq-+值为0,则q的值是________________.14.如图,在正方形网格(图中每个小正方形的边长均为1)中,△ABC的三个顶点均在格点上,则△ABC的周长为_________________,面积为____________________.15.如图,在Rt△ABC中,∠C=90°,AC= BC,将其绕点A逆时针旋转15°得到Rt△''AB C,''B C交AB于E,若图中阴影部分面积为'B E的长为.16.在Rt△ABC中,∠C=90°,BC=8cm,AC=4cm,在射.线.BC上一动点D,从点B匀速运动,若点D运动t秒时,以A、D、B为顶点的三角形恰为等腰三角形,则所用时间t为秒.(结果可含根号).三、解答题(本大题共4个小题,每小题5分,共20分)DC第8题第9题第10题AB第15题17.计算:()213.142π-⎛⎫--- ⎪⎝⎭解:18.解方程:238111x x x +-=--. 解:19. 解:20.先化简,再求值已知:23x y =,求222569222y x xy y x y x y x y ⎛⎫-+--÷⎪--⎝⎭的值. 解:四、列方程解应用题(本题5分)21. 据报道,2013年11月8日超强台风“海燕”在菲律宾中部萨马省登陆,给菲律宾造成巨大经济财产损失.中国政府伸出援助之手,捐款捐物.某地决定向灾区捐助帐篷.记者采访了某帐篷制造厂如何出色完成任务.下面是记者与工厂厂长的一段对话:根据记者与厂长的一段对话,请求出原计划每天加工多少顶帐篷. 解:五、解答题(本大题共3个小题,每题5分共15分)22.已知:如图,E 、F 为BC 上的点,BF=CE ,点A 、D 分别在BC 的两侧,且AE ∥DF ,AE =DF . 求证:AB =DC . 证明:23. 已知:如图,△ABC 是等边三角形. D 、E 是△ABC 外两点,连结BE 交AC 于M ,连结AD 交CE 于N ,AD 交BE 于F ,AD =EB . 当AFB ∠度数多少时,△ECD 是等边三角形?并证明你的结论.解:当AFB ∠=__________时,△ECD 是等边三角形. 证明:C24. 已知:在△ABC 中,24=AB ,5AC =,oABC 45=∠,求BC 的长.解:六、几何探究(本题6分)25.如图1,在△ABC 中,∠ACB =2∠B ,∠BAC 的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l ⊥AO 于H ,分别交直线AB 、AC 、BC 、于点N 、E 、M . (1)当直线l 经过点C 时(如图2),求证:BN =CD ;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.(1)证明:图1B 图2B(2)当M 是BC 中点时,CE 和CD 之间的等量关系为_________________________. 证明:(3)请你探究线段BN 、CE 、CD 之间的等量关系, 并直接写出结论.七、选作题 26. 如图,在△ABC 中,AB =AC ,108A ∠=°,请你在图中,分别用两种不同方法,将△ABC 分割成四个小三角形,使得其中两个是全等..的不.等边三角形.....(不等边三角形指除等腰三角形以外),而另外两个是不全等...的等腰三角形.请画出分割线段,并在两个全等三角形中标出一对相等的内角的度数,在每个等腰三角形中标出相等两底角度数(画图工具不限,不要求证明,不要求写出画法,但要保留作图痕迹,若经过图形变换后两个图形重合,则视为同一种方法).备用图图1图2B B石景山区2013-2014学年度第一学期期末考试初二数学答案及评分参考阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.二、填空题(本题共6道小题,每小题4分,共24分)11.3nm-; 12.3; 13.5; 14.36;(各2分)15.2; 16答对一个2分,答对两个3分,答对3个4分) 三、解答题(本题共4个小题,每小题5分,共20分)17. 解:原式=14-………………………………………………………4分=3--………………………………………………………………5分 18. 解:2(3)(1)81x x x ++-=- …………………………………………………1分 224381x x x ++-=- …………………………………………………2分 44x = …………………………………………………3分 1x = ………………………………………………………4分经检验:1x =是原方程的增根,所以原方程无解 ……………………………5分19. 解:原式 …………………………………………3分…………………………………………4分……………………………………………………5分20. 解:原式=()()()22225213x y x y y x yx y +-⎡⎤-⨯⎢⎥--⎣⎦…………………………………………1分=()()()()22522223y x y x y x y x y x y -+--⋅-- = ()22293y x x y -- …………………………………………………………………2分=33y xy x +- ……………………………………………………………………3分 解法一:∵23x y =,不妨设()2,30x k y k k ==≠ …………………………………4分∴原式=9292k k k k +- =117 ………………………………………5分解法二:3333x y x y xy x y++=-- ………………………………………4分∵23x y =∴原式=231132733+=- ………………………………………5分 (阅卷说明:如果学生直接将2,3x y ==代入计算正确者,本题扣1分)四、列方程解应用题(本题5分)21. 解:设原计划每天加工x 顶帐篷. ……………………………………………………1分1500300150030042x x---= …………………………………………………2分 解得 150x = ………………………………………………………………3分 经检验,150x =是原方程的解,且符合题意. ………………………………4分答:原计划每天加工150顶帐篷.……………………………………………………5分 五、解答题(本大题共3个小题,每题5分,共15分) 22.证明:∵AE ∥DF ,∴∠AEB =∠DFC . …………………………………………………………1分 ∵BF =CE , ∴BF +EF =CE +EF .即BE =CF . …………………………2分在△ABE 和△DCF 中,AE DF AEB DFC BE CF =⎧⎪∠=∠⎨⎪=⎩………………………………………………………3分 C∴△ABE ≌△DCF ………………………………………………………4分 ∴AB =DC ………………………………………………………5分23. 解:AFB ∠=60° ………………………………………………………………1分 证明:∵△ABC 是等边三角形∴CA =CB ,4∠=60° …………………………………………………………2分 ∵∠2+∠4=∠5∠1+∠3=∠5 且∠3=60° ∴∠1=∠2 ………………………………3分又∵BE =AD ∴△BCE ≌△ACD (SAS ) ∴CE =CD ,∠BCE =∠ACD 4分 ∴∠BCE -∠6=∠ACD -∠6 即∠4=∠7=60°∴△ECD 是等边三角形 ………………………………………………5分 24. 解:分类讨论(1)如图,过A 作AD ⊥BC 交BC (延长线)于D ,………………………1分 ∴∠D =90°, ∴在Rt △ABD 中,∠B +∠BAD =90°, ∴∠BAD =45° ∴DA DB =,又∵222AB DB DA =+,不妨设x DB DA == 则3222=+x x ,解得4=x ,∴DA =DB =4 ……………………………2分∵∠D =90°,∴在Rt △ACD 中,222AC DA DC =+3452222=-=-=AD AC CD ……………………………3分∴BC =BD -CD =4-3=1 ……………………………4分 (2)如图:由(1)同理:DB =4,CD =3 ∴BC =BD +CD =4+3=7.综上所述:BC =1或BC =7 ……………………………5分 (阅卷说明:只计算出一种情况,本题得4分) 六、几何探究(本题6分) 25. (1)证明:连结ND∵AO 平分BAC ∠,∴12∠=∠ ∵直线l ⊥AO 于H , ∴4590∠=∠=︒∴67∠=∠ ∴AN AC =∴NH CH =∴AH 是线段NC 的中垂线 ∴DC DN = ∴98∠=∠∴AND ACB ∠=∠∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3∠=∠B ∴DN BN =∴BN DC = ……………………………………………………………………2分lD C 'C B A(2)当M BC 是中点时,CE 和CD 之间的等量关系为2CD CE =证明:过点C 作'CN AO ⊥交AB 于'N由(1)可得'BN CD =,',AN AC AN AE == ∴43∠=∠,'NN CE =过点C 作CG ∥AB 交直线l 于点G ∴42∠=∠,1B ∠=∠ ∴23∠=∠∴CG CE = ∵M BC 是中点, ∴BM CM = 在△BNM 和△CGM 中, 1,,,B BM CM NMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BNM ≌△CGM ∴BN CG = ∴BN CE =∴''2CD BN NN BN CE ==+= …………………………………………4分 (3)BN 、CE 、CD 之间的等量关系:当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-………………………………6分 (阅卷说明:三种情况写对一个给1分,全对给2分)七、选作题 26.平谷区2013~2014学年度第一学期期末质量监控试卷初 二 数 学下列每小题的四个选项中,只有一个是正确的. 1.AB. C .D .2 2.下列二次根式中,最简二次根式是ABCD 3.下列事件中是确定事件的是A .篮球运动员身高都在2米以上B .弟弟的体重一定比哥哥轻C .今年春节一定是晴天D .吸烟有害身体健康 4.下列图形是轴对称图形的是5.分式21a +有意义,则a 的取值范围是 A .0a = B .1a = C . 1a ≠- D . 0a ≠6.下列计算正确的是A=B6=C=D 4=7.如图,ABC △沿AB 向下翻折得到ABD △,若30ABC ∠=︒100ADB ∠=︒,则BAC ∠的度数是 A . 100° B .30°C . 50°D . 80°8.分别标有数字01213--,,,,,的五张卡片,除数字不同外他均相同,从中任抽一张,那么抽到负数的可能性是A .15 B .25 C .35 D .459.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是A .13B .17C .22 17或22 A7题图10.如图,长方体AB =3,BC =5,AF =6,要在长方体上系一根 绳子连结AG ,绳子与DE 交于点P ,当所用绳子的长最短 时,AG 的长为 A .10 BC .8D .254二、填空题(本题共20分,每小题4分)11.x 的取值范围是________.12.若30a -=,则a b += . 13. 化简:11a a a-+= . 14.一个直角三角形的两条直角边长分别为3,4,则第三边为 .15.如图,ACD ∠是ABC △的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A .设A θ=∠.则 (1)1A ∠=_____________; (2)2A ∠=_____________; (3)n A ∠=_____________.三、解答题(本题共30分,每小题5分)16.计算:()04(1)22014-+-+.17.计算:2+18.化简:2221211x x x x x x--+÷+-. 19. 已知:如图,点B 、F 、C 、E 在一条直线上,∠A =∠DAC =DF ,且AC ∥DF .求证:AB=DE .20.解方程:21422x x x-+=--. 21.先化简,再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中2a a -四、解答题(本题共12分,每小题6分)B22.已知:如图,在△ABC 中,90C ∠=︒,BD 平分ABC ∠交AC 于点D ,30A ∠=︒. (1)求证:AD =BD ; (2)过D 作DE ⊥AB 于E ,CD =4, AB 边上有一点且4DEF S ∆=,求AF 的长.23.为响应低碳号召,刘老师上班的交通工具由自驾车改为骑自行车,刘老师家距学校15千米,因为自驾车的速度是自行车速度的3倍,所以刘老师每天比原来早出发40分钟,才能按原来时间到校,刘老师骑自行车每小时走多少千米?五、解答题(本题共18分,每小题6分)24.图①、图②、图③都是44⨯的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个网格中标注了5个格点.按下列要求画图: (1)在图①3中以格点为顶点各画一个等腰三角形,使其内部已标注的格点只有..3个; (2)在图②中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有..3个,且边长为无理数(与图①不同);(3)在图③中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有..4个.25.已知:如图(1),在ABC △中 ,AB AC =,90BAC ∠=°,D E 、分别是AB AC、边的中点,将ABC △绕点A 顺时针旋转α角(0180α<<°°),得到AB C ''△(如图(2)).(1)探究DB '与EC '的数量关系,并给予证明;(2)当旋转角60α=°时,猜想DB '与AE 的位置关系并说明理由.26.已知:如图(1),在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m , CE ⊥24题图① 24题图② 24题图③ 25题图1 22题图直线m ,垂足分别为点D 、E .证明:DE =BD +CE .小聪同学的思路是:通过证明BDA AEC ∆≅∆,得出DA =EC ,AE =BD ,从而证得DE =BD +CE . 请你参考小聪同学的思路,探究并解决下列问题:(1) 如图(2),将已知中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =120°.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(2) 拓展与应用:如图(3),D 、E 是过点A 的直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.平谷区2013~2014学年度第一学期末初二数学答案及评分参考一 、选择题(本题共40分,每小题4分)二、填空(本题共20分,每小题4分)11.2x ≥; 12.1; 13.1; 14.5; 15.(1)2θ;………………………………………………………………………………1分 (2) 4θ;………………………………………………………………………………2分(3)2n θ.………………………………………………………………………………4分三、解答题(本题共30分,每小题5分)16.解:原式=121++………………………………………………………………4分=5分17.解:原式=22-+分=23-+4分 =5………………………………………………………………………………5分18.解:原式=2(1)(1)(1)1(1)x x x x x x +--⋅+- ……………………………………………………4分 =x . ……………………………………………………………………………5分19.证明:∵ AC ∥DF∴ ∠ACB =∠DFE ……………………………………………………………………………1分 又∵ ∠A =∠DAC =DF ……………………………………………………………………………………3分 ∴ △ABC ≌△EDF . ……………………………………………………………………………4分 ∴AB=DE ………………………………………………………………………………………5分 20.