2019年秋(浙教版)九年级数学下册:第一次质量评估试卷含答案
- 格式:docx
- 大小:2.97 MB
- 文档页数:9
2019届九年级下册数学全册综合检测一姓名:__________ 班级:__________题号一二三总分评分一、选择题(共12小题;每小题3分,共36分)1.做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A. 0.22B. 0.42C. 0.50D. 0.582.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A. 美B. 丽C. 肇D. 庆3.如图,Rt△ABC中,∠C=90°,若AB=5,sinA= ,则AC的长是()A. 3B. 4C. 5D. 64.在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值()A. 都扩大1倍B. 都缩小为原来的一半C. 都没有变化D. 不能确定5.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A. B. C. D.6.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A. 20B. 30C. 40D. 507.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A. cmB. cmC. cmD. 1cm8.已知如图,PA、PB切⊙O于A、B,MN切⊙O于C,交PB于N;若PA=7.5cm,则△PMN的周长是()A. 7.5cmB. 10cmC. 15cmD. 12.5cm9.如图,Rt△ABC中,∠C=90°,AC=6,CB=8,则△ABC的内切圆半径r为()A. 1B. 2C. 1.5D. 2.510.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A. B. C. D.11.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A. B. C. D.12.如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为()A. 米B. 米C. 米D. 米二、填空题(共10题;共30分)13.如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是________14.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是________.15. 如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为 ________m(结果保留根号).16.如图,∠ABC=90°,O为射线BC上一点,以点O为圆心,OB长为半径作⊙O,将射线BA绕点B按顺时针方向旋转至BA′,若BA′与⊙O相切,则旋转的角度α(0°<α<180°)等于________.17.大双、小双兄弟二人的身高相同,可是在灯光下,哥哥大双的影子比弟弟小双的影子短,这是因为________ .18.如图,PA,PB是⊙O的切线,CD切⊙O于E,PA=6,则△PDC的周长为________.19.随机抛掷一枚图钉10000次,其中针尖朝上的次数为2500次,则抛掷这枚图钉1次,针尖朝上的概率是________ .20.若sin28°=cosα,则α=________.21.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 63 124 178 302 481 599 1803摸到白球的频率0.63 0.620.5930.6040.6010.5990.601(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近________ ;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(摸到白球)=________ ;(3)试验估算这个不透明的盒子里黑球有________ 只?22.在直角坐标平面内,圆心O的坐标是(3,﹣5),如果圆O经过点(0,﹣1),那么圆O与x轴的位置关系是 ________.三、解答题(共3题;共34分)23. 如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)24.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)25.已知:A是以BC为直径的圆上的一点,BE是⊙O的切线,CA的延长线与BE交于E点,F是BE的中点,延长AF,CB交于点P.(1)求证:PA是⊙O的切线;(2)若AF=3,BC=8,求AE的长.参考答案一、选择题D D B C B C A C B A A B二、填空题13. 9 14. 15. 1016. 60°或120°17. 哥哥比弟弟更靠近灯18. 12 19. 20. 62°21. 0.6;0.6;16 22. 相切三、解答题23. 解:设BD=x米,则BC=x米,BE=(x+2)米,在Rt△BDE中,tan∠EDB= ,即,解得,x≈6.06,∵sin∠EDB= ,即0.8= ,解得,ED≈10即钢线ED的长度约为10米24. 解:过B作BD⊥AC,∵∠BAC=75°﹣30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得:BD=AD= ×20=10 (海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan∠CBD= ,即CD=10 ×3.732=52.77048,则AC=AD+DC=10 +10 ×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.25. (1)证明:连接AB,OA,OF;∵F是BE的中点,∴FE=BF.∵OB=OC,∴OF∥EC.∴∠C=∠POF.∴∠AOF=∠CAO.∵∠C=∠CAO,∴∠POF=∠AOF.∵BO=AO,OF=OF,∴∠OAP=∠EBC=90°.∴PA是⊙O的切线(2)解:∵BE是⊙O的切线,PA是⊙O的切线,∴BF=AF=3,∴BE=6.∵BC=8,∠CBE=90°,∴CE=10.∵BE是⊙O的切线,∴EB2=AE•EC.∴AE=3.6.。
浙教版九年级数学下册第1章达标检测卷一、选择题(每题3分,共30分)1.cos 30°的值为( ) A.12 B .1 C.22 D.322.在Rt △ABC 中,已知∠C =90°,∠A =40°,BC =3,则AC 等于( )A .3sin 40°B .3sin 50°C .3tan 40°D .3tan 50°3.等腰三角形底边与底边上的高的比是2∶3,则顶角为( )A .60°B .90°C .120°D .150°4.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上.有四位同学分别测量出以下4组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 两点间距离的有( )A .1组B .2组C .3组D .4组5.如图,在△ABC 中,∠C =90°,AC =12,AB 的垂直平分线EF 交AC 于点D ,连结BD ,若cos ∠BDC =57,则BC 的长是( ) A .10 B .8 C .4 3 D .2 66.如图①,将一个直角三角形形状的楔子(Rt △ABC )从木桩的底端点P 沿水平方向打入木桩底下,使木桩竖直向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8 cm(如图②),则木桩大约上升了( )(结果保留一位小数.参考数据:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36)A .2.9 cmB .2.2 cmC .2.7 cmD .7.5 cm7.如图,已知在四边形ABCD 中,AD ∥BC ,∠B =45°,∠C =120°,AB =8,则CD 的长为( ) A.863 B .4 3 C.823D .4 2 8.李红同学遇到了这样一道题:求3tan (α+20°)=1中锐角α的度数.你认为锐角α的度数应是( )A .40°B .30°C .20°D .10°9.如图,某时刻海上点P 处有一客轮,测得灯塔A 位于P 的北偏东30°方向,且相距20 n mile.客轮以60 n mile/h 的速度沿北偏西60°方向航行23h 到达B 处,那么tan ∠ABP 的值等于( )A.12 B .2 C.55 D.25510.如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB =a ,AD =b ,∠BCO =x ,则点A 到OC 的距离等于( )A .a sin x +b sin xB .a cos x +b cos xC .a sin x +b cos xD .a cos x +b sin x二、填空题(每题3分,共24分)11.在Rt △ABC 中,∠C =90°,AC =1,BC =3,则∠A 的正切值为________.12. 如图,CD 是Rt △ABC 斜边上的高,AC =4,BC =3,则cos ∠BCD =________.13.已知传送带的坡度i =1∶2.4,如果它把物体从地面送到离地面10 m 高的地方,那么物体所经过的路程为________ .14.如图,某校教学楼AC 与实验楼BD 的水平间距CD =153米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是____________米(结果保留根号).15.如图,正方形ABCD 的边长为4,点M 在边DC 上,M ,N 两点关于对角线AC 所在的直线对称,若DM =1,则tan ∠ADN =________.16.如图,在△ABC 中,∠B =30°,AC =2,cos C =35,则AB 边的长为________. 17.如图,在小山的东侧A 点处有一个热气球,由于受西风的影响,以30 m/min 的速度沿与地面成75°角的方向飞行,25 min 后到达C 点处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A ,B 两点间的距离为__________.(结果保留根号)18.如图,在东西方向的海岸线上有A ,B 两个港口,甲货船从A 港口出发,沿北偏东60°的方向以40 n mile/h 的速度航行,同时乙货船从B 港口出发,沿西北方向航行,2 h 后两船在点P 处相遇,则乙货船的速度为____________.(结果保留根号)三、解答题(19~21题每题10分,其余每题12分,共66分)19.