解:21422x x x --=---…………………………………………………………………1分 21422x x x -+=---…………………………………………………………………2分 342xx -=-- ()342x x -=--…………………………………………………………3分348x x -=-+ 35x =53x = ……………………………………………………………4分经检验:53x =是原方程的解.………………………………………………………………5分 所以原方程的解是53x =.21.解:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭=22(1)(1)21111a a a a a a a --+-⎛⎫÷- ⎪-++⎝⎭…………………………………………………………1分 =22212111a a a a a ---+÷-+………………………………………………………………………2分 =21(1)(1)(2)a a a a a a -+⋅+--=1(1)a a -=21a a-…………………………………………………………………………………………3分∵260a a --=∴26a a -=……………………………………………………………………………………4分 ∴2116a a =- (5)四、解答题(本题共12分,每小题6分) 22.解:(1)∵90C ∠=︒,30A ∠=︒∴60ABC ∠=︒…………………………………1分 ∵BD 平分ABC ∠∴30ABD CBD ∠=∠=︒ ……… ……………2分 ∴30A ABD ∠=∠=︒∴AD =BD …………………………………………3分 (2)∵BD 平分ABC ∠,DE AB ⊥于E∴CD =DE =4 ………………………………………4分 ∵114422DEFS DE EF EF ∆=⋅=⨯⋅= ∴EF =4在Rt ADE ∆中,30A ∠=︒, DE =4∴AE =∴AF=22或(每个答案1分)………………………………………6分23.解:设刘老师骑自行车每小时走x 多少千米,则自驾车每小时走3x 千米.……1分 根据题意,得154015603x x-=…………………………………………………………………3分 解方程,得15x =……………………………………………………………………4分经检验:15x =是原方程的解,且符合题意.……………………………………………5分 答:刘老师骑自行车每小时走15千米.……………………………………………………6分 五、解答题(本题共18分,每题6分) 24.解:答案不惟一. 每图2分.(1)(2)22题图(3)25.(1)DB EC ''=…………………………………………………………………………1分 证明:D E ,分别是AB AC ,的中点,1122AD AB AE AC ∴==,.………………………………………………………………2分 AB AC AD AE =∴= ,.B AC '' △是BAC △顺时针旋转得到.EAC DAB AC AC AB AB α''''∴∠=∠====, ADB AEC ''∴△≌△DB EC ''∴=.……………………………3分(2)猜想: DB AE '∥……………………4分延长AE 使AE=EF ,连接FC '……………5分∴AC AF '=∵60α=°∴AFC '∆是等边三角形∴C E AF '⊥,即90AEC '∠=︒由ADB AEC ''△≌△,得90ADB AEC ''∠=∠=︒∴90ADB DAE '∠=∠=︒∴DB AE '∥………………………………………………………………………………6分 26.证明: (1)∵∠BDA =∠BAC =120︒,26题图3∴∠DBA+∠BDA=∠CAE +∠BAC ∴∠DBA=∠CAE ……………………1分 ∵∠BDA =∠AEC=120︒,AB =AC ∴△ADB ≌△CEA ……………………3分 ∴AE =BD ,AD =CE∴DE =AE +AD =BD +CE ………………4分 (3)由(1)知,△ADB ≌△CEA , BD =AE ,∠DBA =∠CAE ∵△ABF 和△ACF 均为等边三角形 ∴∠ABF =∠CAF=60°∴∠DBA+∠ABF =∠CAE+∠CAF ∴∠DBF =∠F AE ∵BF =AF∴△DBF ≌△EAF ……………………5分 ∴DF =EF ,∠BFD =∠AFE∴∠DFE =∠DF A +∠AFE =∠DF A +∠BFD =60° ∴△DEF 为等边三角形.………………6分丰台区2013—2014学年第一学期期末练习初 二 数 学 2014.01一、选择题(本题共30分,每小题3分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1. 有意义,那么x 的取值范围是A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥ 2. 剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是..轴对称图形的是EA 26题图2EA 26题图3A B C D3. 9的平方根是A.3 B.±3 C.D.814. 下列事件中,属于不确定事件的是A.晴天的早晨,太阳从东方升起B.一般情况下,水烧到50°C 沸腾C.用长度分别是2cm,3cm,6cm的细木条首尾相连组成一个三角形D.科学实验中,前100次实验都失败,第101次实验会成功5. 如果将分式2xx y+中的字母x与y的值分别扩大为原来的10倍,那么这个分式的值A.不改变B.扩大为原来的20倍C.扩大为原来的10倍D.缩小为原来的1106. 如果将一副三角板按如图方式叠放,那么∠1等于A.120°B.105°C.60°D.45°7. 计算32ab(-)的结果是A.332ab- B.336ab- C.338ab- D.338ab8. 如图,在△ABC中,∠ACB=90°, CD⊥AB于点D,如果∠DCB=30°,CB=2,那么AB的长为A.B.C. 3D.49.下列计算正确的是A. =B.C. 6=D. 4=10. 如图,将ABC△放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C160°45°DCA恰好在网格图中的格点上,那么ABC △中BC 边上的高是 A.B.C.D.二、填空题(本题共18分,每小题3分) 11. 如果分式14x x --的值为0,那么x 的值是_________. 12._________. 13. 在-1,0π,13这五个数中任取一个数,取到无理数的可能性是_________. 14. 如图,ABC △中,90C ∠=,BD 平分ABC ∠交AC 于点D ,如果CD =6cm ,那么点D 到AB 的距离为_________cm.15. 如图,△ABC 是边长为2的等边三角形,BD 是AC 边上的中线,延长BC 至点E ,使CE =CD ,联结DE ,则DE 的长是 .那么第5行中的第2个数是 ,第n (1n >,且n 是整数)行的第2个数是 .(用含n 的代数式表示)三、解答题(本题共20分,每题5分) 17. 2.18. 计算:2121.224a a a a a --+÷--19. 解方程:11322x x x-+=--.BC DE A B D20. 已知:如图,点B ,E ,C ,F 在同一条直线上, AB ∥DE ,AB =DE ,BE=CF . 求证:AC =DF .四、解答题(本题共11分,第21题5分,第22题6分) 21. 已知30x y -=,求22(+)+2x yx y x xy y -+ 的值.22. 列方程解应用题:学校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要22.4万元,购买B 型计算机需要24万元.那么一台A 型计算机的售价和一台B 型计算机的售价分别是多少元?五、解答题(本题共21分,每小题7分)23. 已知:如图,△AOB 的顶点O 在直线l 上,且AO =AB .(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下, AC 与BD 的位置关系是 ;(3)在(1)、(2)的条件下,联结AD ,如果∠ABD =2∠ADB ,求∠AOC 的度数.24. 我们知道,假分数可以化为整数与真分数的和的形式.例如:32=112+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…E A C DB FBAOl这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111x x x x x x x x +-==+=+-----(-)+;22442(2)4422222x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.25. 请阅读下列材料:问题:如图1,△ABC 中,∠ACB =90°,AC =BC ,MN 是过点A 的直线,DB ⊥MN 于点D ,联结CD .求证:BD + AD.小明的思考过程如下:要证BD + AD,需要将BD ,AD 转化到同一条直线上,可以在MN 上截取AE =BD ,并联结EC ,可证△ACE 和△BCD 全等,得到CE =CD ,且∠ACE =∠BCD ,由此推出△CDE 为等腰直角三角形,可知DE,于是结论得证.小聪的思考过程如下:要证BD + AD,需要构造以CD 为腰的等腰直角三角形,可以过点C 作CE ⊥CD 交MN 于点E ,可证△ACE 和△BCD 全等,得到CE =CD ,且AE =BD ,由此推出△CDE 为等腰直角三角形,可知DE,于是结论得证.请你参考小明或小聪的思考过程解决下面的问题:(1) 将图1中的直线MN 绕点A 旋转到图2和图3的两种位置时,其它条件不变,猜想BD ,AD ,CD 之间的数量关系,并选择其中一个图形加以证明;ACBNDM E图1(2) 在直线MN绕点A旋转的过程中,当∠BCD=30°,BDCD=__________.M DNBCA图2BCNMDA图3丰台区2013-2014学年度第一学期期末练习初二数学评分标准及参考答案17 18.195分分2分3分4分5分22分=x y x y-+. ……2分 ∵30x y -=,∴=3x y . ……3分∴原式=33y yy y-+. ……4分=12. ……5分22.解:设一台A 型计算机的售价是x 元,则一台B 型计算机的售价是(x +400)元.根据题意列方程,得 ……1分224000240000400x x =+ ……3分 解这个方程,得5600x = ……4分 经检验,5600x =是所列方程的解,并且符合实际问题的意义. ……5分 当5600x =时,+4006000x =.答:一台A 型计算机的售价是5600元,一台B 型计算机的售价是6000元. ……6分五、解答题(本题共21分,每小题7分) 23.(1)如图1.……1分 (2)平行. ……2分 (3)解:如图2,由(1)可知,△AOB 与△COD 关于直线l 对称, ∴△AOB ≌△COD .……3分∴AO =CO ,AB = CD ,OB = OD ,∠ABO =∠CDO . 图1 图2 ∴∠OBD =∠ODB . ……4分∴∠ABO+∠OBD =∠CDO+∠ODB ,即∠ABD =∠CDB .∵∠ABD =2∠ADB ,∴∠CDB =2∠ADB .∴∠CDA =∠ADB .……5分由(2)可知,AC ∥BD ,∴∠CAD =∠ADB .∴∠CAD =∠CDA ,∴CA = CD .……6分 ∵AO = AB ,∴AO = OC = AC ,即△AOC 为等边三角形. ∴∠AOC = 60°. ……7分 24.解:(1)12x x -+()232x x +-=+ ……1分2232x x x +=+-+ ……2分312x+=-. ……3分(2)2211x x --22211x x -+=- ()()21111x x x +-+=-()1211x x =++-. ……5分 ABCDOllODCB A∵分式的值为整数,且x为整数,x-=±,∴x=2或0.……7分∴1125.解:(1)如图2,BD -AD……1分如图3,AD -BD……2分证明图2:( 法一)在直线MN 上截取AE =BD ,联结CE .设AC 与BD 相交于点F ,∵BD ⊥MN ,∴∠ADB =90°,∴∠CAE+∠AFD =90°.∵∠ACB =90°,∴∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠ACE =∠BCD .∴∠ACE -∠ACD =∠BCD -∠ACD ,即∠2=∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠2=90°. ∵∠ACB =90°,∴∠2+∠ACD =∠ACB+∠ACD , 即∠ACE =∠BCD .设AC 与BD 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠CAE+∠AFD =90°,∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD . ……5分 证明图3:( 法一)在直线MN 上截取AE =BD ,联结CE . 设AD 与BC 相交于点F ,∵∠ACB =90°,∴∠2+∠AFC =90°. ∵BD ⊥MN ,∴∠ADB =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠1=∠4.∴∠1+∠BCE =∠4+∠BCE ,即∠ECD =∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE .……4分F12图2A C BND ME FE M DNBC A 图221E BCN M DA 图3123F 4∵DE = AD -AE = AD -BD ,∴AD -BD. ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠DCE =90°. ∵∠ACB =90°,∴∠ACB -∠ECB = ∠DCE -∠ECB ,即∠1=∠4. 设AD 与BC 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠2+∠AFC =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=, ∴222CD DE = ,即DE.……4分∵DE = AD -AE = AD -BD ,∴AD -BD. ……5分 (21 . ……7分昌平区2013-2014学年第一学期初二年级期末质量抽测数学试卷 (120分,120分钟) 2014.1一、选择题(共8道小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个是符合题意的. 1.下面所给的图形中, 不是轴对称图形的是ABCD2.下列运算正确的是A .236x x x =÷ B .()523x x = C .()22263y x xy = D . 24322y x xy y x =⋅3.点P (2,-3)关于y 轴的对称点是 A .(2,3) B .(2,-3) C .(-2,3) D .(-2,-3) 4.下列各式由左边到右边的变形中,属于分解因式的是4F 321 图3A DM N CBEA .b a b a 33)(3+=+B .9)6(962++=++x x x x C .)(y x a ay ax -=- D .22(2)(2)a a a -=+- 5. 若分式21-+x x 的值为0,则x 的值为 A .﹣1 B .0 C .2 D .﹣1或26. 下列各式中,正确的是A . 22x y x y-++=- B .222()x y x y x y x y --=++ C .1a b b ab b ++= D . 23193x x x -=-- 7. 如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于点D . 若BC =4cm ,BD=5cm ,则点D 到AB 的距离是A .5cmB .4cmC .3cmD .2cmCDBA8.如图,从边长为a +1的正方形纸片中剪去一个边长为a ﹣1的正方形(a >1),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),则该矩形的面积是二、填空题(共4道小题,每小题4分,共16分) 9.二次根式2+x 中,x 的取值范围是 .10.等腰三角形两边长分别为6和8,则这个等腰三角形的周长为 . 11.已知2a b -=,那么224a b b --的值为 .12.如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且 132=P P ,得=3OP 2;…;依此继续,得=2012OP ,=n OP (n 为自然数,且n >0).三、解答题(共6 道小题,每小题5分,共 30 分) 13.计算:22783-+--()25-.14.分解因式:ax 2–2ax + a . 15.计算:xy x yy x x⎛⎫+-÷⎪⎝⎭. 16.已知:如图,C 是线段AB 的中点,∠A =∠B ,∠ACE =∠BCD .求证:AD =BE . 17.解方程:212xx x +=+. 18.已知x 2=3,求(2x +3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2的值.四、解答题(共 4 道小题,每小题5分,共20 分)19.如图,在4×3的正方形网格中,阴影部分是由4个正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这6个小正方形组成的图形是轴对称图形,并画出其对称轴.P 4P 3P 2PP 1OED BC A方法一方法二20.如图1,已知三角形纸片ABC ,AB =AC ,∠A = 50°,将其折叠,如图2,使点A 与点B 重合,折痕为ED ,点E ,D 分别在AB ,AC 上,求∠DBC 的大小.21.甲、乙两人分别从距目的地6公里和12公里的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前10分钟达到目的地.求甲、乙的速度.22.已知:如图,在△ABC 中,AD 平分∠BAC ,CD ⊥AD 于点D ,∠DCB=∠B ,若AC=10,AB=26,求AD 的长.五、解答题(共3道小题,23,24小题每题7分,25小题8分,共 22 分) 23.如图,四边形ABCD 中,AD =2,∠A =∠D = 90°,∠B = 60°,BC =2CD . (1)在AD 上找到点P ,使PB +PC 的值最小.保留作图痕迹,不写证明; (2)求出PB +PC 的最小值.ABCD 图2(A )A B C D E图1A B C ABCD24.如图,AD 是△ABC 的角平分线,点F ,E 分别在边AC ,AB 上,且FD =BD . (1)求证∠B +∠AFD =180°;(2)如果∠B +2∠DEA =180°,探究线段AE ,AF ,FD 之间满足的等量关系,并证明.25.已知A (-1,0),B (0,-3),点C 与点A 关于坐标原点对称,经过点C 的直线与y 轴交于点D ,与直线AB 交于点E .(1)若点D ( 0,1), 过点B 作BF ⊥CD 于F ,求∠DBF 的度数及四边形ABFD 的面积; (2)若点G (G 不与C 重合)是动直线CD 上一点,点D 在点(0,1)的上方,点E 在第二象限,且BG =BA ,试探究∠ABG 与∠ECA 之间的等量关系.A C BDF 备用图。
八年级(上)数学期末测试题第1卷(选择题)一、选择题(本题20小题,每小题3分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并把答题卡上对应题目的正确答案标号涂黑)1.下列各组数中不能作为直角三角形的三条边长的是( )A.6,8,10B.9,12, 15C.1.5,2,3D.7,24, 252.一三,27t,等,o,0.23 2233 2233 2233…中,有理数的个数是( ) A.l B.2 C.3 D.43.下列扑克牌中,绕着某一点旋转1800后可以与原来的完全重合的是( )4.点P(-5,6)关于原点对称的点的坐标是( )A.(-5, -6)B.(5,6)C.(6,.5)D.(5,.6)5.估算24的算术平方根在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间中,一次函数的有( )A.4个B.3个C.2个D.l个7.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A.平均数 B.力口权平均数 C.中位数 D.众数8.-次函数y= -x-l不经过的象限是( )A.t第一象限 B.第二象限 C.第三象限 D.第四象限A. 20 B.15 C.10 D.510.w边形ABCD中,AC、BD相交于点D,能判别这个四边形是正方形的条件是( )11.点彳的坐标为(6,3),D为原点,将OA绕点0按顺时针方向旋转90度得到OA1,则点A1的坐标为 ( )么.(3.-6) B.(-3,6) C.(一3,.6) D.(3,6)12.下列说法正确的有____个.( )①有两个底角相等的梯形是等腰梯形②有两边相等的梯形是等腰梯形③有两条对角线相等的梯形是等腰梯形④等腰梯形上下底中点连线把梯形分成面积相等的两部分A.l个 B.2个 C.3个 n 4个13.如果直线y=3x+6 y=2x-4交点坐标为(a,b),的解( )14.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输为 15,那么与实际平均数的差为( )A.3B..3C.j 0.5D.3.515.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )么.六边形 B.八边形 C.十二边形D.十六边形16.如图,在四边形ABCD中,动点P从点A开始沿A→_B→C→D的路径匀速前进到D为止。
北京市2013-2014学年第一学期初二年级期末经典题汇编1.在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一边在AD 的右侧作△ADE ,使AE =AD ,∠DAE=∠BAC ,连接CE .设∠BAC =α,∠DCE =β.(1)如图⑴,点D 在线段BC 上移动时,角α与β之间的数量关系是 ;证明你的结论;(2)如图⑵,点D 在线段BC 的延长线上移动时,角α与β之间的数量关系是 ,请说明理由;(3)当点D 在线段BC 的反向延长线上移动时,请在图⑶中画出完整图形并猜想角α与β之间的数量关系是 .图⑴图⑵图⑶AD C EBBCAAD C EB2.已知:如图,在平面直角坐标系xOy 中,(2,0)A -,(0,4)B ,点C 在第四象限,AC ⊥AB , AC=AB . (1)求点C 的坐标及∠COA 的度数;(2)若直线BC 与x 轴的交点为M ,点P 在经过点C 与x 轴平行的直线上,直接写出BOM POM S S ∆∆+的值.解:(1)(2)BOM POM S S ∆∆+的值为 .3.已知:如图,Rt △ABC 中,∠BAC=90︒.(1)按要求作图:(保留作图痕迹)①延长BC 到点D ,使CD=BC ; ②延长CA 到点E ,使AE=2CA ;③连接AD ,BE 并猜想线段 AD 与BE 的大小关系; (2)证明(1)中你对线段AD 与BE 大小关系的猜想. 解:(1)AD 与BE 的大小关系是 . (2)证明:4.(7分)已知:如图,△ABC 是等腰直角三角形,∠BAC =90°,过点C 作BC 的垂线l ,把一个足够大的三角板的直角顶点放到点A 处(三角板和△ABC 在同一平面内),绕着点A 旋转三角板,使三角板的直角边AM 与直线BC 交于点D ,另一条直角边AN 与直线l 交于点E .(1)当三角板旋转到图1位置时,若AC =2,求四边形ADCE 的面积; (2)在三角板旋转的过程中,请探究∠EDC 与∠BAD 的数量关系,并证明.lBAC备用图EDCBA图1lNM5.如图1,在△ABC 中,∠ACB =2∠B ,∠BAC 的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l ⊥AO 于H ,分别交直线AB 、AC 、BC 、于点N 、E 、M . (1)当直线l 经过点C 时(如图2),求证:BN =CD ;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.DNEMABCHlN(E)ABHl(1)证明:(2)当M 是BC 中点时,CE 和CD 之间的等量关系为_________________________. 证明:(3)请你探究线段BN 、CE 、CD 之间的等量关系, 并直接写出结论.6. 如图,在△ABC 中,AB =AC ,108A ∠=°,请你在图中,分别用两种不同方法,将△ABC 分割成四个小三角形,使得其中两个是全等..的不等边三角形......(不等边三角形指除等腰三角形以外),而另外两个是不全等...的等腰三角形.请画出分割线段,并在两个全等三角形中标出一对相等的内角的度数,在每个等腰三角形中标出相等两底角度数(画图工具不限,不要求证明,不要求写出画法,但要保留作图痕迹,若经过图形变换后两个图形重合,则视为同一种方法).备用图DABCO备用图 D ABCOA A7.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:86222223333+==+=. 我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称 之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221xx +这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:()12121111x x x x x +--==-+++; 再如:22111(1)1111x x x )x x x x -++-+==---(111x x =++-. 解决下列问题:(1)分式2x是 分式(填“真分式”或“假分式”); (2)假分式12x x -+可化为带分式 的形式;(3)如果分式211x x -+的值为整数,那么x 的整数值为 .8.在△ABC 中,AB=AC ,点D 是射线CB 上的一动点(不与点B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段CB 上,且∠BAC =90°时,那么∠DCE = ▲ 度; (2)设∠BAC =α,∠DCE =β.① 如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;② 如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整, 并直接..写出此时α与β之间的数量关系(不需证明).解:(1)∠DCE = 度;(2)结论:α与β之间的数量关系是 ;证明:D CBAED E D A B C C B A图1图2图3(3)结论:α与β之间的数量关系是 .9.已知:四边形ABED 中,AD ⊥DE 、BE ⊥DE .(1) 如图1,点C 是边DE 的中点,且AB=2AD=2BE .判断△ABC 的形状: (不必说明理由);(2) 保持图1中△ABC 固定不变,将直线DE 绕点C 旋转到图2中所在的MN 的位置(垂线段AD 、BE 在直线MN 的同侧).试探究...线段AD 、BE 、DE 长度之间有什么关系?并给予证明; (3) 保持图2中△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(垂线段AD 、BE 在直线MN 的异侧).⑵中结论是否依然成立,若成立请证明;若不成立,请写出新的结论,并给予证明.10. 阅读材料1:对于两个正实数,a b ,由于()02≥-ba ,所以()()0222≥+⋅-b b a a ,即02≥+-b ab a ,所以得到ab b a 2≥+,并且当a b =时,2a b ab +=.阅读材料2:若0x >,则22111x x x x x x x+=+=+,因为10,0x x >>,所以由阅读材料1可得,A BCD EABC DEMNM NABCDE 图1图2图32121=⋅≥+xx x x ,即21x x +的最小值是2,只有1x x =时,即1x =时取得最小值.根据以上阅读材料,请回答以下问题:(1)比较大小:21x + 2x (其中1x ≥); 1x x+2-(其中1x <-) (2)已知代数式2331x x x +++变形为11x n x +++,求常数n 的值;(3)当x = 时,133+++x xx 有最小值,最小值为 . (直接写出答案)11.在四边形ABDE 中,C 是BD 边的中点.(1)如图(1),若AC 平分BAE ∠,ACE ∠=90°, 则线段AE 、AB 、DE 的长度满足的数量关系为;(直接写出答案)(2)如图(2),AC 平分BAE ∠, EC 平分AED ∠,若120ACE ∠=︒,则线段AB 、BD 、DE 、AE 的长度满足怎样的数量关系?写出结论并证明;12.已知:如图,在△ABC 中,AD 平分∠BAC ,CD ⊥AD 于点D ,∠DCB=∠B ,若AC=10,AB=26,求AD 的长.13. 已知:如图,△AOB 的顶点O 在直线l 上,且AO =AB .(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下, AC 与BD 的位置关系是 ;EDC BA图(2)ED CB A图(1)ABCD(3)在(1)、(2)的条件下,联结AD ,如果∠ABD =2∠ADB ,求∠AOC 的度数.14. 我们知道,假分数可以化为整数与真分数的和的形式.例如:32=112+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111x x x x x x x x +-==+=+-----(-)+;22442(2)4422222x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.BAOl15. 请阅读下列材料:问题:如图1,△ABC中,∠ACB=90°,AC=BC,MN是过点A的直线,DB⊥MN于点D,联结CD.求证:BD+ AD =2CD.小明的思考过程如下:要证BD+ AD =2CD,需要将BD,AD转化到同一条直线上,可以在MN上截取AE=BD,并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.小聪的思考过程如下:要证BD+ AD =2CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.请你参考小明或小聪的思考过程解决下面的问题:(1) 将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;(2) 在直线MN绕点A旋转的过程中,当∠BCD=30°,BD =2时,CD=__________.MDNBCA图2BCNMDA图3AC BNDM E图116.(本题5分) 如图,在△ABC 中,∠BAC=60°,∠ACB=40°,P 、Q 分别在BC 、CA 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线. 求证:(1)BQ = CQ ; (2) BQ+AQ=AB+BP. 证明: (1)(2)17.(本题7分) 在△ABC 中,∠BAC=90°,AB=AC ,点D 是线段BC 上的一个动点(不与点B 重合).DE ⊥BE 于E ,∠EBA=21∠ACB ,DE 与AB 相交于点F . (1)当点D 与点C 重合时(如图1),探究线段BE 与FD 的数量关系,并加以证明;(2)当点D 与点C 不重合时(如图2),试判断(1)中的猜想是否仍然成立,请说明理由.PQB C A18.如图,在直角△ABC 中, ∠ACB=90,CD ⊥AB,垂足为D,点E 在AC 上,BE 交CD 于点G,EF ⊥BE交AB 于点F,若AC=BC,CE=EA.试探究线段EF 与EG 的数量关系,并加以证明.答:EF 与EG 的数量关系是 . 证明:19.在平面直角坐标系xoy 中,等腰三角形ABC 的三个顶点A (0,1),点B 在x 轴的正半轴上,∠ABO =30°,点C 在y 轴上.(1)直接写出点C 的坐标为 ;(2)点P 关于直线AB 的对称点P ′在x 轴上,AP =1,在图中标出点P 的位置并说明理由; (3)在(2)的条件下,在y 轴上找到一点M ,使PM +BM 的值最小,则这个最小值为.20.解决下面问题:如图,在△ABC 中,∠A 是锐角,点D ,E 分别在AB , AC 上,且12DCB EBC A ∠=∠=∠,BE 与CD 相交于 点O ,探究BD 与CE 之间的数量关系,并证明你的结论.小新同学是这样思考的:在平时的学习中,有这样的经验:假如△ABC 是等腰三角形,那么在给定一组对应条件,如图a ,BE ,CD 分别是两底角的平分线(或者如图b ,BE ,CD 分别是两条腰的高线,或者如图c ,BE ,CD 分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许xy O-3-1-2-3123-1-2-4123GF EDCBA OEDCA B可以通过添加辅助线构造轴对称图形来解决.