计算:(1)2-1-3tan 60°+(π-2 021)0+⎪⎪⎪⎪-12;(2)(π-5)0+4+(-1)2 021-3tan 60°.20.如图,为了测量某建筑物CD 的高度,先在地面上用测角仪自A 处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物方向前进了100 m 到达B 处,此时测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5 m ,请你计算出该建筑物的高度(结果精确到1 m .参考数据:3≈1.732).21.如图,为测量一段笔直自西向东的河流的河面宽度,小明在南岸B 处测得对岸A 处一棵柳树位于北偏东60°方向,他以每秒1.5米的速度沿着河岸向东步行40秒后到达C 处,此时测得柳树位于北偏东30°方向,试计算此段河流河面的宽度.22.为了缓解交通拥堵,方便行人,市政府计划在某街道修建一座横断面为四边形ABCD 的过街天桥(如图),BC∥AD,若天桥斜坡AB的坡角∠BAD为35°,斜坡CD的坡度i =1∶1.2,BC=10 m,天桥高度CE=5 m,求AD的长度(结果精确到0.1 m.参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70).23.如图是由6个形状、大小完全相同的小矩形组成的大矩形,小矩形的顶点称为格点.已知小矩形较短边长为1,△ABC的顶点都在格点上.(1)用无刻度的直尺作图:找出格点D,连结CD,使∠ACD=90°;(2)在(1)的条件下,连结AD,求tan ∠BAD的值.24.小红家的阳台上放置了一个晒衣架(如图①),图②是晒衣架的侧面示意图,立杆AB,CD相交于点O,B,D两点立于地面,经测量:AB=CD=136 cm,OA=OC=51 cm,OE=OF=34 cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32 cm(参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan 28.1°≈0.534).(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(结果精确到0.1°);(3)小红的连衣裙穿在衣架上的总长度达到122 cm,垂挂在晒衣架上是否会碰到地面?并通过计算说明理由.答案一、1.D 2.D 3.A4.C 提示:对于①,可由AB =BC ·tan ∠ACB 求出A ,B 两点间的距离;对于②,由BC =AB tan ∠ACB ,BD =AB tan ∠ADB,BD -BC =CD ,可求出A ,B 两点间的距离;对于③,易知△DEF ∽△DBA ,则DE EF =DB BA,可求出A ,B 两点间的距离;对于④无法求出A ,B 两点间的距离,故有①②③共3组,故选C.5.D 6.A7.A 提示:过点A 作AE ⊥BC 于点E ,过点D 作DF ⊥BC ,交BC 延长线于点F ,解Rt △ABE 可得AE =42,易证DF =AE ,∴DF =42,再解Rt △DCF 即可求出CD .8.D 9.A10.D 提示:如图,过点A ,作AE ⊥OC 于点E ,作AF ⊥OB 于点F .∵四边形ABCD 是矩形,∴∠ABC =90°.∵∠ABC =∠AEC ,∠BCO =x ,∴∠EAB =x .∴∠FBA =x .∵AB =a ,BC =AD =b ,∴FO =FB +BO =a cos x +b sin x .二、11.3 12.45 13.26 m 14.(15 3+15) 15.4316.165提示:如图,过点A 作AH ⊥BC 于点H . 在Rt △ACH 中,∵∠AHC =90°,AC =2,cos C =35,∴CH AC =35.∴CH =65. ∴AH =AC 2-CH 2=22-⎝⎛⎭⎫652=85. 在Rt △ABH 中,∵∠AHB =90°,∠B =30°,∴AB =2AH =165.17. 750 2 m 提示:过点A 作AD ⊥BC ,垂足为D ,在Rt △ACD 中,∠ACD =75°-30°=45°,AC =30×25=750(m), ∴AD =AC ·sin 45°=375 2(m).在Rt △ABD 中,∠B =30°,∴AB =2AD =7502(m).即小山东西两侧A ,B 两点间的距离为750 2 m.18.20 2 n mile/h 提示:如图,过点P 作PC ⊥AB 于点C .∵甲货船从A 港口出发,沿北偏东60°的方向以40 n mile/h 的速度航行,∴∠P AC =30°,AP =40×2=80(n mile). ∴PC =AP ·sin 30°=80×12=40(n mile). ∵同时,乙货船从B 港口出发,沿西北方向航行,∴∠PBC =45°.∴PB =PC ÷22=40 2(n mile). ∴乙货船的速度为40 2÷2=20 2(n mile/h).三、19. 解:(1)2-1-3tan 60°+(π-2 021)0+⎪⎪⎪⎪-12=12-3+1+12=-1. (2)(π-5)0+4+(-1)2 021-3tan 60°=1+2-1-3=-1.20.解:设CE =x m .由题意可知,△BCE 为等腰直角三角形.∴BE =CE =x m.在Rt △AEC 中,tan ∠CAE =CE AE ,即tan 30°=x x +100,∴x x +100=33, 解得x ≈136.6.∴CD =CE +ED ≈138(m).故该建筑物的高度约为138 m.21.解:如图,过点A 作AD ⊥BC 所在直线于点D .由题意可知BC =1.5×40=60(米),∠ABD =30°,∠ACD =60°,∴∠BAC =∠ACD -∠ABC =30°.∴∠ABC =∠BAC .∴AC =BC =60(米).在Rt △ACD 中,∠ACD =60°,∴AD =AC ·sin 60°=60×32=303(米). 答:此段河流河面的宽度为303米.22.解:过点B 作BF ⊥AD 于点F ,则四边形BFEC 是矩形,∴BF =CE =5 m ,EF =BC =10 m.在Rt △ABF 中,∠BAF =35°,tan ∠BAF =BFAF ,∴AF =BF tan 35°≈50.70≈7.14(m).∵斜坡CD 的坡度i =1∶1.2,∴CE ED =11.2.∴ED =1.2CE =1.2×5=6(m).∴AD =AF +FE +ED ≈7.14+10+6≈23.1(m).故AD 的长度约为23.1 m.23.解:(1)如图.(2)如图,连结AD ,BD ,并标出格点E ,F .∵∠BED =90°,BE =DE =1,∴∠EBD =∠EDB =45°,BD =BE 2+DE 2=12+12= 2.易知BF =AF =2,∠BFA =90°.∴∠ABF =∠BAF =45°,AB =BF 2+AF 2=22+22=22,∴∠ABD =∠ABF +∠EBD =45°+45°=90°.∴tan ∠BAD =BD AB =222=12.24.(1)证明:∵AB =CD =136 cm ,OA =OC =51 cm ,∴OB =OD =85 cm.∴OA OB =OC OD =35.又∵∠AOC =∠BOD ,∴△AOC ∽△BOD .∴∠OAC =∠OBD .∴AC ∥BD .(2)解:在△OEF 中,OE =OF =34 cm ,EF =32 cm.如图,过点O ,作OM ⊥EF 于点M ,则EM =16 cm.∴cos ∠OEF =EM OE =1634≈0.471.∴∠OEF ≈61.9°.(3)解:小红的连衣裙垂挂在晒衣架上会碰到地面.理由如下:易得∠ABD =∠OEF ≈61.9°.如图,过点A 作AH ⊥BD 于点H .在Rt △ABH 中,∵sin ∠ABH =AHAB ,∴AH =AB ·sin ∠ABH ≈136×sin 61.9°≈136×0.882≈120(cm).∵122 cm>120 cm ,∴小红的连衣裙垂挂在晒衣架上会碰到地面.。
浙教版九年级数学下第一章解直角三角形单元测试第Ⅰ卷(选择题)一.选择题(共10小题,3*10=30)1.在Rt △ABC 中,∠C =90°,若sin ∠A =513,则cos ∠A 的值为( )A.1213B.813C.23D.5122. 在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是( ) A .sin A =32 B .tan A =12C .cos B =32D .tan B = 33. 一个公共房门前的台阶高出地面1.2 m ,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A .斜坡AB 的坡比是10°B .斜坡AB 的坡比是tan10°C .AC =1.2tan10° mD .AB = 1.2cos10°m4.如图是某水库大坝横断面示意图.其中AB 、CD 分别表示水库上下底面的水平线,∠ABC =120°,BC 的长是50m ,则水库大坝的高度h 是( )A .253mB .25mC .252m D.5033m5.下列式子:①sin60°>cos30°;②0<tan α<1(α为锐角);③2cos30°=cos60°;④sin30°=cos60°,其中正确的个数有( )A.1个B.2个C.3个D.4个6.关于x的一元二次方程x2-2x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°7.如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆P A的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1m,则旗杆P A的高度为()A.11-sinαm B.11+sinαmC.11-cosαmD.11+cosαm8.如图,在△ABC中,∠B=30°,∠C=45°,AC=23,则AB的长为( )A.26B.3 2 C.4 D.369.在正方形网格中,∠BAC如图放置,点A,B,C都在格点上,则sin∠BAC的值为( ) A. B. C. D.10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,已知AC=5,BC=2,那么sin∠ACD =()A.53 B.23C.255 D.52第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在△ABC 中,如果∠A ,∠B 满足|tan A -1|+⎝⎛⎭⎫cos B -122=0,那么∠C =_______. 12. 如图,已知锐角α的顶点在原点,始边为x 轴的正半轴,终边经过(1,2).如图,则sin α=_______,cos α=_______,tan α=________.13. 如图,某渔船在海面上朝正东方向匀速航行,在A 处观测到灯塔M 在北偏东60°方向上,且AM=100海里,要使渔船到达离灯塔距离最近的位置,那么该船航行( )海里。