图a 图b21.已知A (-1,0),B (0,-3),点C 与点A 关于坐标原点对称,经过点C 的直线与y 轴交于点D ,与直线AB 交于点E .(1)若点D ( 0,1), 过点B 作BF ⊥CD 于F ,求∠DBF 的度数及四边形ABFD 的面积; (2)若点G (G 不与C 重合)是动直线CD 上一点,点D 在点(0,1)的上方,且BG =BA ,试探究∠ABG 与∠ECA 之间的等量关系.DED E CC DEC AA ABB BD ECC ABD EC C AB备用图xOyxOy数学试卷参考答案及评分标准2014.12 1.(1)α+β=180°;……………………1分证明:∵∠DAE =∠BAC , ∴∠DAE -∠DAC =∠BAC -∠DAC , ∴∠CAE =∠BAD . ∵在△ABD 和△ACE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS ), ……………………2分 ∴∠ABD =∠ACE ,∵∠BAC +∠ABD +∠ACB =180°, ∴∠BAC +∠ACE +∠ACB =180°,∴∠BAC +∠BCE =180°,即α+β=180°. ………………3分(2)α=β; ………………4分理由如下:∵∠DAE =∠BAC , ∴∠DAE +∠CAD =∠BAC +∠CAD , ∴∠BAD =∠CAE . 在△BAD 和△CAE 中,∵AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS ), ……………………5分 ∴∠ABD =∠ACE ,∵∠ACD =∠ABD +∠BAC =∠ACE +∠DCE ,∴∠BAC =∠DCE ,即α=β. ……………………6分 (3)如图,α=β. …………7分BECDA4. (7分)(1)解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°.∵BC⊥l,∴∠BCE=90°,12ED CBAlN M∴∠ACE =45°, ∴∠ACE =∠B . ∵∠DAE=90°, ∴∠2+∠CAD =90°. 又∵∠1+∠CAD =90°, ∴∠1=∠2,∴△BAD ≌△CAE (ASA ).………………….2分 ∵S 四边形ADCE = S △CAE + S △ADC ,∴S 四边形ADCE = S △BAD + S △ADC = S △ABC . 又∵AC =2, ∴AB =2,∴S △ABC =1,∴S 四边形ADCE =1.. ……………………………….3分(2)解:分以下两类讨论:①当点D 在线段BC 上或在线段CB 的延长线上时,∠EDC=∠BAD ,如图1、图2所示.如图1∵△BAD ≌△CAE (ASA ),(已证) ∴AD =AE .又∵∠MAN =90°, ∴∠AED =45°. ∴∠AED =∠ACB .在△AOE 和△DOC 中,∠AO E =∠DO C , ∴∠EDC =∠2. 又∵∠1=∠2,∴∠EDC =∠1.………………………………………....5分 如图2中同理可证NMl图3ABCD E12O12MN NMOll图2图1EDC BAA BCDE②当点D 在线段BC 的延长线上时,∠EDC +∠BAD=180°,如图3所示.…………..…….6分同理可证△BAD ≌△CAE (ASA ), ∴AD =AE .∴∠A DE =∠AED =45°. ∵∠EDC=45°+∠A DC , ∠BAD=180°-45°-∠A DC ,∴∠EDC +∠BAD=180°.. …………………………….7分5. (1)证明:连结ND∵AO 平分BAC ∠,∴12∠=∠ ∵直线l ⊥AO 于H , ∴4590∠=∠=︒∴67∠=∠ ∴AN AC = ∴NH CH =∴AH 是线段NC 的中垂线 ∴DC DN = ∴98∠=∠∴AND ACB ∠=∠∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3∠=∠B ∴DN BN =∴BN DC = ……………………………………………………………………2分 (2)当M BC 是中点时,CE 和CD 之间的等量关系为2CD CE =证明:过点C 作'CN AO ⊥交AB 于'N由(1)可得'BN CD =,',AN AC AN AE == ∴43∠=∠,'NN CE =过点C 作CG ∥AB 交直线l 于点G ∴42∠=∠,1B ∠=∠ ∴23∠=∠∴CG CE = ∵M BC 是中点,∴BM CM =在△BNM 和△CGM 中,1,,,B BM CM NMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩987654321EN M D AB C H l 4321EN'GN MDABCH Ol∴△BNM ≌△CG M ∴BN CG = ∴BN CE =∴''2CD BN NN BN CE ==+= …………………………………………4分 (3)BN 、CE 、CD 之间的等量关系:当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-………………………………6分 (阅卷说明:三种情况写对一个给1分,全对给2分)67.解:(1) 真 分式;…………………………………………………………………1分 (2)13122x x x -=-++;……………………………………………………3分 (3)x 的可能整数值为 0,-2,2,-4 . …………………………………5分8.解:(1) 90 度.…………………………………………………………1分图3E DCBA图1图2ED ED ABCCBA(2)① 180αβ+=︒.………………………………………………………2分理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC .即∠B A D =∠C A E .………………………………………………………3分 又AB =AC ,AD =AE ,∴△A B D ≌△A C E .…………………………………………………4分 ∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .36°36°72°72°72°72°FED A BC 36°36°72°72°72°72°ED A C B∴B ACB DCE β∠+∠=∠=.∵180B ACB α+∠+∠=︒,∴180αβ+=︒.…………………………………………………5分(3)图形正确.………………………………………………………………6分 αβ=.……………………………………………………………………7分9.解(1) 等腰直角三角形 ………………………………………………1分(2) DE =AD +BE ;………………………………………………2分 证明:如图2,在Rt △ADC 和Rt △CEB 中,∵∠1+∠CAD =90︒,∠1+∠2=90︒,∴∠CAD =∠2又∵AC =CB ,∠ADC =∠CEB =90︒, ∴Rt △ADC ≅Rt △CEB∴DC =BE ,CE =AD ,∴DC +CE =BE +AD , ………………………………………3分即DE =AD +BE(3) DE =BE -AD …………………………………………………4分 如图3,Rt △ADC 和Rt △CEB 中,∵∠1+∠CAD =90︒,∠1+∠2=90︒,∴∠CAD =∠2,又∵∠ADC =∠CEB =90︒,AC =CB ,∴Rt △ADC ≅Rt △CEB ,∴DC =BE ,CE =AD ,∴DC -CE =BE -AD , ……………………………………………5分即DE =BE -AD.1 ABCDE图12MN ABCDE 图212ABC DEM N 图31 2<10.(1)比较大小:21x + ≥ 2x (其中1x ≥); 1x x +____2-(其中1x <-)---------2分 (2)解: 111332+++=+++x n x x x x()()1111121+++=+++++x n x x x x x11112+++=+++x n x x x ∴2=n --------------------------------------------4分 (3)当x = 0 时,133+++x xx 有最小值,最小值为 3 . (直接写出答案)---6分11.(1) AE=AB+DE ; ------------1分 (2)解:猜想:AE =AB+DE +BD 21.------------2分 证明:在AE 上取点F ,使AF =AB ,连结CF , 在AE 上取点G ,使EG =ED ,连结CG .∵C 是BD 边的中点,∴CB =CD=BD 21.∵AC 平分BAE ∠,∴∠BAC =∠FAC .∵AF =AB ,AC =AC ,∴△ABC ≌△AFC .∴CF =CB ,∴∠BCA =∠FCA .----------------------------4分同理可证:CD =CG ,∴∠DCE =∠GCE . ∵CB =CD ,∴CG =CF ∵120ACE ∠=︒,∴∠BCA +∠DCE=180°-120°=60°. 图(2) ∴∠FCA +∠GCE=60°.∴∠FCG=60°. ∴△FGC 是等边三角形.-------------------------5分 ∴FG =FC=BD 21. ∵AE =AF+EG+FG .∴AE =AB+DE +BD 21.-----------------------6分(3)2410+. ----------------7分EDCBA图(3)EDC BA图(1)G FEDCBA12.解:如图,延长CD 交AB 于点E . ……………… 1分∵ AD 平分∠BAC ,CD ⊥AD 于点D , ∴ ∠EAD = ∠CAD ,∠ADE=∠ADC =90°. ∴ ∠AED=∠ACD . ……………… 2分 ∴ AE=AC . ∵ AC=10,AB=26,∴ AE=10,BE=16. ……………… 3分 ∵ ∠DCB=∠B , ∴ EB= EC=16. ∵ AE= AC ,CD ⊥AD ,∴ ED= CD=8. ……………………………………………… 4分 在Rt △ADC 中,∠ADC =90°,∴22AD AC CD =-=22108-=6. ……………………………………… 5分13.(1)如图1.……1分 (2)平行. ……2分 (3)解:如图2,由(1)可知,△AOB 与△COD 关于直线l 对称, ∴△AOB ≌△COD .……3分∴AO =CO ,AB = CD ,OB = OD ,∠ABO =∠CDO . 图1 图2 ∴∠OBD =∠ODB . ……4分∴∠ABO+∠OBD =∠CDO+∠ODB ,即∠ABD =∠CDB . ∵∠ABD =2∠ADB ,∴∠CDB =2∠ADB .∴∠CDA =∠ADB .……5分由(2)可知,AC ∥BD ,∴∠CAD =∠ADB .∴∠CAD =∠CDA ,∴CA = CD .……6分 ∵AO = AB ,∴AO = OC = AC ,即△AOC 为等边三角形. ∴∠AOC = 60°. ……7分 14.解:(1)12x x -+()232x x +-=+ ……1分DCBAElODCBAABCDOl2232x x x +=+-+ ……2分312x+=-. ……3分(2)2211x x --22211x x -+=- ()()21111x x x +-+=-()1211x x =++-. ……5分 ∵分式的值为整数,且x 为整数, ∴11x -=±,∴x =2或0.……7分15.解:(1)如图2,BD -AD =2CD . ……1分如图3,AD -BD =2CD . ……2分证明图2:( 法一)在直线MN 上截取AE =BD ,联结CE .设AC 与BD 相交于点F ,∵BD ⊥MN ,∴∠ADB =90°,∴∠CAE+∠AFD =90°.∵∠ACB =90°,∴∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠ACE =∠BCD .∴∠ACE -∠ACD =∠BCD -∠ACD ,即∠2=∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠2=90°. ∵∠ACB =90°,∴∠2+∠ACD =∠ACB+∠ACD , 即∠ACE =∠BCD .设AC 与BD 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°.F12图2A C BND ME FM DA∴∠CAE+∠AFD =90°,∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 证明图3:( 法一)在直线MN 上截取AE =BD ,联结CE . 设AD 与BC 相交于点F ,∵∠ACB =90°,∴∠2+∠AFC =90°. ∵BD ⊥MN ,∴∠ADB =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠1=∠4.∴∠1+∠BCE =∠4+∠BCE ,即∠ECD =∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AD -AE = AD -BD ,∴AD -BD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠DCE =90°. ∵∠ACB =90°,∴∠ACB -∠ECB = ∠DCE -∠ECB ,即∠1=∠4. 设AD 与BC 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠2+∠AFC =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=, ∴222CD DE = ,即DE =2CD .……4分∵DE = AD -AE = AD -BD ,∴AD -BD =2CD . ……5分 (2)31± . ……7分4F 321 图3A DM N CBE E BCN M DA 图3123F 416. 证明:延长AB 至M, 使得BM = BP ,联结MP 。
《思想方法与创新意识》综合测试题1.(2013·广东联考)视频通话、下载音乐、收看电视、实时导航、网上购物、在线游戏、手机钱包……随着3G(第三代移动通信)技术的发明和服务的推广,其丰富多样的功能让手机不再是“打电话”那么简单了,一股3G手机发展新浪潮也随之在全球掀起。
这表明( ) A.创新使得人类的思维性质和水平不断更新B.理论创新是社会发展和变革的先导C.创新离不开革命批判精神D.创新推动社会生产力的发展2.(2013·枣庄模拟)下边漫画(如果你相信你读到的任何东西,那么不如不读书)启示我们应坚持( )①量变与质变的辩证关系②肯定与否定的辩证关系③实践与认识的辩证关系④整体与部分的辩证关系A.②③ B.②④C.①④ D.③④3.重视科技创新的哲学依据是( )①事物的发展需要辩证的否定②客观事物是不断发展的③矛盾即对立统一④创新是一个政党永葆生机的源泉A.①② B.①③C.②④ D.①④4.宋代徐玑在《黄碧》中说:“水清知酒好,山瘦识民贫”。
其中所呈现的水与酒、山与民的关系告诉我们A.事物之间都是有联系的B.自在事物的联系是客观的C.事物的联系是多样化的D.人为事物的联系是客观的5.“天若有情天亦老,人间正道是沧桑”这句话表明了①自然界的发展是客观的②人类社会是不断发展的过程③意识对社会的发展具有能动的反作用④人类社会的发展规律是客观的A.①②B.②③ C.①④D.②④6.《诗经》中有“周虽旧邦,其命惟新”,《诗品》中讲“如将不尽,与古为新”。
下列与之蕴涵哲理相同的是A.芳林新叶催陈叶,流水前波让后波B.宝剑锋从磨砺出,梅花香自苦寒来C.卧看满天云不动,不知云与我俱东 D.知屋漏者在宇下,知政失者在草野7.(2011·江苏南京师范大学附属中学高三模拟)下面漫画体现的哲学道理A.事物的联系是客观的B.联系具有多样性C.量变是质变的必要准备D.事物的发展是前途性和曲折性的统一8.“人生譬如滑雪,只有知道如何停止的人才知道如何加快速度。
13—14学年第二学期《数理金融学》期末考试试题(A )注意事项:1。
适用班级:11数学与应用数学本1。
本2,2013数学(升本)2。
本试卷共1页。
满分100分。
3.考试时间120分钟。
4.考试方式:闭卷一、选择题(每小题3分,共15分)1.某证券组合由X 、Y 、Z 三种证券组成,它们的预期收益率分别为10%、16%、20% 它们在组合中的比例分别为30%、30%、40%,则该证券组合的预期收益率为______ A 15。
3% B 15。
8% C 14。
7% D 15.0%2.无风险收益率和市场期望收益率分别是0。
06和0。
12。
根据CAPM 模型,贝塔值为1。
2的证券X 的期望收益率为A 0。
06B 0。
144C 0.12D 0。
1323.无风险收益率为0。
07,市场期望收益率为 0.15。
证券X 的预期收益率为 0。
12,贝塔值为1.3.那么你应该A 买入X ,因为它被高估了;B 卖空X ,因为它被高估了C 卖空X ,因为它被低估了;D 买入X ,因为它被低估了 4.一个看跌期权在下面哪种情况下不会被执行? A 执行价格比股票价格高;B 执行价格比股票价格低C 执行价格与股票价格相等;D 看跌期权的价格高于看涨期权的价格5。
假定IBM 公司的股价是每股95美元。
一张IBM 公司4月份看涨期权的执行价格为100美元,期权价格为5美元.忽略委托佣金,看涨期权的持有者将获得一笔利润,如果股价 A 涨到104美元B 跌到90美元C 涨到107美元D 跌到 96美元 二、填空题(每小题3分,共15分) 1。
风险厌恶型投资者的效用函数为2。
设一投资者的效用函数为,则其绝对风险厌恶函数 3.均值-方差投资组合选择模型是由提出的.4。
可以在到期日前任何一天行使的期权称之为5。
考察下列两项投资选择:(1)风险资产组合40%的概率获得 15%的收益,60%的概率获得5%的收益;(2)银行存款收益率为6%;则风险投资的风险溢价是 三、分析题(每小题15分,共30分)1。
试卷代号:1252中央广播电视大学2013-2014学年度第一学期“开放学科”期末考试数据结构(本)试题2014年1月一、单项选择题(每小题2分,共30分)1. 在数据结构和算法中,与所使用的计算机有关的是(B)。
A.数据元数间的抽象关系 B.数据的存储结构C.算法的时间复杂度 D.数据的逻辑结构2.对顺序表,以下叙述中正确的是 ( A )。
A.用一组地址连续的存储单元依次存放线性表的数据元素B.各个数据元素的首地址是连续的C.数据元素不能随机访问D.插入操作不需要移动元素3.设有一个长度为25的顺序表,要删除第10个元素(下标从1开始),需移动元素的个数为(C)。
A.9 B.10 C.15 D.164. 设单向链表中,指针p指向结点A,若要删除A的直接后继,则所需修改指针的操作为( A)。
A.p->next=p->next->next;B.p=p->next;C.p=p->next->next;D.p->next=p ;5.元素1,3,5,7按顺序依次进栈,按该栈的可能输出序列依次入队列,该队列的可能输出序列是(A)。
(进栈出栈可以交替进行)。
A.7,5,3,1 B.7,3,1,5C.7,5,1,3 D.5,1,3,76.对一个栈顶指针为top的链栈进行进栈操作,设P为待进栈的结点,则执行(C)。
A.p=top->next; top=top next; B.p->next=top;C.p->next=top;top=p; D.top=p;7.设有一个18阶的对称矩阵A,采用压缩存储的方式,将其下三角部分以行序为主序存储到一维数组B中(数组下标从1开始),则数组中第33号元素对应于矩阵中的元素是(D)。
(矩阵中的第1个元素是a1,1)A.a7,6 B.a10,8C.a9,2 D.a8,58.设有一个17阶的对称矩阵A,采用压缩存储的方式,将其下三角部分以行序为主序存储到一维数组B中(数组下标从1开始),则矩阵中元素a10,6在一维数组B中的下标是(C)。
2013—2014学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.) 1x 的取值范围是A.3x 2≥B. 3x 2>C. 2x 3≥ D. 2x 3>2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是 A.平行四边形 B. 菱形 C.正方形 D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限 7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人 C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3第4题图第10题图 B D二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
2013-2014学年上学期期末考试七年级语文试卷十三四岁,正值花季。
一位诗人曾经说过:“凡是能开的花,全在开放;凡是能唱的鸟,全在歌唱。
”那就请你拿起手中的笔,尽情地展示吧!不必有任何顾虑,相信自己,答案就在你的笔下,记住:IMPOSSIBLE IS NOTHING(没有不可能)!一、积累与运用(共39分)1.下列加点的字注音有误的一组是()(2分)A. 挑剔tī瘟神wēn踹到chuài 高亢kàngB 嗥叫háo 一栋dòng窗棂líng翘起qiàoC. 跳踉liáng白痴chī 趔趄liâqie嫉妒dǜD. 湍急tuān 自诩yǚ 遐想xiá缓颊jiá2.下列词语中没有书写错误的一项是()(2分)A.大逆不道随声附合不可救药钦差大臣B.手急眼快骇人听闻到背如流踌躇满志C.耀武扬威昂手阔步晴天霹雳逞强好胜D.仗势欺人稳操胜券皇亲国戚嬉皮笑脸3. 下列各句中加线的词语使用有误的一项是()(2分)A. 绿萌场上,足球健儿们精神矍铄,斗志昂扬,精湛的球艺迷倒了上万球迷。
B. 绿树、鲜花,都是大自然给我们的馈赠,请珍惜吧!C. 为了参加这次航模比赛,同学们别出心裁,制作了许多新颖的航船。
D. 冰雕比赛中,同学们精心雕琢的海豚、蜗牛、报晓的雄鸡等,各具情态,栩栩如生。
4、下列句子中没有语病的一句是()(2分)A、摇滚乐那强烈快速的节奏和迷离闪烁的灯光效果,让人看得眼花缭乱。
B、在阅读文学名著的过程中,使我明白了许多做人的道理,感悟了人生的真谛。
C、我们要与自然和谐相处,保护好属于我们人类自己的家园——地球。
D、我们的校长很年轻,大概三十岁左右。
5、对作家作品的叙述不正确的一组是()(2分)A、《最后一片叶子》作者欧·亨利,英国小说家。
B、《渔夫的故事》选自《一千零一夜》,又名《天方夜谭》是阿拉伯民族故事集。
2013-2014学年度第二学期期末考试(含答案)第Ⅰ卷选择题(共60分)(考试时间100分钟,满分120分,请将答案填写在答题卡上,否则不得分。
)注:H的原子量1,C的原子量12,O的原子量16一、选择题(本大题共20小题,每小题只有1个选项符合题意,每题3分,共60分)1.哥本哈根世界气候大会上,商讨了《京都议定书》一期承诺到期后的后续方案,即2012年至2020年的全球减排协议。
大会倡导“节能减排”和“低碳经济”。
下列做法不符合这一理念的是()A.推广利用CO2与环氧丙烷和琥珀酸酐的三元共聚物的生物降解材料B.使用填埋法处理未经分类的生活垃圾C.推广煤的干馏、气化、液化技术,提供清洁、高效燃料和基础化工原料D.发展水电,开发新能源,如核能、太阳能、风能等,减少对化石能源的依赖2.下列各化合物的命名中正确的是()A. CH2=CH-CH=CH2 1,3-二丁烯B. 3-丁醇C. 甲基苯酚D. 2-甲基丁烷3.下列有关高分子材料的表述不正确的是()A.合成高分子材料都很难降解B.塑料、合成纤维、黏合剂、涂料等都是合成高分子材料C.棉花、羊毛、天然橡胶等属于天然高分子材料D.线型和体型高分子材料在溶解性、热塑性和热固性等方面有较大的区别4.①丁烷②2—甲基丙烷③戊烷④2—甲基丁烷⑤2,2—二甲基丙烷,物质沸点的排列顺序正确的是()A.①>②>③>④>⑤B.⑤>④>③>②>①C.③>④>⑤>①>②D.②>①>⑤>④>③5.某有机化合物的结构简式如下:此有机化合物属于()①烯烃②多官能团有机化合物③芳香烃④烃的衍生物⑤高分子化合物A.①②③④B.②④C.②④⑤ D.①③⑤6.下列有关除去杂质(括号内物质)的操作中,错误的是()A.FeCl2(FeCl3):加入过量铁粉振荡,然后过滤B.苯(苯酚):加入NaOH溶液振荡,然后分液C.乙醛(乙酸):加入新制的生石灰,然后蒸馏D.乙酸乙酯(乙酸):加入乙醇和浓硫酸,然后加热7.下列化学式只表示一种纯净物的是()A.C3H8 B.C4H9Cl C.C2H4Cl2 D.C8.如图分别是A、B两种物质的核磁共振氢谱,已知A、B两种物质都是烃类,都含有6个氢原子,试根据两种物质的核磁共振氢谱推测A、B有可能是下面的()A.A是C3H6,B是C6H6 B.A是C2H6,B是C3H6C.A是C2H6,B是C6H6 D.A是C3H6,B是C2H69.最简式相同,但既不是同系物,又不是同分异构体的是()①辛烯和3-甲基-1-丁烯②苯和乙炔③1-氯丙烷和2—氯丙烷④甲基环己烷和乙烯A.①②B.②③C.③④D.②④10.下列表格中烷烃的一氯代物只有一种,仔细分析其结构和组成的变化规律,判断第4位烷烃的分子式是()A.C23H48 B.C33H68C.C43H88 D.C53H10811.下列关于有机物的说法中不正确的是()A.所有的碳原子在同一个平面上B.水解生成的有机物可与NaOH溶液反应C.不能发生消去反应D.能够发生加成反应12.卤代烃RCH2CH2X分子中的化学键如图所示,则下列说法正确的是()A.当该卤代烃发生水解反应时,被破坏的键是①和③B.当该卤代烃发生水解反应时,被破坏的键是①C.当该卤代烃发生消去反应时,被破坏的键是①和④D.当该卤代烃发生消去反应时,被破坏的键是①和②13.能在有机物的分子中引入羟基的反应类型有:①酯化反应;②取代反应;③消去反应;④加成反应;⑤水解反应;⑥还原反应。
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(文科) 2014.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|02}A x x =<<,0{|1}B x x =-≥,则集合A B =I ( ) (A )(0,1) (B )(0,1](C )(1,2)(D )[1,2)2.已知命题p :“x ∀∈R ,23x -<”,那么p ⌝是( ) (A )x ∀∈R ,23x ->, (B )x ∀∈R ,23x -≥ (C )x ∃∈R ,23x -< (D )x ∃∈R ,23x -≥3.在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥u u u r u u u r,则实数k =( )(A )4 (B )3 (C )2 (D )14.若坐标原点在圆22()()4x m y m -++=的内部,则实数m 的取值范围是( ) (A )11m -<<(B )m -<(C )m -<(D )22m -<<5.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )16. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b << (D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[1,0]x ∈-时,()f x 的最小值为( ) (A )18-(B ) 14-(C )0(D )148.在平面直角坐标系xOy 中,记不等式组0,0,2x y x y y +⎧⎪-⎨⎪⎩≥≤≤所表示的平面区域为D . 在映射,:u x y T v x y=+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v ,则由点(,)u v 所形成的平面区域的面积为( ) (A )2 (B )4(C )8(D )16第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.已知复数z 满足2i=1iz +,那么||z =______.10.在等差数列{}n a 中,11a =,8104a a +=,则公差d =______;前17项的和17S =______.11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=, 则cos C =______;c = ______.13.设函数2log , 0,()4, 0,x x x f x x >⎧=⎨⎩≤ 则[(1)]f f -=______;若函数()()g x f x k =-存在两个零点,则实数k 的取值范围是______.14.设{(,)|(,)0}M x y F x y ==为平面直角坐标系xOy 内的点集,若对于任意11(,)x y M ∈,存在22(,)x y M ∈,使得12120x x y y +<,则称点集M 满足性质P . 给出下列三个点集:○1{(,)|cos 0}R x y x y =-=; ○2{(,)|ln 0}S x y x y =-=; 侧(左)视图○322{(,)|1}T x y x y =-=. 其中所有满足性质P 的点集的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()2f α=,[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点. (Ⅰ)求证:AC ⊥平面BDEF ;甲组乙组 891 a822 FG EH(Ⅱ)求证:平面BDGH //平面AEF ; (Ⅲ)求多面体ABCDEF 的体积. 18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当[0,4]x ∈时,求函数()f x 的最小值.19.(本小题满分14分)已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为(0)k k >.设抛物线W 的焦点在直线AB 的下方.(Ⅰ)求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D . 判断四边形ABDC 是否为梯形,并说明理由.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T .(Ⅰ)若1114,2a q ==,求3T ;(Ⅱ)证明: n n S T =(1,2,3,n =L )的充分必要条件为n a N *Î;(Ⅲ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<.北京市西城区2013 — 2014学年度第一学期期末高三数学(文科)参考答案及评分标准2014.1一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.D 3.A 4.C 5.B 6.C 7.A 8.C 二、填空题:本大题共6小题,每小题5分,共30分.9 10. 18 3411. 12.13-13. 2- (0,1] 14.○1○3注:第10、12、13题第一问2分,第二问3分. 第14题若有错选、多选不得分,少选得2分. 三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为π()sin()(0)3g x x ωω=->的最小正周期为π, 所以2||ωπ=π,解得2ω=. ……………… 3分由 ()f α=2α=,即 cos 22α=, ……………… 4分 所以 π22π4k α=±,k ∈Z . 因为 [π,π]α∈-,所以7πππ7π{,,,}8888α∈--. ……………… 6分(Ⅱ)解:函数 π()()2sin(2)3y f x g x x x =+=+-ππ2sin 2cos cos 2sin 33x x x =+- ……………… 8分1sin 2222x x =+ πsin(2)3x =+, ………………10分由 2πππ2π2π232k k x -++≤≤, ………………11分解得 5ππππ1212k k x -+≤≤. ………………12分所以函数()()y f x g x =+的单调增区间为5ππ[ππ]()1212k k k -+∈Z ,.…………13分16.(本小题满分13分)(Ⅰ)解:依题意,得 11(889292)[9091(90)]33a ++=+++, ……………… 3分解得 1a =. ……………… 4分 (Ⅱ)解:设“乙组平均成绩超过甲组平均成绩”为事件A , ……………… 5分依题意 0,1,2,,9a =L ,共有10种可能. ……………… 6分 由(Ⅰ)可知,当1a =时甲、乙两个小组的数学平均成绩相同,所以当2,3,4,,9a =L 时,乙组平均成绩超过甲组平均成绩,共有8种可能.