2019 学年第一学期九年级数学教学质量检测(一)参考答案及评分建议一、选择题(共 10 小题,每小题 3 分,满分 30 分)二、填空题(共 6 小题,每小题 4 分,满分 24 分)11.x =-212.0.9 13.1 14. 253 15.k ≥116.-2<a <0, -4+2三、解答题(共 7 小题,满分 66 分)17.(1)由上表得图象顶点为(0,5),把 x =1,y=3 代入 y=ax 2+5,得 a =-2.∴二次函数表达式为 y=-2x 2+5 (2)a =-3,b=4 18.可借助图象的性质回答:7 月份蔬菜的销售价格最低为 0.5 元/千克; 2 月份蔬菜的销售为 3.5 元/千克;千克销售价(元)3.50.5 027月份第 18 题图1-7 月份蔬菜的销售价格逐月下降,7-12 月份蔬菜的销售价格逐月上升;6 月与 8 月蔬菜的销售价格相同; 也可以求出解析式,则可回答各个月的蔬菜的销售价格.题 序 答 案1 2 3 4 5 6 7 8 9 10B C D A C A B A B D19.(1)设白球有x 个,则可得: x = 1x + 1 3解得:x =2,即白球有2 个.(2)列树状图得:白 1红 白 2 红 白 1白 2 红白 2白 11 由上图可知,两次都摸到相同颜色的小球的概率321. (1)证明:方法一:A -B=a +2-2a 2+3a -10=-2a 2+4a -8=-2(a -1)2-6 ∵2(a -1)2≥0,∴-2(a -1)2-6<0,即 A <B 恒成立.方法二:画出函数 y=a +2 与函数 y=2a 2-3a +10,可知 A <B (2)方法一:A -C=a +2-a 2-5a +3=-a 2-4a +5, 令 y=-a 2-4a +5, 当 a =-5 或 1 时,y=0 即 A -C=0,A =C ; 当-5<a <1 时,y >0即 A -C>0, A >C 当 a <-5 或 a >1 时,y <0即 A -C<0, A <C方法二:画出函数 y=a +2, y=a 2+5a -3 的图象,观察可得结果. 22.(1)当 k =3 时,此函数为 y=3x 2+4x +11 令 3x 2+4x +1=0,解得 x 1=-1,x 2=- ,3∴此函数图象与 x 轴的交点坐标为(-1,0),( - 1,0);3(2)①当 k =0 时,函数为 y=x +1,它的图象与 x 轴有一个公共点;②当 k ≠0 时,b 2-4a c=(k +1)2-4k =(k -1)2,若 k =1 则 b 2-4a c=0, 它的图象与 x 轴有一个公共点;若 k ≠1 则 b 2-4a c>0, 它的图象与 x 轴有两个公共点;∴当 k =0 或 1 时, 它的图象与 x 轴有一个公共点;; 当 k ≠0 且 k ≠1 时,图象与与 x 轴有两个公共点23.(1)在正方形A BCD 中,BC=CD, ∠BPC=∠DPC,PC=PC, ∴△BPC≌△DPC∴PB=PD,∵PE=PB,∴PD=PE①当E 在BC 边上时(如图1),∵∠PDC=∠PBE=∠PEB,∠PEB+∠PEC=180o,∴∠PDC+∠PEC=180o,得∠DPE=360o-( ∠PDC+∠PEC)-90o=90o,②当E 在BC 边延长线上时(如图2),设DC,PE 交于点O, ∵∠PDC=∠PBE=∠PEB,∵∠POD=∠COE,∴∠DPE=∠DCE=Rt∠∴△PDE 为等腰直角三角形(2)过点P 作PF⊥BC 于F(如图3),∵PE=PB,∴BF=EF,∵正方形A BCD 的边长是1,∴A C=,∵A P=x,∴PC= 2 x ,第23 题图1 第23 题图3 第23 题图2。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:如果,则“”表示的数应是()A. B.3 C. D.试题2:计算-a+4a的结果为 ( )A.3 B. 3a C.4a D.5a试题3:某市2014年参加中考的考生人数约为85000人,将85000用科学记数法表示为()A.B. C. D.试题4:如图,直线∥,直线与,相交,∠1=55°,则∠2=()A.55° B.35° C.125° D.65°试题5:若△ABC∽△A′B′C′且,△ABC的周长为15㎝,则△A′B′C′的周长()A.18B.20C.D.试题6:不等式组的解集是()A. B. C. D.试题7:如图,AB是⊙O的直径,∠AOC=1100,则∠D=( )A. 250B. 350C. 550D. 700试题8:某展览大厅有3个入口和2个出口,其示意图如下,参观者从任意一个入口进入,参观结束后从任意一个出口离开.小明从入口1进入并从出口A离开的概率是( )A. B. C. D .试题9:如图是二次函数的部分图象,由图象可知当>时,的范围是()A . B. C .D.试题10:如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.C.D.4试题11:分解因式:.试题12:二次函数的对称轴是.试题13:PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。
某市某天的五个监测点监测到PM2.5的值分别为82μg/m³、91μg/m³、89μg/m³、95μg/m³、73μg/m³.则五个监测点的PM2.5的平均值是μg/m³。
2019年中考数学一模试题一.选择题(共10小题,满分40分,每小题4分)1.计算﹣6+1的结果为()A.﹣5B.5C.﹣7D.72.如图,几何体的左视图是()A.B.C.D.3.P1(2,y1),P2(﹣3,y2)是一次函数y=﹣3x﹣5图象上的两点,下列判断正确的是()A.y1>y2 B.y1<y2 C.y1=y2 D.以上都不对4.一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.5.某车间20名工人每天加工零件数如表所示:45678每天加工零件数人数36542这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,56.在下列命题中:①过一点有且只有一条直线与已知直线平行;②平方根与立方根相等的数有1和0;③在同一平面内,如果a⊥b,b⊥c,则a⊥c;④直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是5cm,则点A到直线c的距离是5cm;⑤无理数包括正无理数、零和负无理数.其中真命题的个数是()A.1个B.2个C.3个D.4个7.如图,是某厂2018年各季度产值统计图(单位:万元),则下列说法中正确的是()A.四季度中,每季度生产总值有增有减B.四季度中,前三季度生产总值增长较快C.四季度中,各季度的生产总值变化一样D.第四季度生产总值增长最快8.如图是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴是直线x=2,与x轴的一个交点是(﹣1,0),那么抛物线与x轴的另一个交点是()A.(3,0)B.(4,0)C.(5,0)D.(6,0)9.半径为1的圆中,扇形AOB的圆心角为120°,则扇形AOB的面积为()A.B.C.D.π10.如图,点A在反比例函数y=的图象上,AB⊥x轴于点B,点C在x轴上,且CO:OB=2:1.△ABC的面积为6,则k的值为()A.2B.3C.4D.5二.填空题(共6小题,满分30分,每小题5分)11.分解因式:4m2﹣16n2=.12.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A 重合,射线CP从CA处出发沿顺时针方向以每秒1度的速度旋转,CP与量角器的半圆弧交于点E,第30秒时,点E在量角器上对应的读数是度.13.已知a是方程x2﹣2019x+1=0的一个根,则a2﹣2018a+的值为.14.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买个.15.如图,在△ABC中,∠ACB=90°,∠B=30°,AC=1,AC在直线l上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到得到点P2017为止,则P1P2017=.16.如图,在△ABC中,AB=8,BC=10,BD、CD分别平分∠ABC、∠ACB,∠BDC=135°,过点D作DE∥AC交BC于点E,则DE=.三.解答题(共8小题,满分80分,每小题10分)17.(1)计算:(﹣)﹣2﹣23×0.125+20050+|﹣1|;(2)解方程:=.18.计算:(1)(x+y)2﹣2x(x+y);(2)(a+1)(a﹣1)﹣(a﹣1)2;(3)先化简,再求值:(x+2y)(x﹣2y)﹣(2x3y﹣4x2y2)÷2xy,其中x=﹣3,y=.19.图1,图2都是8×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点.(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图2中所画的平行四边形的面积为.20.漳州市教育局到某校抽查七年级学生“根据音标写单词”的水平,随机抽取若干名学生进行测试(成绩取整数,满分为100分).如下两幅是尚未绘制完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次抽取的学生有人;(2)该年段有450名学生,若全部参加测试,请估计60分以上(含60分)有人;(3)甲、乙、丙是该校三名英语成绩优秀的学生,随机抽取其中两名学生介绍英语学习经验,请用树状图或列表法表示所有可能的结果,并求抽到甲、乙两名学生的概率.21.如图,矩形ABCD中,∠BAD的平分线AE与BC边交于点E,点P是线段AE上一定点(其中PA>PE),过点P作AE的垂线与AD边交于点F(不与D重合).一直角三角形的直角顶点落在P点处,两直角边分别交AB边,AD边于点M,N.(1)求证:△PAM≌△PFN;(2)若PA=3,求AM+AN的长.22.一个车间加工轴杆和轴承,每人每天平均可以加工轴杆12根或者轴承16个,1根轴杆与2个轴承为一套,该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?23.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM 周长的最小值;若不存在,请说明理由.24.已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据有理数的加法法则,|﹣6|>|1|,所以结果为负号,并把它们的绝对值相减即可.【解答】解:﹣6+1=﹣(6﹣1)=﹣5故选:A.【点评】本题考查的是有理数的加法,注意区别同号相加与异号相加,把握运算法则是关键.2.