… 7分所以乙组平均成绩超过甲组平均成绩的概率84()105P A ==. ……………… 8分 (Ⅲ)解:设“这两名同学的数学成绩之差的绝对值不超过2分”为事件B ,………… 9分当2a =时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有339⨯=种, 它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92), ………………10分所以事件B 的结果有7种,它们是:(88,90),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92). ……………… 11分因此这两名同学的数学成绩之差的绝对值不超过2分的概率7()9P B =. ………………13分17.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD 是正方形,所以AC BD ⊥. ……………… 1分 又因为平面BDEF ⊥平面ABCD ,平面BDEF I 平面ABCD BD =, 且AC ⊂平面ABCD ,所以AC ⊥平面BDEF . ……………… 4分 (Ⅱ)证明:在CEF ∆中,因为,G H 分别是,CE CF 的中点,所以//GH EF ,又因为GH ⊄平面AEF ,EF ⊂平面AEF ,所以//GH 平面AEF . ……………… 6分设AC BD O =I ,连接OH ,在ACF ∆中,因为OA OC =,CH HF =,所以//OH AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF ,所以//OH 平面AEF . ……………… 8分 又因为OH GH H =I ,,OH GH ⊂平面BDGH ,F B CGEAH D O所以平面//BDGH 平面AEF . ………………10分 (Ⅲ)解:由(Ⅰ),得 AC ⊥平面BDEF ,又因为AO =BDEF 的面积3BDEF S =⨯=Y 11分所以四棱锥A BDEF -的体积1143BDEF V AO S =⨯⨯=Y . ………………12分 同理,四棱锥C BDEF -的体积24V =.所以多面体ABCDEF 的体积128V V V =+=. ………………14分18.(本小题满分13分)(Ⅰ)解:因为()()e xf x x a =+,x ∈R ,所以()(1)e xf x x a '=++. ……………… 2分令()0f x '=,得1x a =--. ……………… 3分 当x 变化时,()f x 和()f x '的变化情况如下:)……………… 5分故()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.………… 6分 (Ⅱ)解:由(Ⅰ),得()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.所以当10a --≤,即1a -≥时,()f x 在[0,4]上单调递增,故()f x 在[0,4]上的最小值为min ()(0)f x f a ==; ……………… 8分 当401a <--<,即51a -<<-时,()f x 在(0,1)a --上单调递减, ()f x 在(1,4)a --上单调递增,故()f x 在[0,4]上的最小值为1min ()(1)e a f x f a --=--=-;………………10分当41a --≥,即5a -≤时,()f x 在[0,4]上单调递减,故()f x 在[0,4]上的最小值为4min ()(4)(4)e f x f a ==+. ………………12分所以函数()f x 在[0,4]上的最小值为1min4, 1,()e , 51,(4)e , 5.a a a f x a a a ---⎧⎪=--<<-⎨⎪+-⎩≥≤ ……13分19.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分 令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分 因为抛物线W 的焦点在直线AB 的下方, 所以 114k ->, 解得 34k <. 因为 0k >, 所以 304k <<. ……………… 5分 (Ⅱ)解:结论:四边形ABDC 不可能为梯形. ……………… 6分 理由如下:假设四边形ABDC 为梯形. ……………… 7分 由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩消去y ,得210x kx k -+-=,由韦达定理,得11x k +=,所以 11x k =-. ……………… 8分同理,得211x k=--. ……………… 9分 对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线BD 的斜率为1222x k =-, ……………… 10分抛物线2y x =在点C 处的切线CD 的斜率为2222x k=--. ………………11分 由四边形ABDC 为梯形,得//AB CD 或//AC BD . 若//AB CD ,则22k k=--,即2220k k ++=, 因为方程2220k k ++=无解,所以AB 与CD 不平行. ………………12分 若//AC BD ,则122k k-=-,即22210k k -+=, 因为方程22210k k -+=无解,所以AC 与BD 不平行. ……………13分 所以四边形ABDC 不是梯形,与假设矛盾.因此四边形ABDC 不可能为梯形. ……………14分20.(本小题满分13分)(Ⅰ)解:因为等比数列{}n a 的114a =,12q =, 所以 114a =,27a =,3 3.5a =. ……………… 1分所以 114b =,27b =,33b =. ……………… 2分则 312324T b b b =++=. ……………… 3分(Ⅱ)证明:(充分性)因为 n a N *Î,所以 []n n n b a a == 对一切正整数n 都成立. 因为 12n n S a a a =+++L ,12n n T b b b =+++L ,所以 n n S T =. ……………… 5分(必要性)因为对于任意的n N *Î,n n S T =,当1n =时,由1111,a S b T ==,得11a b =; ……………… 6分 当2n ≥时,由1n n n a S S -=-,1n n n b T T -=-,得n n a b =.所以对一切正整数n 都有n n a b =. ……………… 7分 因为 []n n b a Z =?,0n a >,所以对一切正整数n 都有n a N *Î. ……………… 8分 (Ⅲ)证明:因为 201421()n T n n =+≤,所以 113b T ==,120142(2)n n n b T T n -=-=≤≤. ……………… 9分 因为 []n n b a =,所以 1[3,4)a ∈,2014[2,3)(2)n a n ∈≤≤. ………………10分 由 21a q a =,得 1q <. ………………11分 因为 201220142[2,3)a a q =∈,所以 20122223qa >≥, 所以 2012213q<<,即 120122()13q <<. ………………13分。
北京市西城区2013 — 2014学年度第一学期期末试卷高二数学 2014.1(理科)试卷满分:150分 考试时间:120分钟题号 一 二三本卷总分1718 19 20 21 22 分数一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.圆2221x y y ++=的半径为( ) A. 1B.2C. 2D. 42.双曲线1922=-y x 的实轴长为( ) A. 4B. 3C. 2D. 13.若(,1,3)x =-a ,(2,,6)y =b ,且//a b ,则( ) A. 1,2x y ==- B. 1,2x y == C. 1,22x y ==- D. 1,2x y =-=-4.命题“x ∀∈R ,20x ≥”的否定为( ) A. x ∀∈R ,20x < B. x ∀∈R ,20x ≤ C. x ∃∈R ,20x ≥D. x ∃∈R ,20x <5. “n m =”是“方程122=+ny mx 表示圆”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件6.关于直线,a b 以及平面,M N ,下列命题中正确的是( )A. 若//a M ,//b M ,则//a bB. 若//a M ,b a ⊥,则b M ⊥C. 若b M ⊂,且a b ⊥,则a M ⊥D. 若a M ⊥,//a N ,则M N ⊥7.已知12,F F 为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于,A B 两点,8AB =,则22AF BF +=( ) A. 2B. 10C. 12D. 148.某几何体的三视图如图所示,则它的体积等于( ) A. 8B. 6C. 4D.839.已知平面内两个定点(1,0),(1,0)A B -,过动点M 作直线AB 的垂线,垂足为N .若2MN AN BN =⋅,则动点M 的轨迹是( )A. 圆B. 抛物线C. 椭圆D. 双曲线10. 已知正方体1111D C B A ABCD -,点E ,F ,G 分别 是线段B B 1,AB 和1A C 上的动点,观察直线CE 与F D 1,CE 与1DG .给出下列结论:①对于任意给定的点E ,存在点F ,使得1D F ⊥CE ; ②对于任意给定的点F ,存在点E ,使得⊥CE F D 1; ③对于任意给定的点E ,存在点G ,使得1D G ⊥CE ; ④对于任意给定的点G ,存在点E ,使得⊥CE 1D G .其中正确结论的个数是( ) A. 1个 B. 2个C. 3个D. 4个二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上. 11. 已知抛物线的准线为1-=x ,则其标准方程为_______.12. 命题“若x y >,则x y >”的否命题是:__________________.222俯视图侧视图正视图F DA BC A 1B 1C 1D 1E G13. 双曲线221412x y -=的离心率为_______;渐近线方程为_______.14. 一个正方体的八个顶点都在同一个球面上,则球的表面积与这个正方体的表面积之比为_______.15. 如图,长方体1111ABCD A B C D -中,ABCD 是边长为1的正方形,1D B 与平面ABCD 所成的角为45, 则棱1AA 的长为_______;二面角1B DD C --的 大小为_______.16. 已知M 为椭圆22143x y +=上一点,N 为椭圆长轴上一点,O 为坐标原点. 给出下列结论:① 存在点,M N ,使得OMN ∆为等边三角形; ② ②不存在点,M N ,使得OMN ∆为等边三角形;③存在点,M N ,使得90OMN ∠=;④不存在点,M N ,使得90OMN ∠=. 其中,所有正确结论的序号是__________.三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤.17.(本小题满分13分)如图,在四棱锥ABCD P -中,底面ABCD 为矩形,⊥PA 底面ABCD ,M 、N 分别是AB 、PC 中点.(Ⅰ)求证://MN 平面PAD ; (Ⅱ)求证:MN AB ⊥.18.(本小题满分13分)已知圆C 经过坐标原点O 和点(2,2),且圆心在x 轴上.(Ⅰ)求圆C 的方程;(Ⅱ)设直线l 经过点(1,2),且l 与圆C 相交所得弦长为32,求直线l 的方程.ABCDNPMD ABCA 1B 1C 1D 119.(本小题满分13分)如图,在直三棱柱111ABC A B C -中,90ACB ∠=︒,12AC CB CC ===,E 是AB 中点.(Ⅰ)求证:1AB ⊥平面1A CE ;(Ⅱ)求直线11A C 与平面1A CE 所成角的正弦值.20.(本小题满分14分)如图所示,四边形ABCD 为直角梯形,CD AB //,BC AB ⊥,ABE ∆为等边三角形,且平面ABCD ⊥平面ABE ,222AB CD BC ===,P 为CE 中点.(Ⅰ)求证:AB ⊥DE ;(Ⅱ)求平面ADE 与平面BCE 所成的锐二面角的余弦值;(Ⅲ)在ABE ∆内是否存在一点Q ,使PQ ⊥平面CDE ,如果存在,求PQ 的长;如果不存在,说明理由. BECDP·ABCA 1B 1C 1E21.(本小题满分13分)已知抛物线2:12C y x =,点(1,0)M -,过M 的直线l 交抛物线C 于,A B 两点.(Ⅰ)若线段AB 中点的横坐标等于2,求直线l 的斜率; (Ⅱ)设点A 关于x 轴的对称点为A ',求证:直线A B '过定点.22.(本小题满分14分)已知,,A B C 为椭圆22:22W x y +=上的三个点,O 为坐标原点.(Ⅰ)若,A C 所在的直线方程为1y x =+,求AC 的长;(Ⅱ)设P 为线段OB 上一点,且3OB OP =,当AC 中点恰为点P 时,判断OAC ∆的面积是否为常数,并说明理由.北京市西城区2013 — 2014学年度第一学期期末试卷高二数学(理科)参考答案及评分标准2014.1一、选择题:本大题共10小题,每小题4分,共40分.1.B2.C3.A4.D5.B6.D7.C8.C9.D 10. B 二、填空题:本大题共6小题,每小题5分,共30分.11. x y 42= 12. 若x y ≤,则x y ≤. 13. 2,3y x =±14. π:2 15. 2,45 16. ①④注:一题两空的试题,第一空3分,第二空2分;16题,仅选出①或④得3分;错选得0分.三、解答题:本大题共6小题,共80分.17. 证明:(Ⅰ)取PD 中点Q ,连结AQ,NQ .因为 N 是PC 中点, 所以 1//2NQ DC . ………………2分 又M 是AB 中点,1//2AM DC , 所以 //AM NQ ,四边形AQNM 是平行四边形. ………4分 所以 //MN AQ . ………………5分 因为 MN Ë平面PAD ,AQ Ì平面PAD , 所以 //MN 平面PAD . ………………7分(Ⅱ)因为 PA ^平面ABCD ,所以 PA AB ^. ………………8分又 ABCD 是矩形,所以 AB AD ^. ………………9分 所以 AB ^平面PAD , ………………10分 所以 AB AQ ^. ………………11分 又 //AQ MN ,所以 AB MN ^. ………………13分18. 解:(Ⅰ)设圆C 的圆心坐标为(,0)a ,ABCDNPM Q依题意,有22(2)2a a =-+, ………………2分即2248a a a =-+,解得2a =, ………………4分 所以圆C 的方程为22(2)4x y -+=. ………………6分 (Ⅱ)依题意,圆C 的圆心到直线l 的距离为1, ………………8分所以直线1x =符合题意. ………………9分 另,设直线l 方程为2(1)y k x -=-,即20kx y k --+=, 则2211k k +=+, ………………11分解得34k =-, ………………12分 所以直线l 的方程为32(1)4y x -=--,即34110x y +-=. ………………13分综上,直线l 的方程为10x -=或34110x y +-=. 19.(Ⅰ)证明:因为111ABC A B C -是直三棱柱, 所以11CC AC ,CC BC ^^,又90ACB?o,即AC BC ^. ………………2分 如图所示,建立空间直角坐标系C xyz -.(200)A ,,,1(022)B ,,,(110)E ,,,1(202)A ,,, 所以 1=(222)AB ,,-uuu r ,=(110)CE ,,uur , 1=(202)CA ,,uuu r. ………………4分 又因为 10AB CE ?uuu r uur ,110AB CA ?uuu r uuu r, ………………6分 所以 1AB CE ^,11AB CA ^,1AB ^平面1ACE . ………………7分 (Ⅱ)解:由(Ⅰ)知,1=(222)AB ,,-uuu r是平面1ACE 的法向量, ………………9分 11==(200)C A CA ,,uuu r uu r, ………………10分则 111111111cos C A AB C A ,AB C A AB ×狁=uuu u r uuu ruuu u r uuu r uuu u r uuu r 33=. ………………12分 设直线11A C 与平面1ACE 所成的角为q , 则111sin =cos C A ,AB 狁uuu u r uuu rq 33=. 