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.3.【分析】把点的坐标代入解析式,可分别求得y1和y2的值,比较大小即可.【解答】解:∵点P1(2,y1)和P2(﹣3,y2)是一次函数y=﹣3x﹣5图象上的两点,∴y1=﹣3×2﹣5=﹣11,y2=﹣3×(﹣3)﹣5=4,∵﹣11<4,∴y1<y2,故选:B.【点评】本题主要考查一次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.4.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:2(x﹣1)≥3x﹣3,2x﹣2≥3x﹣3,2x﹣3x≥﹣3+2,﹣x≥﹣1,x≤1,在数轴上表示为:,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能根据不等式的性质求出不等式的解集是解此题的关键.5.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.【分析】利用平行公理、平方根与立方根的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【解答】解:①过直线外一点有且只有一条直线与已知直线平行,故错误;②平方根与立方根相等的数只有0,故错误;③在同一平面内,如果a⊥b,b⊥c,则a∥c,故错误;④直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是5cm,则点A到直线c的距离是5cm,正确;⑤无理数包括正无理数和负无理数,错误.正确的只有1个,故选:A.【点评】本题考查了命题与定理的知识,解题的关键是能够了解平行公理、平方根与立方根的定义、两直线的位置关系等知识,难度不大.7.【分析】根据折线统计图可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:图为增长率的折线图,分析可得:四季度中,每季度生产总值都持续增加,A 错误;第四季度生产总值增长最快,D 正确,而B 、C 错误.故选:D .【点评】本题考查折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答. 8.【分析】直接利用抛物线的对称性进而得出另一个交点坐标.【解答】解:∵抛物线的对称轴是直线x =2,与x 轴的一个交点是(﹣1,0),∴抛物线与x 轴的另一个交点是:(5,0).故选:C .【点评】此题主要考查了抛物线与x 轴的交点,正确利用抛物线的对称性分析是解题关键. 9.【分析】根据扇形的面积公式计算即可.【解答】解:扇形AOB 的面积==,故选:B .【点评】本题考查扇形的面积,解得的关键是记住扇形的面积公式.10.【分析】首先确定三角形AOB 的面积,然后根据反比例函数的比例系数的几何意义确定k 的值即可.【解答】解:∵CO :OB =2:1,∴S △AOB =S △ABC =×6=2,∴|k |=2S △ABC =4,∵反比例函数的图象位于第一象限,∴k =4,故选:C .【点评】本题考查了反比例函数的比例系数的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S =|k |.解题的关键是能够确定三角形AOB 的面积,难度不大.二.填空题(共6小题,满分30分,每小题5分)11.【分析】原式提取4后,利用平方差公式分解即可.【解答】解:原式=4(m +2n )(m ﹣2n ).故答案为:4(m +2n )(m ﹣2n )【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】首先连接OE,由∠ACB=90°,根据圆周角定理,可得点C在⊙O上,即可得∠EOA =2∠ECA,又由∠ECA的度数,继而求得答案.【解答】解:连接OE,∵∠ACB=90°,∴点C在以AB为直径的圆上,即点C在⊙O上,∴∠EOA=2∠ECA,∵∠ECA=1×30°=30°,∴∠AOE=2∠ECA=2×30°=60°.故答案为:60.【点评】此题考查了圆周角定理,此题难度适中,解题的关键是证得点C在⊙O上,注意辅助线的作法,注意数形结合思想的应用.13.【分析】先根据一元二次方程的定义得到a2=2019a﹣1,a2+1=2019a,再利用整体代入的方法变形原式得到a2﹣2018a+=a+﹣1,然后通分后再利用整体代入的方法计算即可.【解答】解:∵a是方程x2﹣2019x+1=0的一个根,∴a2﹣2019a+1=0,∴a2=2019a﹣1,a2+1=2019a,∴a2﹣2018a+=2019a﹣1﹣2018a+=a+﹣1=﹣1=﹣1=2019﹣1=2018.故答案为2018.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.【分析】设购买篮球x个,则购买足球(50﹣x)个,根据总价=单价×购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.【解答】解:设购买篮球x个,则购买足球(50﹣x)个,根据题意得:80x+50(50﹣x)≤3000,解得:x≤.∵x为整数,∴x最大值为16.故答案为:16.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.15.【分析】找出旋转的过程中AP n长度的规律,可P1P2017的值.【解答】解:根据题意可得:每三次旋转,向右平移3+∴从P1到P2017共旋转672次∴P1P2017=672(3+)=2016+672故答案为2016+672【点评】本题考查了旋转的性质,找出旋转的过程中AP n长度的规律是本题的关键.16.【分析】根据三角形的内角和和角平分线的定义得到∠A=90°,过D作DF⊥BC于F,DG⊥AB于G,DH⊥AC于H,推出四边形AHDG是正方形,连接AD,根据三角形的面积列方程得到DF=2,得到CH=4,根据勾股定理得到CD==2,CF==4,根据等腰三角形的性质得到CE=DE,设CE=DE=x,根据勾股定理列方程即可得到结论.【解答】解:∵∠BDC=135°,∴∠DCB+∠DBC=45°,∵BD、CD分别平分∠ABC、∠ACB,∴∠ACB+∠ABC=2∠DCB+2∠DBC=90°,∴∠A=90°,∵AB=8,BC=10,∴AC==6,过D作DF⊥BC于F,DG⊥AB于G,DH⊥AC于H,∴DH=DF=DG,∴四边形AHDG是正方形,连接AD,∵S△ABC =S△ADC+S△BCD+S△ABD=(AC+BC+AB)•DF=AC•AB,∴DF=2,∴AH=AG=2,∴CH=4,∴CD==2,∴CF==4,∵DE∥AC,∴∠ACD=∠CDE,∴∠DCE=∠CDE,∴CE=DE,设CE=DE=x,∴EF=4﹣x,∵DE2=EF2+DF2,∴x2=(4﹣x)2+22,解得:x=,∴DE=,故答案为:.【点评】本题考查了角平分线的性质,勾股定理等腰三角形的判定和性质,平行线的性质,正确的作出辅助线构造直角三角形是解题的关键.三.解答题(共8小题,满分80分,每小题10分)17.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=4﹣8×0.125+1+1=4﹣1+1+1=5.(2)两边同乘以x(2x﹣1),得6(2x﹣1)=5x,解得x=.经检验,x=是原方程的解.【点评】此题考查了实数的运算与解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.【分析】(1)原式利用完全平方公式,以及单项式乘以多项式法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果;(3)原式利用平方差公式,多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)(x+y)2﹣2x(x+y)=x2+2xy+y2﹣2x2﹣2xy=y2﹣x2;(2)(a+1)(a﹣1)﹣(a﹣1)2=a2﹣1﹣(a2﹣2a+1)=2a﹣2;(3)(x+2y)(x﹣2y)﹣(2x3y﹣4x2y2)÷2xy=x2﹣4y2﹣x2+2xy=﹣4y2+2xy,当x=﹣3,y=时,原式=﹣1﹣3=﹣4.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.【分析】(1)依据一组对边平行且相等的四边形是平行四边形,即可得到所求的平行四边形;(2)利用割补法,即可得到图2中平行四边形的面积.【解答】解:(1)如图所示,四边形ABCD和四边形EFGH均为平行四边形;(2)图2中所画的平行四边形的面积=×6×(1+1)=6,故答案为:6.【点评】本题考查作图﹣应用与设计,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.20.【分析】(1)根据第三组的频数为8,所占百分比为16%,即可求出本次抽取的学生总数;(2)先求出60分以上(含60分)所占百分比,再利用样本估计总体的思想,用450乘以这个百分比即可;(3)首先根据题意列表,然后由表格求得所有等可能的结果与抽到甲、乙两名学生的情况,再利用概率公式求解即可求得答案.【解答】解:(1)8÷16%=50(人);(2)1﹣4%=96%,450×96%=432(人);(3)列表如下:共有6种情况,其中抽到甲、乙两名同学的是2种,所以P(抽到甲、乙两名同学)==.故答案为50;432.【点评】本题考查的是用列表法或画树状图法求概率与扇形统计图、用样本估计总体的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.【分析】(1)由题意可证AP=PF,∠MAP=∠PAF=∠PFA=45°,即可证△PAM≌△PFN;(2)由勾股定理可求AF=3,由△PAM≌△PFN,可得AM=NF,即可得AM+AN=AF=3.【解答】证明:(1)∵四边形ABCD是矩形∴∠BAD=90°∵∠BAD的平分线AE与BC边交于点E,∴∠BAE=∠EAD=45°∵PF⊥AP∴∠PAF=∠PFA=45°∴AP=PF∵∠MPN=90°,∠APF=90°∴∠MPN﹣∠APN=∠APF﹣∠APN∴∠MPA=∠FPN,且AP=PF,∠MAP=∠PFA=45°∴△PAM≌△PFN(ASA)(2)∵PA=3∴PA=PF=3,且∠APF=90°∴AF==3∵△PAM≌△PFN;∴AM=NF∴AM+AN=AN+NF=AF=3【点评】本题考查了矩形的性质,全等三角形的性质和判定,勾股定理,熟练运用这些性质解决问题是本题的关键.22.【分析】设x个人加工轴杆,(90﹣x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据1根轴杆与2个轴承为一套列出方程,求出方程的解即可得到结果.【解答】解:设x个人加工轴杆,(90﹣x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据题意得:12x×2=16(90﹣x),去括号得:24x=1440﹣16x,移项合并得:40x=1440,解得:x=36.则调配36个人加工轴杆,54个人加工轴承,才能使每天生产的轴承和轴杆正好配套.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.23.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;三角形的面积公式可得出S△APC(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,=AM+MN+AN=AC+AN=3+.∴C△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)=﹣x2﹣x+3;(3)利用二次函数图象的对称性结合两点利用三角形的面积公式找出S△APC之间线段最短找出点M的位置.24.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.。