所以直线11A C 与平面1ACE 所成角的正弦值为33. ………………13分 20. (Ⅰ)证明:取AB 中点O ,连结OD,OE , ………………1分 A BC A 1B 1C 1E x y z因为△ABE 是正三角形,所以AB OE ^. 因为 四边形ABCD 是直角梯形,12DC AB =,AB //CD , 所以 四边形OBCD 是平行四边形,OD //BC , 又 AB BC ^,所以 AB OD ^. 所以 AB ^平面ODE ,………………3分 所以 AB DE ^. ………………4分 (Ⅱ)解:因为平面ABCD ⊥平面ABE ,AB OE ^,所以OE ^平面ABCD ,所以 OE OD ⊥. ………………5分 如图所示,以O 为原点建立空间直角坐标系.则 (100)A ,,,(100)B ,,-,(001)D ,,,(101)C ,,-,(030)E ,,.所以 =(101)AD ,,-uuu r ,=(031)DE ,,-uuu r, ………………6分设平面ADE 的法向量为1n 111=()x ,y ,z ,则1100DE ADìï?ïíï?ïïîuuu r uuu r n n 1111300y z x z ìï-=ïÛíï-+=ïî, ………………7分 令11z =,则11x =,133y =.所以1n 3=(11)3,,. ………………8分 同理求得平面BCE 的法向量为2n =(310),,-, ………………9分设平面ADE 与平面BCE 所成的锐二面角为θ,则cos θ1212×=n n n n 77=.所以平面ADE 与平面BCE 所成的锐二面角的余弦值为77. ………………10分 (Ⅲ)解:设22(0)Q x ,y ,,因为131()222P ,,-, 所以22131()222PQ x ,y ,=+--uu u r ,=(100)CD ,,uu u r ,=(031)DE ,,-uuu r . 依题意00PQ CD PQ DEìï?ïíï?ïïîuu u r uu u ruu u r uuu r,, 即22102313()022x ,y ,ìïï+=ïïïíïï-+=ïïïî………………11分 A B E CDP·yxz O解得 212x =-,233y =. ………………12分符合点Q 在三角形ABE 内的条件. ………………13分 所以,存在点13(0)23Q ,,-,使PQ ^平面CDE ,此时33PQ =.…………14分 21.解:(Ⅰ)设过点(1,0)M -的直线方程为(1)y k x =+,由 2(1),12,y k x y x =+⎧⎨=⎩ 得2222(212)0k x k x k +-+=. ………………2分因为 20k ≠,且2242(212)4144480k k k ∆=--=->,所以,(3,0)(0,3)k ∈- . ………………3分设11(,)A x y ,22(,)B x y ,则2122122k x x k -+=,121x x =. ………………5分 因为线段AB 中点的横坐标等于2,所以2122622x x k k+-==, ………………6分 解得2k =±,符合题意. ………………7分 (Ⅱ)依题意11(,)A x y '-,直线212221:()y y A B y y x x x x +'-=--, ………………8分又 21112y x =,22212y x =, 所以 222112()y x x y y y =-+-, ………………9分12212112y y x y y y y =--- ………………10分因为 221212144144y y x x ==, 且12,y y 同号,所以1212y y =, ………………11分 所以 2112(1)y x y y =--, ………………12分所以,直线A B '恒过定点(1,0). ………………13分22. 解:(Ⅰ)由2222,1x y y x ⎧+=⎨=+⎩ 得2340x x +=,解得0x =或43x =-, ………………2分 所以,A C 两点的坐标为(0,1)和41(,)33--, ………………4分所以423AC =. ………………5分(Ⅱ)①若B 是椭圆的右顶点(左顶点一样),则(2,0)B , 因为3OB OP =,P 在线段OB 上,所以2(,0)3P ,求得423AC =,……6分 所以OAC ∆的面积等于4224=23391⨯⨯. ………………7分 ②若B 不是椭圆的左、右顶点,设:(0)AC y kx m m =+≠,1122(,),(,)A x y C x y ,由22,22y kx m x y =+⎧⎨+=⎩ 得222(21)4220k x kmx m +++-=, ………………8分 122421kmx x k +=-+,21222221m x x k -=+, 所以,AC 的中点P 的坐标为222(,)2121km mk k -++, ………………9分所以2263(,)2121km mB k k -++,代入椭圆方程,化简得22219k m +=. ……………10分 计算 AC 2212121()4kx x x x =++-22222212121k k m k ++-=+…………11分281=9k m+. ………………12分因为点O 到AC 的距离O AC d -=21m k+. ………………13分所以,OAC ∆的面积2OAC O AC S AC d ∆-1=⋅228142991m k m k 1+=⨯⋅=+. 综上,OAC ∆面积为常数49. ………………14分。
2013-2014北京初二上期末数学试题汇编 怀柔区2013—2014学年第一学期期末统一检测初二数学考生须知1.本试卷共4页,共七道大题,31道小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将本试卷、答题卡一并交回. 一、选择题(本题共36分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.36的算术平方根是( )A.6B. -6C. 4或9D.±6 2. 在实数–9,–0.1,12,3中,是无理数的是( ) A. –9 B. –0.1 C. 12D. 33.下列二次根式中,最简二次根式是( )A .21B .17C .75D .35a 4.若分式392--x x 的值是零,则x 的值是( )A .0=xB .3±=xC .3-=xD .3=x5.下列计算结果正确的是( ) A .257+=B .2510⨯=C .3223-=D .25105= 6.下列亚运会会徽中的图案,不是轴对称图形的是( )A .B .C .D . 7.如果等腰三角形的一个外角等于110°,则它的顶角是( )CB A18题图 20题图 A .40° B .55° C .70° D .40°或70°8.下列判断中错误..的是( ) A. 有两角和一边对应相等的两个三角形全等B. 有两边和一角对应相等的两个三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有一边对应相等的两个等边三角形全等9.已知等腰三角形的两条边分别是4、7,则这个等腰三角形的周长为( )A. 11B. 15C. 18D. 15或1810. 若一个三角形三个内角度数的比为1︰2︰3,那么这个三角形是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等边三角形 11. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°12. 明明的相册里放了大小相同的照片共32张,其中与同学合影8张、与父母合影10张、个人照片14张,她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是( ) A.21 B.31C.41D.81 二、填空题(本题共8个小题,每小题3分,共24分)13. 81的平方根是 . 14.如果023=-+-y x ,则yx 的值是 .15.如图,在数轴上点A 和点B 之间表示整数的点共有 个.16.若长度分别为5、3、x 的三条线段能组成一个三角形,则x 的取值范围是 .17.如图,在△ABC 中,AB=AC ,∠A =40︒,AB 的垂直平分线MN 交AC 于D . 连结BD ,则∠DBC 的度数是 . 18.如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,AD =5,AC =4,则D 点 到AB 的距离是__________.19.已知,ab =2,a +b =4,则式子b aa b+= .20.如图,在等腰直角△ABC 的斜边AB 上任取两点M 、N ,使∠MCN=45°, 记AM=m ,MN=n ,BN=k . 试猜想:以m 、n 、k 为边长的三角形AB53- N MDC BA17题图F A 的形状是(在下列括号中选择) .(锐角三角形;钝角三角形; 直角三角形; 等腰三角形;等腰直角三角形;等边三角形) 三、解答题:(本题共4个小题,每小题5分,共20分) 21.计算:()22(12)63+-⨯. 22.261.39a a ++- 解: 解:23.解方程:2111x x x x++=+. 解:24. 先化简,再求值:)252(+--x x ÷423+-x x ,其中2=x解:四、画图题:(本题满分6分) 25. 已知:图①、图②均为5×6的正方形网格,点A B C 、、在格点(小正方形的顶点)上.请你分别在图①、图②中确定格点D ,画出一个以A B C D 、、、为顶点的四边形,使其为轴对称图形,并画出对称轴.五、列方程解应用题:(本题满分6分)26.某校八年级两个班的“班级小书库”中各有图书300本.已知2班比1班人均图书多2本,1班的人数比2班的人数多20%.求两个班各有多少人? 解:六、解答题:(本题共4个小题,27、28、29小题各6分,30小题5分,共23分) 27.如图,在△ABC 中,点D 在BC 边上(点D 不与点B 、C 重合),点F ,E 分别是AD 及其延长线上的点,CF ∥BE ,请你添加一个条件,使△CDF ≌△BDE (不再添加其它线段,不再标注或使用其他字母),并给出证明.解:(1)你添加的条件是: ;(2)证明:图① 图②28.已知△ABC 为等边三角形,点D ,E 分别在BC ,AC 边上,且AE =CD ,AD 与BE 相交于点F . 求证:△ABE ≌△CAD . 解:29. 已知:如图,四边形ABCD 中,AB > AD ,AC 平分∠DAB ,∠B +∠D =180°.求证:CD =CB .30.已知:如图,有一块四边形土地ABCD ,90ADC ∠=︒,8AD m =,6CD m =,26AB m =,24BC m =,求这块土地的面积S . 解:七、探究题:(本题满分5分)31.已知:四边形ABED 中,AD ⊥DE 、BE ⊥DE .(1) 如图1,点C 是边DE 的中点,且AB=2AD=2BE .判断△ABC 的形状: (不必说明理由);(2) 保持图1中△ABC 固定不变,将直线DE 绕点C 旋转到图2中所在的MN 的位置(垂线段AD 、BE 在直线MN 的同侧).试探究...线段AD 、BE 、DE 长度之间有什么关系?并给予证明;(3) 保持图2中△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(垂线段AD 、BE 在直线MN 的异侧).⑵中结论是否依然成立,若成立请证明;若不成立,请写出新的结论,并给予证明.ABC D EABC E N MN ABC D E D C B A门头沟区2013—2014学年度第一学期期末调研试卷八年级数学考生 须知1.本试卷共8页,共七道大题,29道小题。
关于2013--2014学年第二学期期末考试的工作安排各教学单位:为做好我校2013--2014学年第二学期本、专科学生的期末考试工作,现将有关事宜安排如下:一、公共考试课课程:2013级(一年级):本科:文科:《大学英语》、《中国近现代史纲要》、《马克思主义原理》理科:《大学英语》、《中国近现代史纲要》、《马克思主义原理》专科:文科:《大学英语》、《毛泽东思想和中国特色社会主义体系》、《心理学》(2013级美术学专升本)理科:《大学英语》、《毛泽东思想和中国特色社会主义体系》、《心理学》2012级(二年级):本科:文科:《大学英语》、《教育学》理科:《大学英语》、《教育学》专科:文科:《大学英语》理科:《大学英语》专业课考试课程由各学院按照人才培养方案决定。
专业课和公修课考试课程原则上不少于5门。
考查课在第18周进行,2014年6月16日—6月20日考查结束(包括全校公选课)。
二、考试时间:2014年6月23日—6月28日(上午8:30—10:20,下午3:00—4:50)。
本学期双学位学生期末考试时间均安排在第17周进行,由相关承担单位自行安排。
本学期重修课程跟随期末考试同时进行,如需集中安排,请安排在2014年6月21日-6月22日。
三、试卷送交时间:各科考试试卷(纸质版)务必于2014年6月9日(星期一)前交教务科,同时交送试卷登记表和试卷审查表,各学院专业课考试时间安排表请务必于6月16日前将电子版与纸质版交教务科,考试试卷模版在教务处网页中下载。
专业课考试试卷由各学院与平原路校区文印室联系印刷。
四、试卷评阅与成绩登录时间:各学院(部)要成立试卷评阅领导组,各门课程要成立2-3人的阅卷小组,继续实行在办公室集体阅卷的制度。
试卷评阅要认真,要严格按学校考试工作管理规程的要求执行。
各学院(部)务必于2014年6月29日-7月10日期间通过教务管理系统完成考试成绩的网上登录。
五、公共课试卷领取与送交安排:本学期公共考试课试卷仍采取由文印室负责印刷、装订并按各学院考场安排进行密封,各学院在规定时间内领回试卷后,考试开始前20分钟方可在考场内现场拆封,不得提前拆封试卷。
2013-2014上学期期末考试答案A 卷:1 一5ABBCA 6—10ACACB 11—15ABCCB 16—20AACBC21-25 ADBAD 26-30 CDDBD31—50 BDBCD BACCD CBADB ACBAD51-53 BCA阅读B:本文为说明文。
主要讲了风靡世界的健康食品“寿司,啲制作方法,食用方法及其起源和发展。
54.B【命题立意】考査考生简单推断的能力。
据第三段*^Howevei; in the 1800s, a famous chef by the name of Yohei created two styles of Sushi—ne called Edo, and the second, Osaka, for the two cities?* 可知一位名叫洋平的日本厨师发明了两种寿司;一种叫江户寿司,另一种叫大阪寿司,因大阪这座城市而得名,故选B。
55.D【命题立意】考査考生简单推断的能力。
据第四段“Gari is offered free and eatenbehveen bites to freshen the mouth.",可知餐馆供应免费的Gari在每口之间食用,用来提鲜,故选D。
56.C【命题立意】考査考生简单推断的能力。
根据最后一段可知寿司是一种健康食品,深受人们喜爱,正式由于食用寿司所带来的健康益处,这种食物可能会在将来的数百年里继续风行下去。
57.A【命题立意】考査考生对文章标题的概括提炼能力。
【试题解析】本文主要讲述健康食品寿司及其起源和发展,与答案A相符。
58—61 DBCA 62 …65ACDB【语篇解读】本文为说明文。
该文就如何解数学题及怎样验证答案进行了详述。
66.D【命题立意】考査考生对上下文因果关系的理解能力及段落主g的概括能力。
根据上句"Knowing how to go through your math test and check your work can save you from handing in a test full of mistakes that can be avoided.-可知,此处应是知道了如何解题及验证答案有助于提高你的成绩和解题技巧。
座位号中央广播电视大2013-2014第二学期末考试《应用写作》试题一、填空题(每个1分,共18分) 1. 在公务活动中,国家行政机关公布社会各有关方面应当遵守或周知的事项时应该用法定公文中的 ;不相隶属机关之间相互商洽工作,询问和答复问题,请求批准和答复审批事项时应该用法定公文中 。
2.会议纪要应具有两大特点:一是 ,二是 。
3.调查报告的特点主要体现为、 和典型性。
4. 可行性研究报告的特点主要体现在以下三方面:一是高度的 ;二是严密的 ,三是学科的 。
5.合同的写作通常可以采用三种形式:一是 ,二是 ,三是 。
6.民事起诉状的正文主要包括 、 和证据三方面内容。