一、选择题1.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是( ) A .16B .19C .118D .2152.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。
若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P ,则P 的值为( ) A .13B .12C .13或12D .13或233.一个袋子里装有一双红色、一双绿色手套,两双手套除颜色外,其他完全相同,随机地从袋中摸出两只,恰好是一双的概率( ) A .12B .13C .14D .164.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中红球约有( ) A .12个 B .14个C .18个D .20个5.下列一元二次方程中无实数根的是( )A .22x x =B .(1)(3)0x x ++=C .2(2)5x -=D .210x x -+= 6.若关于x 的方程2210mx x +-=有两个不相等的实数根,则m 的取值范围是( ) A .1m <- B .1m >-且0m ≠ C .1m >-D .1m ≥-且0m ≠7.方程220x x -=的根是( ) A .120x x ==B .122x x ==C .120,2x x ==D .120,2x x ==- 8.在某种病毒的传播过程中,每轮传染平均1人会传染x 个人,若最初2个人感染该病毒,经过两轮传染,共有y 人感染.则y 与x 的函数关系式为( ) A .()221y x =+B .()22y x =+C .222y x =+D .()212y x =+9.下列说法中正确的是( ) A .对角线互相垂直的四边形是菱形 B .有一个角是直角的平行四边形是正方形 C .有两个角相等的四边形是平行四边形 D .平移和旋转都不改变图形的形状和大小10.如图,正方形ABCD 中,6AB =,G 是BC 的中点.将ABG 沿AG 对折至AFG ,延长GF 交DC 于点E ,则DE 的长是( )A.2 B.2.5 C.3.5 D.411.下列四个命题中真命题是()A.对角线互相垂直平分的四边形是正方形B.对角线垂直且相等的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.四边都相等的四边形是正方形12.如图,菱形ABCD的边长是5,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分,若菱形的一条对角线的长为4,则阴影部分的面积为()A.221B.421C.12 D.24二、填空题13.在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是____________.14.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是_____15.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程__________________________.16.若x=2是一元二次方程x2+x+c=0的一个解,则c2=__.17.已知﹣2是关于x的方程x2﹣4x﹣m2=0的一个根,则m=______.18.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(13,则点C的坐标为______.19.如图,正方形ABCD中,AB=2,AC,BD交于点O.若E,F分别是边AB,BC上的动 ,则△OFF周长的最小值是________________;点,且OE OF20.如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠BEC的度数是_____度.三、解答题21.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(指针指在分界线时取指针右侧扇形的数).(1)小王转动一次转盘指针指向3所在扇形的概率是______________.(2)请你用树状图或列表的方法求一次游戏结束后两数之和是5的概率.22.九年级某班要召开一次“走近抗疫英雄,讲好中国故事”主题班会活动,李老师制作了编号为A、B、C、D的4张卡片(如图,除编号和内容外,其余完全相同),并将它们背面朝上洗匀后放在桌面上.(1)小明随机抽取1张卡片,抽到卡片编号为B 的概率为 ;(2)小明从4张卡片中随机抽取1张(不放回),小丽再从余下的3张卡片中随机抽取1张,然后根据抽取的卡片讲述相关英雄的故事,求小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率(请用“画树状图”或“列表”等方法写出分析过程).23.龙岩市某村2017年的人均收入为7500元,落实精准扶贫工作后,2019年人均收入为14700元.求人均收入的年平均增长率.24.文文以0.2元/支的价格购进一批铅笔,以0.4元/支的价格售出,每天销售量为400支,销售了两天后他决定降价,尽早销售完毕经调查得知铅笔单价每降0.01元,每天的销售量增加20支.(1)为了使笔每天的利润达到原利润的75%,文文应把铅笔定价多少元合适? (2)如果这批铅笔恰好一共在五天内全部销售完毕,请问这批铅笔有多少支? 25.如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .(1)如图1,求证:∠BAF =∠DAE ;(2)如图2,若∠ABC =45°,AE ⊥BC ,连接BD 分别交AE ,AF 于G ,H ,在不添加任何辅助线的情况下,直接写出图中所有的只含有一个3∠ABD 的三角形. 26.某数学活动小组在一次活动中,对一个数学问题作如下研究: (问题呈现)(1)如图1,ABC 中分别以,AB AC 为边向外作等腰ABE △和等腰ACD △,使AE AB =,AD AC =,BAE CAD ∠=∠,连结,BD CE ,试猜想BD 与CE 的大小关系,并说明理由. (问题再探)(2)如图2,ABC 中分别以,AB AC 为边向外作等腰Rt ABE △和等腰Rt ACD △,90EAB CAD ∠=∠=︒,连结,BD CE ,若4,2,45AB BC ABC ==∠=︒,求BD 的长. (问题拓展)(3)如图3,四边形ABCD 中,连结AC ,CD BC =,60BCD ∠=︒,30BAD ∠=︒,15AB =,25AC =,请直接写出AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:123456 1234567 2345678 3456789 45678910 567891011 6789101112∵共有36种等可能的结果,掷得面朝上的点数之和是5的有4种情况,∴掷得面朝上的点数之和是5的概率是:41 369.故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.2.D解析:D【分析】分情况讨论后,直接利用概率公式进行计算即可.【详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=2 3当白球2个,红球1个时:摸到的红球的概率为:P=1 3故摸到的红球的概率为:13或23故选:D【点睛】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键.3.B解析:B【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.【详解】列表得:∴恰好是一双的概率41123.故选B.【点睛】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.4.B解析:B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解:设盒子中有红球x 个, 由题意可得:66x +=0.3, 解得:x=14,经检验,x=14是分式方程的解. 估计口袋中红球约有14个. 故选:B 【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.5.D解析:D 【分析】由因式分解法、偶次方的非负性和根的判别式依次判断即可; 【详解】解:A.由22x x =可得(2)0x x -=,由因式分解法可知有两个实数根,故不符合题意; B.(1)(3)0x x ++=,由因式分解法可知有两个实数根,故不符合题意; C. 2(2)5x -=,50>,有两个实数根,故不符合题意;D. 224(1)41130b ac ∆=-=--⨯⨯=-<,没有实数根,符合题意. 故选:D . 【点睛】本题主要考查了根的判别式Δ=b 2−4ac 以及配方法和因式分解法解一元二次方程,牢记Δ<0时,方程有两个相等的实根是解题的关键.6.B解析:B 【分析】利用判别式大于零和二次项系数不为零求解即可. 【详解】∵方程2210mx x +-=有两个不相等的实数根, ∴m≠0,且△>0, ∴m≠0,且224m +>0, ∴1m >-且0m ≠, 故选B . 【点睛】本题考查了一元二次方程根的判别式,熟练运用判别式并保证二次项系数不能为零是解题的关键.7.C【分析】本题可用因式分解法,提取x后,变成两个式子相乘为0的形式,让每个式子都等于0,即可求出x.【详解】解:∵x2-2x=0∴x(x-2)=0,可得x=0或x-2=0,解得:x=0或x=2.故选:C.【点睛】本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用8.A解析:A【分析】用含有x的代数式分别表示出每轮传染的人数和总人数即可得解.【详解】∵每轮传染平均1人会传染x个人,∴2人感染时,一轮可传染2x人,∴一轮感染的总人数为2x+2=2(1+x)人;∵每轮传染平均1人会传染x个人,∴2(1+x)人感染时,二轮可传染2(1+x)x人,∴二轮感染的总人数为[2(1+x)+ 2(1+x)x]= ()2+人;21x∴()2=+,21y x故选A.【点睛】本题考查了平均增长问题,准确表示每一轮传染的人数是解题的关键.9.D解析:D【分析】根据平行四边形,菱形,正方形的判定,依据平移旋转的性质一一判断即可.【详解】解:A、对角线互相垂直的四边形是菱形,错误.应该是对角线互相垂直平分的四边形是菱形,本选项不符合题意.B、有一个角是直角的平行四边形是正方形,错误.应该是有一个角是直角且邻边相等的平行四边形是正方形,本选项不符合题意.C、有两个角相等的四边形是平行四边形,错误,可能是等腰梯形.本选项不符合题意.D、平移和旋转都不改变图形的形状和大小,正确,故选:D.【点睛】本题考查平行四边形的判定,菱形的判定,正方形的判定,平移变换,旋转变换的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.A解析:A【分析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】解:连接AE,∵正方形ABCD中,6AB=∴AB=AD=BC=CD6=,∠B=∠D=90°,由折叠的性质得:AB =AF6=,∠B=∠AFG=90°,BG=GF∴AD=AF,∠AFE=180°-∠AFG=90°=∠D在Rt△AFE和Rt△ADE中,∵AE AE AF AD=⎧⎨=⎩∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,EC=6−x.∵G是BC的中点∴BG=CG=12BC=3,∴GF=BG=3在Rt△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2故选A.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,勾股定理的应用.证明Rt △AFE ≌Rt △ADE 是解答本题的关键.11.C解析:C 【分析】根据正方形、菱形、矩形的判定分别判断得出即可. 【详解】A 、对角线互相垂直平分且相等的四边形是正方形,故原命题是假命题;B 、对角线垂直平分的四边形是菱形,故原命题是假命题;C 、对角线相等且互相平分的四边形是矩形,故原命题是真命题;D 、四边都相等的四边形是菱形,故原命题是假命题; 故选:C . 【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定定理、矩形的判定定理、菱形的判定定理.12.A解析:A 【分析】连接AC 、BD ,由菱形的性质得出5AB =,122OB OD BD ===,OA OC =,AC BD ⊥,由勾股定理求出OA ,得出221AC =,求出菱形的面积,再由中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答. 【详解】解:连接AC 、BD ,如图所示:菱形ABCD 的边长是5,O 是两条对角线的交点,4BD =,5AB ∴=,122OB OD BD ===,OA OC =,AC BD ⊥,22225221OA AB OB ∴=-- 2221AC OA ∴==∴菱形ABCD 的面积11221442122AC BD =⨯=⨯=O 是菱形两条对角线的交点,∴阴影部分的面积12=菱形ABCD 的面积221;故选:A . 【点睛】本题考查了菱形的性质,中心对称,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.二、填空题13.【分析】先画树状图展示所有12种等可能的结果数其中两次摸出的小球标号的和等于4的占3种然后根据概率的概念计算即可【详解】画树状图得:由树状图可知:所有可能情况有12种其中两次摸出的小球标号的和等于4解析:1 6【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【详解】画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21 126=,故答案为:16.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.14.【分析】数出黑色瓷砖的数目和瓷砖总数求出二者比值即可【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值进而转化为黑色瓷砖个数与总数的比值即故答案为:【点睛】本题考查解析:1 4【分析】数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即41 164=故答案为:14. 【点睛】 本题考查几何概率的求法:根据题意将面积比表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.15.【分析】设道路的宽为将6块草地平移为一个长方形长为宽为根据长方形面积公式即可列方程【详解】设道路的宽为由题意得:故答案为:【点睛】本题主要考查了一元二次方程的应用掌握长方形的面积公式求得6块草地平移 解析:(302)(20)786x x --=⨯【分析】设道路的宽为xm ,将6块草地平移为一个长方形,长为()302-x m ,宽为()20x m -.根据长方形面积公式即可列方程(302)(20)786x x --=⨯.【详解】设道路的宽为xm ,由题意得:(302)(20)786x x --=⨯,故答案为:(302)(20)786x x --=⨯.【点睛】本题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.16.36【分析】根据一元二次方程的解的定义把x=2代入方程x2+x+c=0即可求得c 的值进而求得c2的值【详解】解:依题意得22+2+c=0解得c=-6则c2=(-6)2=36故答案为:36【点睛】本题解析:36【分析】根据一元二次方程的解的定义,把x=2代入方程x 2+x+c=0即可求得c 的值,进而求得c 2的值.【详解】解:依题意,得22+2+c=0,解得,c=-6,则c 2=(-6)2=36.故答案为:36.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.【分析】利用方程的根的性质把x=-2代入方程得到关于m 的方程解这个方程即可【详解】解:∵是方程的一个根∴有解得:故答案为:【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造参解析:23±【分析】利用方程的根的性质把x=-2代入方程得到关于m的方程,解这个方程即可.【详解】解:∵2x=-是方程2240x x m--=的一个根,∴有()()222420m--⨯--=,解得:23m=±,故答案为:23±.【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键.18.【分析】如图作AF⊥x轴于FCE⊥x轴于E先证明△COE≌△OAF推出CE=OFOE=AF由此即可解决问题【详解】解:如图作AF⊥x轴于FCE⊥x轴于E∵四边形ABCO是正方形∴OA=OC∠AOC=解析:()3,1-【分析】如图作AF⊥x轴于F,CE⊥x轴于E,先证明△COE≌△OAF,推出CE=OF,OE=AF,由此即可解决问题.【详解】解:如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,CEO AFOCOE OAFOC OA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COE≌△OAF,∴CE =OF ,OE =AF ,∵A (1∴CE =OF =1,OE =AF∴点C坐标(),故答案为:().【点睛】 本题考查全等三角形的判定与性质,作出辅助线构造全等三角形是解题的关键. 19.2+【分析】根据正方形的对角线互相平分且相等可得AO=BO ∠AOB=90°对角线平分一组对角可得∠OAE=∠OBF 再根据AE=BF 然后利用SAS 证明△AOE 和△BOF 全等根据全等三角形对应角相等可得解析:【分析】根据正方形的对角线互相平分且相等可得AO=BO ,∠AOB=90°,对角线平分一组对角可得∠OAE=∠OBF ,再根据AE=BF ,然后利用“SAS”证明△AOE 和△BOF 全等,根据全等三角形对应角相等可得∠AOE=∠BOF ,可得∠EOF=90°,然后利用勾股定理列式计算即可得解.【详解】解:在正方形ABCD 中,AO=BO ,∠AOB=90°,∠OAE=∠OBF=45°,∵点E 、F 的速度相等,∴AE=BF ,在△AOE 和△BOF 中,OA BO OAE OBF AE BF =⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△BOF (SAS ),∴∠AOE=∠BOF ,∴∠AOE+∠BOE=90°,∴∠BOF+∠BOE=90°,∴∠EOF=90°,在Rt △BEF 中,设AE=x ,则BF=x ,BE=2-x ,∴,∴当x=1时,EF .由勾股定理得,OE=OF=2EF =1. ∴△OEF 周长的最小值.故答案为:.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,同角的余角相等的性质,以及勾股定理等知识,熟记正方形的性质,找出三角形全等的条件是解题的关键.20.5【分析】根据正方形的性质AC 平分∠BAD 可得∠BAE =45°再根据AB =AE 由等腰三角形的性质即可求出∠BEC 的度数【详解】解:在正方形ABCD 中AC 平分∠BAD ∴∠BAE =45°而AB =AE ∴∠解析:5.【分析】根据正方形的性质,AC 平分∠BAD ,可得∠BAE =45°,再根据AB =AE ,由等腰三角形的性质即可求出∠BEC 的度数.【详解】解:在正方形ABCD 中,AC 平分∠BAD ,∴∠BAE =45°,而AB =AE ,∴∠ABE =∠AEB =180452︒-︒=67.5°, 又∵∠AEB +∠BEC =180°,∴∠BEC =180°﹣67.5°=112.5°,故答案为112.5.【点睛】 本题考查正方形的性质,等腰三角形的性质.熟记正方形的对角线平分线一组对角,并且将这组对角分成四个45°的角是解决此题的关键.三、解答题21.(1)13;(2)29 【分析】(1)利用概率公式计算可得;(2)先画树状图展示所有9个等可能的结果数,再找出两个数字之和为5的结果数,由概率公式求解即可.【详解】解:(1)∵转盘被平均分成3个扇形,分别标有1、2、3三个数字,转盘中有3的数字为1个,∴小王转动一次转盘指针指向3所在扇形的概率是13, 故答案为:13; (2)画树状图为:共有9个等可能的结果数,其中两个数字之和为5的结果数为2个,∴两个数字之和为5的概率=29.