7.科学研究的课题有两大类:一类是 性研究课题;一类是 性研究课题。
8.学术情报的种类很多,述评是其中之一。
述评具有两大特点:一是 ;二二、名词解释(每个4分,共12分)1. 经济消息2. 市场预测报告3.投标文书 三、简答题(每小题10分,共10分)撰写学术论文时,选材的原则和标准有哪些?四、运用自己所学过的文体写作知识,评析下面这篇工作总结。
(20分)XX 外国语学院2003年毕业生就业工作总结我校2003年毕业生就业工作在市教委和校党委的正确领导下,认真贯彻执行国家和各地区毕业生就业工作的方针、政策,经过各二级学院的配合和艰苦努力,已基本结束。
现将有关情况汇报如下:一、毕业生基本情况2003年我校共有毕业生1209人,其中春季毕业硕士研究生36人,暑期提前毕业硕士研究生3人,暑期毕业本科、高职毕业生1170人。
本科、高职毕业生中包括天津生源毕业生777人(英语涉外口笔译120人、英语国际贸易44人、英语涉外文秘9人、英语国际金融123人、英语国际会计24人、英语国际信息20人、英语国际商务52人、日语涉外口笔译71人、德语涉外口笔译9人、法英双语21人、西英双语5人、俄英双语6人、国际经济与贸易15人、高职外贸英语124人、旅游英语64人、高职旅游日语13人、外贸日语33人、韩语高职24人);外省市毕业生393人,其中省市互培生68人。
2013~2014学年第一学期期末复习资料专题五金属的冶炼和利用第Ⅰ部分(选择题)单项选择题(每题只有一个....选项符合题意。
)1.下列物质不属于...合金的是()A.青铜B.铝C.钢D.生铁2.(2013常州)工业炼铁的主要设备为()A.平炉B.高炉C.电炉D.转炉3.(2013常州)下列铁制品的防锈方法不合理的是()A.汽车外壳——烤漆B.水龙头——镀防护金属C.公交车扶手——涂防锈油D.脸盆——烧涂搪瓷4.(2013淮安)将X、Y、Z三种金属分别放入稀硫酸中,只有Y表面有气泡产生;将X、Z放入AgNO3溶液中,X表面有固体析出,而Z表面没有变化.根据以上事实,判断三种金属活动性由强到弱的顺序是()A.Y、X、Z B.X、Z、Y C.Y、Z、X D.X、Y、Z 5.(2013苏州)为了验证铁、铜两种金属的活动性差异,如右图所示取2支试管分别进行有关实验,若要观察到现象的显著差异,所用液体合理的是()A.蒸馏水B.稀盐酸C.酒精水溶液D.硫酸铜溶液6.(2013连云港)将金属X置于氯化铝溶液中,X表面无固体析出;而将其置于硝酸银溶液中,会发生反应:X+2AgNO3═X(NO3)2+2Ag.由此可判断X、Al、Ag的金属活动活性顺序为()A.Al>Ag>X B.Ag>X>Al C.Al>X>Ag D.X>Al>Ag 7.(2013盐城)金属R投入稀硫酸中,有气泡产生,镁条插入R的硫酸盐溶液中,有R 析出,则R、Mg、Cu的金属活动顺序是()A.Mg>R>Cu B.Cu>R>Mg C.R>Mg>Cu D.Mg>Cu>R 8.(2013南京)下列叙述正确的是()A.将生锈的菜刀浸泡在食盐水中,可除去其表面的铁锈B.通过相互刻画的方法,发现铜片的硬度比黄铜片大C .淬火后的缝衣钢针能弯曲D .用食醋可除去热水壶内壁的水垢9.通过观察下列实验现象,不能达到实验目的的是 ( )A. 图1观察木条能否复燃,检验是否为氧气B. 图2观察反应有无气泡产生,判断是否为碳酸钠C. 图3观察反应剧烈程度,比较镁与锌的活动性D. 图4观察燃烧先后顺序,比较可燃物的着火点10.(2013苏州)下列有关金属性质的说法错误的是( ) A .常温下所有金属都是银白色的固体B .在空气中灼烧铜丝,其表面会变黑C .铜、银等金属具有良好的导电性D .埋在潮湿、疏松、透气的酸性土壤中的铸铁管容易被腐蚀11.下列反应属于置换反应的是( ) A .C +O 2 CO 2B .Mg +2HCl 2↑C .2NaOH +CuSO 4 Cu(OH)2↓+Na 2SO 4D .2H 2O 2 2H 2O +O 2↑12.(2013盐城)下列有关钢铁的叙述不正确的是( ) A .生铁和钢都属于铁合金B .铁丝在氧气中燃烧生成Fe 2O 3C .在钢管表面镀锌可以防止锈蚀D .炼铁的主要原料有铁矿石、焦炭、石灰石13.(2013扬州)下列有关金属的描述不正确的是( ) A .地壳中含量最多的金属元素是铝B .车船表面涂油漆可防止生锈C .生铁可全部溶解于过量稀盐酸中D .黄铜比纯铜的硬度大14.(2013福州市)下列关于铁的说法正确的是() A .铁部分锈蚀后没有回收价值MnO 2点燃B.铁是地壳中含量最丰富的金属元素C.铁生锈,产生的铁锈能阻止铁继续被锈蚀D.铁生锈是铁在有氧气和水等物质存在的条件下,发生复杂化学反应的过程15.(2013泸州市)下列家庭小实验中,铁钉被腐蚀速度最慢的是()16.(2013泰安市)下列防锈措施合理的是()A.经常用水冲洗自行车链条B.在铁制暖气片上刷“银粉”C.用“钢丝球”打磨铝锅表面D.用过的菜刀及时用盐水清洗17.(2013株洲市)下列说法正确的是()A.铁钉在潮湿的空气中容易生锈B.钢铁是钢和铁熔合在一起制得的具有金属特性的合金C.铜粉在空气中加热后固体质量会增加,因此这个反应不遵守质量守恒定律D.处理金属废弃物的方法是填埋法18.(2013广州市)下列关于铁制品的使用合理的是()A.铁铜加入硫酸铜溶液和石灰水配制农药B.菜刀用湿布包起来防止生锈C.不锈钢可用于制作外科手术刀D.用铁锅长期翠芳姜醋19.以下说法正确的是()A.常温下金属都是固体B.钠比铝抗腐蚀能力强C.青铜、生铁、焊锡均属合金D.铁的含碳量比钢底20.关于金属物品的使用正确的是()A.铝合金门窗变旧变暗后用砂纸或钢丝球打磨B.铁桶中加入硫酸铜溶液和石灰乳配制杀菌剂波尔多液C.铝壶内的水垢用质量分数为18%的热盐酸长时间浸泡D.校内用钢架制作的自行车防雨棚应定期喷涂油漆防锈21.(2013达州市)某不纯的铁5.6g与足量的稀硫酸充分反应,生成0.21g氢气,则铁中混有的金属可能是()A.Zn B.Cu C.Mg D.Ag 22.(2011苏州)下列关于合金的说法正确的是()A.合金不属于金属材料B.合金的硬度一般比各成分金属大C.合金属于金属单质D.多数合金的熔点高于组成它的成分金属23.(2013青岛市)控制变量法是实验探究的重要方法。
《机车构造原理》复习重点一、掌握以下基本概念:1.压缩比压缩比——气缸总容积与燃烧室容积的比值称为压缩比(ε)。
2. 柴油机有效功率柴油机有效功率——柴油机在单位时间内对外所作的功,被称为有效功率。
3. 燃油消耗率燃油消耗率——柴油机每发出l千瓦有效功率,所消耗的燃油量,称为有效燃油消耗率。
4.外部平衡性外部平衡性——惯性力和惯性力矩对机座的作用情况。
5.缸套穴蚀缸套穴蚀—指气缸与水接触的外表面被腐蚀成一个个的孔洞。
6.拉缸拉缸——由于干摩擦后没有润滑油来补充,金属之间相互迁入、锉切并粘接在一起,创面随活塞运动不断扩大以至产生大面积创伤。
7.气门间隙气门间隙——配气机构在冷态时必须预留一定的间隙,通常称为气门间隙。
8.压气机喘振压气机喘振——由于柴油机活塞运动的抽吸,使压气机中气流出现强烈的脉动,引起叶片和机组的振动,并在压气机流道中伴有刺耳的啸声。
这种不稳定的工作状态称为喘振。
9.柴油十六烷值柴油十六烷值——在柴油机中,柴油与空气组成的混合气是靠活塞压缩而自行着火的.因此要求其燃料油良好的自然性。
燃料在没有外界火源的情况下能自行着火的最低温度称为自燃点。
十六烷值就是用来评价柴油的自燃性的。
十六烷值高,自燃性好;反之,则低。
二、掌握以下知识点:1.四冲程柴油机的进气冲程与进气过程有不同吗?为什么? 二者有所区别。
四冲程柴油机的进气冲程是严格意义上的范围,它是指活塞从上止点移动到下止点。
而进气过程则并不是一个严格的定义,它所描述的范围要比进气冲程要大。
2.试分析发动机进、排气门提前开启和迟后关闭的原因。
进气门提前开启和迟后关闭的原图主要是为了加大进气量、减少进气损失。
降低排气阻力;排气门提前开启的原因是为了避免排气冲程并始时活塞上行阻力太大,迟后关闭是为了利用废气流出时的惯性,因为随着活塞的上行推动,缸内伪废气以一定的速度流出排气门。
利用这一流动气流的流动惯性,可进一步使气缸内废气排干净,以利于多进新鲜空气。
3. 减振器是如何消减曲轴扭振的。
减震器一般安装在扭转振幅最大的曲轴自由端。
动力式减震器依靠自身的动力作用产生反力矩来抵制干扰力矩;阻尼式减震器利用阻尼元件来吸收外界加给曲轴的干扰力矩能量起到衰减振动的目的。
4.机体上为什么要装设防爆安全装置。
因为气缸内的燃烧气体难免会漏人曲轴箱内,而柴油机的曲轴为防止漏油或渗油,通常使各观察孔、安装孔密封,当漏入曲轴箱的燃气过多、压力过大时,有可能发生曲轴箱爆炸。
因此应有防爆安全装置。
5.柴油机空气滤清器的作用是什么?滤清器的空气滤清方法是什么?作用是清除空气中的灰尘和杂质,将清洁的空气送入气缸内。
减少由于进气空气带进的机械杂质对活塞、气缸套、进气阀等组件的磨损。
滤清方法有三种:(1)惯性法,利用离心力的作用:使较重的物质自动的从空气中甩出去或分离出去。
(2)油浴法.使空气通过油液进行清洗。
(3)过滤法。
引导油液通过滤芯达到清洗的目的。
6.燃料供给系统是由哪些部分组成的?其功用是什么?燃料供给系统主要由燃料输送装置、燃料喷射装置和调控装置三部分组成。
另外,考虑到燃烧室的形状对雾化性能有很大的影响,因此柴油机的燃烧室也可以算作燃油系统的一部分。
燃料输送装置(也叫低压油路)由燃料箱、输油泵、燃油滤清器以及各种阀门、管路等组成。
机车柴油机中还有燃油预热装置。
燃料喷射装置(也称高压油路)由喷油泵、喷油器及高压油管等组成,是实现燃油雾化的主要部分。
调控装置是使柴油机能随外界负荷变化而自动调节燃油供给量以保证柴油机在稳定转速下运转的装置。
般而言,调控装置由调速器组成,但也有较好的转速—功率联合调节器。
7.何谓供油提前角和喷油提前角?解释两者的关系以及它们对柴油机性能的影响。
喷油提前角:柴油机开始喷油的时刻在活塞到达上止点前的曲轴转角度数。
供油提前角:喷油泵供油开始时刻到活塞到达上止点时刻之问对应的曲轴转角。
喷油提前期对于柴油机的着火落后期和燃烧阶段持续时间都有很大的影响;喷油过早、气缸内气体的压力和温度较低,着火落后期就长,工作就粗暴。
喷油时刻过晚.燃烧过程延续时间拉长,排气温度升高,导致柴油机的动力性和经济性下降。
8.简述二次喷射产生的原因、造成的危害及消除方法。
二次喷射是在喷油终了针阀落座后,由高压油管中较大的燃油压力波动所引起的,即当到达喷油器处的压力波波幅大于开启压力时,针阀又再次打开。
二次喷射发生时,喷油压力很低,燃油雾化不良,这将导致燃烧恶化,排气温度高,冒黑烟,油耗率增大,柴油机经济性下降。
消除二次喷射应该着眼于减小高压燃油的压力波动,可以减小高压容积,提高高压油管刚度。
比如减小高压油管内径和长度或者适当加大喷孔面积。
9.离心式滤清器的工作原理及特点是什么?离心式滤清器是利用离心力将密度较大的机械杂质从机油中分离出来的。
压力油从下部进油管经转子轴进入转子内腔,再经集油管从两个喷嘴喷出。
转子靠射出油流的反作用推动旋转,转速可达5000-6000r/min。
于是转子内腔形成离心力场,它比重力场大数千倍。
转子内的机油在高速旋转时,杂质在离心力的作用下抛向内腔四周,并沉积在内壁上,干净的机油从入口在中心的集油管流出。
离心式滤清器滤清效果好,通过能力大,不用更换滤芯,容污量也大,但缺点是机油泡沫化严重,且柴油机冷起动时机油粘度大,离心分离慢,这使得滤清效果较差。
10.中冷器的作用是什么?采用空气中间冷却的目的是什么?中冷器的作用是冷却增压空气。
对于增压度较高的柴油机,如机车柴油机。
压气机出口处空气温度很高,如果将其直接送人柴油机气缸, 则由于空气温度较高,空气密度的增加程度受到限制,影响增压效果,而且进气空气不但不能对燃烧室周围零部件起到冷却作用,还会使它们的热负荷变得严重。
因此,增压柴油机普遍采用空气中间冷却器,对增压空气进行冷却。
三、掌握以下论述题1.试述气环的密封原理和气环的泵油机理。
2.为什么必须设置气门间隙?如何调整气门间隙?3.分析柴油机燃烧过程的四个阶段。
《工业企业管理》复习重点1.科学管理的局限性。
答:科学管理的局限性表现在过分强调管理活动的科学性,而对人的个性未予以足够重视。
2.管理幅度与管理层次的关系。
答:在一定规模的企业中,管理幅度与管理层次成反比关系。
3.法人财产。
答:现代企业制度中出资人一旦把资本金注入企业,即与出资人的其他财产区分开来,成了企业的法人财产。
4.有限责任公司股东组成人数。
答:我国《公司法》规定,有限责任公司由50名以下股东共同出资设立。
5.企业形象设计(CIS)的基石。
答:企业形象设计(CIS)的基石是企业理念识别。
6.企业的职业特征企业所从事的活动具有商品性,是为交换而生产并以盈利为目的,这体现了企业的职业特征。
7.实现现代企业产权制度的重要基础。
答:实现现代企业产权制度的重要基础是法人企业。
8.企业管理的首要职能。
答:计划。
9.企业管理的职能(包括基本职能与具体职能)。
答:基本职能合理组织生产力、维护生产关系具体职能计划、组织、。
控制、创新、决策等。
10.企业管理组织的结构形式。
答:直线制、直线职能制、事业部制、矩阵组织结构、模拟分权组织结构、多维立体组织结构。
11.企业视觉识别基本设计系统的要素。
答:企业名称、企业标志、标准字体、标准色和商标等。
12.管理组织设计的概念。
答:是在企业目标已经确定的情况下,将实现目标所必须进行的各项业务活动加以分类组合,并根据管理幅度原理,划分出不同的管理层次和部门,将控制各类活动所必需的职权授予各层次、各部门的主管人员,以及规定这些层次和部门间的相互配合关系。
13.现代企业制度的概念。
答:是指以完善的法人财产权为基础,以有限责任为基本特征,以专家管理为中心的法人治理结构为保证,以公司制为主要形态的企业制度。
14.企业管理的性质。
答:企业管理具有二重性:1.企业管理的自然属性是指企业管理与社会生产力相联系的属性,为了合理组织生产力,需要采取必要的管理技术、管理方法和手段,2.企业管理的社会属性是指与生产社会关系想联系的属性,不同社会制度、不同所有制企业之间,由于生产关系有着质的区别,管理的社会属性之间存在根本区别。
企业管理的二重性是相互联系和不可分割的。
15.企业战略管理过程。
答:(一)战略分析阶段企业制定战略的前提是正确地分析企业的经营环境,在这个阶段的主要工作有:1.确定企业经营宗旨。
企业经营宗旨的确定与企业内部条件分析和外部环境分析密切相关。
2.评价企业内部条件,特别是对企业优势和劣势进行分析。
3.分析评价企业的外部环境,特别是评级企业所面临的机会和威胁。
(二)战略选择阶段战略制定是战略管理的核心环节,这一阶段的主要工作有:1.根据外部环境和内部条件、企业经营宗旨,拟定可供选择的几种发展战略方案;2.对上述各项战略方案进行分析评价;3.最终选择一套企业满意的战略方案;4.为战略的实施制定政策和计划。
(三)战略实施阶段这一阶段的主要工作有:1.在企业各部门之间分配资源;2.设计与战略相一致的组织结构,这个组织结构应能保证战略任务、责任和决策权限在企业中的合理分配;3.保证企业文化与战略的匹配;4.发挥领导作用;5.处理各项矛盾和冲突。
(四)战略控制阶段在战略实施过程中,必须进行有效的控制,以保证战略目标的实现,这一阶段的主要工作有:1.制定效益标准;2.衡量实际效益;3.评价实际效益;4.制定纠正措施和权变计划。
16.实行多元同心化战略的基础与核心。
答:技术专长。
17.决策树法决策的依据。
答:期望损益值。
18.盈亏平衡点。
答:产品生产总成本和销售收入相等时对应的点被称为盈亏平衡点。
19.直接影响企业竞争力的环境。
答:行业环境。
20.通用矩阵图。
答:教材第二章第二节,要求能够看懂,明确企业所处的竞争地位及行业吸引力,并清楚处于矩阵图不同位置的企业应采取的经营战略。
21.期望损益值的计算。
答:第二章第四节,记住计算公式,理解教材中的例题。
22.企业战略管理的特征。
答:全局性、长远性、竞争性、稳定性、风险性、社会性。
23.从战略构成要素来看,业务战略中最主要的组成部分。
答:资源配置、竞争优势。
24.企业总体经营战略的基本类型。
答:1成长战略:包括单一产品增长战略、同心多元化战略、纵向一体化战略、多角化战略;2.稳定战略;3.紧缩战略。
25.属于变动成本的费用。
答:原材料费、燃料费、计件工资。
26.企业战略管理的概念。
答:企业战略管理是针对关系企业全局性的发展方向作出的决策和行动,如确定企业新产品、新市场、新技术的发展方向,决定企业未来一定时期内经营范围和经营规模,选定投资方向,确定经营目标、方针、路线,涉及企业制定和实现预期总体经营目标的全过程。
27.同心多元化战略的概念。
答:是指利用现有技术与优势,增加与现有产品相类似的新产品的一种战略,该战略适用于拥有技术专长和经营优势的企业,是一种低风险的发展战略。