【点睛】本题考查了列表法与树状图,树状图法适合两步或两步以上完成的事件;画出树状图是解题的关键.22.(1)14;(2)图见解析,12.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.【详解】解:(1)∵共有4张卡片,∴小明随机抽取1张卡片,抽到卡片编号为B的概率为14,故答案为:14;(2)画树状图如下:共有12种等可能的结果数,其中小明、小丽两人中恰好有一人讲述钟南山抗疫故事的有6种结果,所以小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率为:61 122.【点睛】本题考查了概率的应用,掌握运用列表法或画树状图法列出所有可能的结果及概率的计算方法是解题的关键.23.40%【分析】设人均收入的年平均增长率为x ,结合题意,通过列一元二次方程并求解,即可得到答案.【详解】解:设人均收入的年平均增长率为x根据题意得:()275001+14700x =解得:0.4x =或 2.4x =-(舍去)∴人均收入的年平均增长率为40% .【点睛】本题考查了一元二次方程的知识,解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.(1)0.3元;(2)2600支【分析】(1)首先求出原利润,再由现在利润=销量×(销售单价-批发价),进而得出等式方程即可解答.(2)利用(1)中所求得出单价,进而求出销量,即可得出总销量.【详解】解:(1)设铅笔的单价降了x 元,则 ()()0.40.2400200.40.240075%0.01x x ⎛⎫--+⨯=-⨯⨯ ⎪⎝⎭ 解之,得:1110x =,2110x =-(舍去), ∴定价:0.40.10.3-=(元);(2)0.14002400203800180026000.01⎛⎫⨯++⨯⨯=+= ⎪⎝⎭(支). 答:这批铅笔有2600支.【点睛】此题主要考查了一元二次方程的应用,利用利润=销量×(销售单价-批发价)得出是解题关键.25.(1)见解析;(2)△BEG ,△ADG ,△DFH, △ABH【分析】(1)根据菱形的性质可得∠B=∠D ,AB=AD ,再证明△ABE ≌△ADF ,得∠BAE=∠DAF ,从而得出结论;(2)根据菱形的性质和∠ABC =45°,得出∠ABD=22.5°,则3∠ABD=67.5°,找出含有67.5°的角的三角形即可.【详解】(1)证明:∵四边形ABCD 是菱形,∴∠B=∠D ,AB=AD ,在△ABE 和△ADF 中,AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ADF (SAS ),∴∠BAE=∠DAF .∴∠BAF =∠DAE ;(2)∵四边形ABCD 是菱形,∠ABC =45°,∴∠ABD=∠CBD= 22.5°,∴3∠ABD=67.5°,∵AE ⊥BC ,∴∠AEB= 90°,∴∠BGE=67.5°,∵△ABE ≌△ADF∴∠AFD= 90°,∴△BEG 只含有一个3∠ABD ;同理可得:∠DHF=67.5°,△DFH 只含有一个3∠ABD ;∵四边形ABCD 是菱形,∴AD//BC ,AB//CD∵AE ⊥BC ,∠AFD= 90°,∴∠DAG=∠BAH= 90°,∵∠DHF=∠AH B=67.5°,∠BGE=∠ AGD=67.5°,∴△ADG 只含有一个3∠ABD ;△ABH 只含有一个3∠ABD ;【点睛】本题考查了菱形的性质、全等三角形的判定与性质,解决本题的关键是掌握菱形的性质. 26.(1)BD CE =,理由见解析;(2)6;(3)20【分析】(1)首先证明EAC BAD ∠=∠,再证明()AEC ABD SAS △≌△,然后根据全等三角形的性质即可证明;(2)根据等腰直角三角形的性质可得到AE AB =,AC AD =,BAE CAD ∠=∠,证明()EAC BAD SAS △≌△,得到CE BD =,再根据勾股定理计算即可;(3)连接BD ,把△ABD 绕点D 逆时针旋转60︒得到△ECD ,连接AE ,由旋转的性质得到EC=AB=15,△ADE 是等边三角形,由勾股定理可求得AE 的长,即可得解;【详解】解:(1)BD CE =,理由如下:∵BAE CAD ∠=∠,∴EAC BAD ∠=∠,又∵AB AE =,AD AC =,∴()AEC ABD SAS △≌△,∴BD CE =;(2)∵等腰Rt ABE 和等腰Rt ACD ,∴AE AB =,AC AD =,BAE CAD ∠=∠, ∴EAC BAD ∠=∠,∴()EAC BAD SAS △≌△,∴CE BD =,∵45ABC EBA ∠=∠=︒,∴90EBC ∠=︒,∵4AB AE ==, ∴224432EB =+=在Rt EBC 中,22(32)26EC =+=,∴6BD =;(3)∵CD BC =,60BCD ∠=︒, ∴△BCD 是等边三角形,连接BD ,把△ABD 绕点D 逆时针旋转60°得到△ECD ,连接AE ,则EC=AB=15,△ADE 是等边三角形,∴AE AD =,60DEA ∠=︒,∵30BAD ∠=︒,∴306090CEA ∠=︒+︒=︒,在Rt △AEC 中,2222251540020AE AC CE =--==, ∴20AD AE ==.【点睛】本题主要考查了四边形综合,准确结合勾股定理和旋转的性质计算是解题的关键.。
第1章 测试卷(满分:100分 时间:90分钟)一、选择题(每小题2分,共20分)1.在Rt △ABC 中,∠C =90°,下列式子不一定成立的是( ) A .sin A =sin B B .cos A =sin B C .sin A =cos BD .∠A +∠B =90°2.如果α是锐角,且sin α=35,那么cos(90°-α)的值为( )A .35B .45C .34D .433.正方形网格中,∠AOB 如图放置,则cos ∠AOB 的值为( )A .12B .22C .32D .334.当锐角α>30°时,则cos α的值( ) A .大于12B .小于12C .大于32D .小于325.已知∠A 为锐角,tan A 是方程x 2-2x -3=0的一个根,则代数式tan 2A +2tan A +1的值为( )A .16B .8C .15D .176.如图,已知∠α的一边在x 轴上,另一边经过点A (2,4),顶点为(-1,0),则sin α的值是( )A .25B .55C .35D .457.如图是一个棱长为4的正方体盒子,一只蚂蚁在D 1C 1的中点M 处,它到BB 1的中点N 的最短路线是( )A .8B .42C .210D .2+2 58. 如图,在Rt △ABC 中,∠B =90°,∠A =30°,以点A 为圆心,BC 长为半径画弧交AB 于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点E ,连结AE 、DE ,则∠EAD 的余弦值是( )A .312 B .36 C .33D .329.如图,河坝横断面迎水坡AB 的坡比是1∶3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高BC =3 m ,则坡面AB 的长度是( )A .9 mB .6 mC .6 3 mD .3 3 m10.【 如图为固定电线杆AC ,在离地面高度为6 m 的A 处引拉线AB ,使拉线AB 与地面BC 的夹角为48°,则拉线AB 的长度约为(结果精确到0.1 m ,参考数据:sin 48°≈0.74,cos 48°≈0.67,tan 48°≈1.11)( )A .6.7 mB .7.2 mC .8.1 mD .9.0 m二、填空题(每小题3分,共24分)11.计算:2sin 30°+2cos 60°+3tan 45°=__ __. 12.已知sin A =12,则锐角∠A =__ __.13.在Rt △ABC 中,∠C =90°,AC =2,BC =1,则sin A =__ __.14.在一个斜坡上前进5米,水平高度升高了1米,则该斜坡坡度i =__ __. 15.如图,△ABC 的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β) __ __tan α+tan β.(填“>”“<”或“=”)16.如图,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13 m ,且tan ∠BAE =125,则河堤的高BE =__ _m .17.如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =12,则CD ∶DB =__ __.18.如图,在A 处看建筑物CD 的顶端D 的仰角为α,且tan α=0.7,向前行进3米到达B 处,从B 处看顶端D 的仰角为45°(图中各点均在同一平面内,A 、B 、C 三点在同一条直线上,CD ⊥AC ),则建筑物CD 的高度为__ __米.三、解答题(共56分) 19.(8分)计算:(1)cos 245°+ cos 30°2sin 60°+1-3tan 30°;(2)⎝⎛⎭⎫-120+⎝⎛⎭⎫13 -1·23-|tan 45°-3|.20.(8分)如图,△ABC 中,∠ACB =90°,sin A =45,BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为点E .(1)求线段CD 的长; (2)求cos ∠ABE 的值.21.(8分)【2016·四川自贡中考】某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测队在地面A 、B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB =4米,求该生命迹象所在位置C 的深度.(结果精确到1米,参考数据:sin 25°≈0.4,cos 25°≈0.9,tan 25°≈0.5,3≈1.7)22.(10分)如图所示,学校在楼顶平台上安装地面接收设备,为了防雷击,在离接收设备3 m 远的地方安装避雷针,接收设备必须在避雷针顶点45°夹角范围内,才能有效避免雷击(α≤45°).已知接收设备高80 cm ,那么避雷针至少应安装多高?23.(10分)如图,将水库拦水坝背水坡的坝顶加宽2 m ,坡度由原来的1∶2改为1∶2.5,已知坝高6 m ,坝长50 m .(1)加宽部分横断面AFEB的面积是多少?(2)完成这一工程需要多少立方米的土?24.(12分)如图,小岛A在港口P的南偏西45°方向,距离港口81 n mile处.甲船从A 出发,沿AP方向以9 n mile/h的速度驶向港口,乙船从港口P出发,沿南偏东60°方向以18 n mile/h的速度驶离港口.现两船同时出发.(1)出发后几小时两船与港口P的距离相等?(2)出发后几小时乙船在甲船的正东方向上?(结果精确到0.1 h)第1章 测试卷(满分:100分 时间:90分钟)一、选择题(每小题2分,共20分)1.在Rt △ABC 中,∠C =90°,下列式子不一定成立的是( A ) A .sin A =sin B B .cos A =sin B C .sin A =cos BD .∠A +∠B =90°2.如果α是锐角,且sin α=35,那么cos(90°-α)的值为( A )A .35B .45C .34D .433.正方形网格中,∠AOB 如图放置,则cos ∠AOB 的值为( B )A .12B .22C .32D .334.当锐角α>30°时,则cos α的值( D ) A .大于12B .小于12C .大于32D .小于325.已知∠A 为锐角,tan A 是方程x 2-2x -3=0的一个根,则代数式tan 2A +2tan A +1的值为( A )A .16B .8C .15D .176.如图,已知∠α的一边在x 轴上,另一边经过点A (2,4),顶点为(-1,0),则sin α的值是( D )A .25B .55C .35D .457.如图是一个棱长为4的正方体盒子,一只蚂蚁在D 1C 1的中点M 处,它到BB 1的中点N 的最短路线是( C )A .8B .42C .210D .2+2 58.【2016·浙江绍兴中考】如图,在Rt △ABC 中,∠B =90°,∠A =30°,以点A 为圆心,BC 长为半径画弧交AB 于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点E ,连结AE 、DE ,则∠EAD 的余弦值是( B )A .312 B .36 C .33D .329.如图,河坝横断面迎水坡AB 的坡比是1∶3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高BC =3 m ,则坡面AB 的长度是( B )A .9 mB .6 mC .6 3 mD .3 3 m10.【2016·广西钦州中考】如图为固定电线杆AC ,在离地面高度为6 m 的A 处引拉线AB ,使拉线AB 与地面BC 的夹角为48°,则拉线AB 的长度约为(结果精确到0.1 m ,参考数据:sin 48°≈0.74,cos 48°≈0.67,tan 48°≈1.11)( C )A .6.7 mB .7.2 mC .8.1 mD .9.0 m二、填空题(每小题3分,共24分)11.计算:2sin 30°+2cos 60°+3tan 45°=__5__. 12.已知sin A =12,则锐角∠A =__30°__.13.在Rt △ABC 中,∠C =90°,AC =2,BC =1,则sin A =5.14.在一个斜坡上前进5米,水平高度升高了1米,则该斜坡坡度i =. 15.如图,△ABC 的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β) __>__tan α+tan β.(填“>”“<”或“=”)16.如图,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13 m ,且tan ∠BAE =125,则河堤的高BE =__12__m .17.如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =12,则CD ∶DB =__1∶2__.18.如图,在A 处看建筑物CD 的顶端D 的仰角为α,且tan α=0.7,向前行进3米到达B 处,从B 处看顶端D 的仰角为45°(图中各点均在同一平面内,A 、B 、C 三点在同一条直线上,CD ⊥AC ),则建筑物CD 的高度为__7__米.三、解答题(共56分) 19.(8分)计算:(1)cos 245°+cos 30°2sin 60°+1-3tan 30°;解:原式=⎝⎛⎭⎫222+322×32+1-3×33=12+3-34-1=1-34.(2)⎝⎛⎭⎫-120+⎝⎛⎭⎫13 -1·23-|tan 45°-3|. 解:原式=1+3×233-(3-1)=1+23-3+1=2+3.20.(8分)如图,△ABC 中,∠ACB =90°,sin A =45,BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为点E .(1)求线段CD 的长; (2)求cos ∠ABE 的值.解:(1)在△ABC 中,∵∠ACB =90°,∴sin A =BC AB =45.∵BC =8,∴AB =10.∵D 是AB 中点,∴CD =12AB =5. (2)在Rt △ABC 中,∵∠ACB =90°,AB =10,BC =8,∴AC =AB 2-BC 2=6.∵D 是AB 中点,∴BD =5,S △BDC =S △ADC ,∴S △BDC =12S △ABC ,即12CD·BE =12×12AC·BC ,∴BE =AC·BC 2CD =6×82×5=245.在Rt △BDE 中,∵∠BED =90°,∴cos ∠DBE =BE BD =2455=2425,即cos ∠ABE 的值为2425.21.(8分)【2016·四川自贡中考】某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测队在地面A 、B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB =4米,求该生命迹象所在位置C 的深度.(结果精确到1米,参考数据:sin 25°≈0.4,cos 25°≈0.9,tan 25°≈0.5,3≈1.7)解:如图,过点C 作CD ⊥AB 交AB 延长线于点D .设CD =x 米.在Rt △ADC 中,∵∠ADC =90°,∠DAC =25°,∴tan ∠DAC =CDAD=0.5,∴AD =2x 米,∴BD =(2x -4)米.在Rt △BDC 中,∵∠BDC =90°,∠DBC =60°,∴tan ∠DBC =CD BD =x2x -4=3,解得x ≈3.即生命迹象所在位置C 的深度约为3米.22.(10分)如图所示,学校在楼顶平台上安装地面接收设备,为了防雷击,在离接收设备3 m 远的地方安装避雷针,接收设备必须在避雷针顶点45°夹角范围内,才能有效避免雷击(α≤45°).已知接收设备高80 cm ,那么避雷针至少应安装多高?解:如图,过点A 作AE ⊥CD 于点E ,AB =EC =0.8 m ,AE =BC =3 m .在Rt △ADE 中,tan α=AE DE ,∴DE =AE tan α=3tan α.∵α≤45°,∴tan α≤1,即DE ≥3 m ,∴CD =CE +DE ≥3.8 m .故避雷针至少应安装3.8 m 高.23.(10分)如图,将水库拦水坝背水坡的坝顶加宽2 m ,坡度由原来的1∶2改为1∶2.5,已知坝高6 m ,坝长50 m .(1)加宽部分横断面AFEB 的面积是多少? (2)完成这一工程需要多少立方米的土?解:(1)如图,过点A 作AG ⊥BC ,过点F 作FH ⊥BC ,垂足分别是G 、H .根据题意,得FH =AG =6 m ,HG =AF =2 m .在Rt △AGB 和Rt △FHE 中,∵tan ∠ABG =AG BG =12,tan ∠E=FH EH =12.5,∴BG =2AG =12 m ,EH =2.5FH =15 m ,∴EB =EH -BH =15-(12-2)=5(m),∴S 梯形AFEB =12(AF +EB)·FH =12×(2+5)×6=21(m 2).即加宽部分横断面AFEB 的面积为21平方米. (2)完成这一项工程需要21×50=1050(m 3)的土.24.(12分)如图,小岛A在港口P的南偏西45°方向,距离港口81 n mile处.甲船从A 出发,沿AP方向以9 n mile/h的速度驶向港口,乙船从港口P出发,沿南偏东60°方向以18 n mile/h的速度驶离港口.现两船同时出发.(1)出发后几小时两船与港口P的距离相等?(2)出发后几小时乙船在甲船的正东方向上?(结果精确到0.1 h)解:(1)设出发后x h两船与港口P的距离相等.根据题意,得81-9x=18x.解得x=3.故出发后3 h两船与港口P的距离相等.(2)如图,设出发后y h乙船在甲船的正东方向上,此时甲、乙两船的位置分别在点C、D处,连结CD,过点P作PE⊥CD,垂足为点E,则点E在点P的正南方向上.在Rt△CEP中,∠CPE=45°,∴PE=PC·cos 45°.在Rt△PED 中,∠EPD=60°,∴PE=PD·cos 60°,∴PC·cos 45°=PD·cos 60°,即(81-9y)·cos 45°=18y·cos 60°.解得y≈3.7.故出发后约3.7 h乙船在甲船的正东方向上.。
一、选择题1.如图,已知,ABC O △为AC 上一点,以OB 为半径的圆经过点A ,且与BC OC 、交于点E D 、,设,C a A β∠=∠=,则( )A .若70αβ+=︒,则弧DE 的度数为20︒B .若70αβ+=︒,则弧DE 的度数为40︒C .若70αβ-=︒,则弧DE 的度数为20︒D .若70αβ-=︒,则弧DE 的度数为40︒ 2.如图,ABC 内接于O ,50A ∠=︒,点E 是边BC 的中点,连接OE 并延长交O 于点D ,连接BD ,则D ∠的大小为( )A .55°B .65°C .70°D .75°3.如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则cos ∠ADC 的值为( )A .213B .13C .313D .234.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( )A .25°B .27.5°C .35°D .45°5.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( ) A . B .C .D .6.下列函数:①2y x =-,②3y x =,③2y x ,④234y x x =++,y 是x 的反比例函数的个数有( ).A .1个B .2个C .3个D .4个 7.已知关于x 的二次三项式()()2121m x m x m +--+的值恒为正,则m 的取值范围是( )A .18m >B .1m >-C .118m -<<D .1m 18<< 8.如图,已知二次函数()20y ax bx c a =++≠的图象与x 轴交于点()1,0A -,对称轴为直线1x =,下列结论:①0abc <;②930a b c ++=;③20a b +=;④2am bm a b +<+(m 是任意实数),其中正确的是( )A .①②B .②③C .①②③D .②③④ 9.如图,在Rt ABC 中,90,4,3ACB AC BC ∠=︒==,将ABC 绕直角边AC 的中点O 旋转,得到DEF ,连接AD ,若DE 恰好经过点C ,且DE 交AB 于点G ,则tan DAG ∠的值为( )A .524B .513C .512D .724 10.在Rt ABC 中,90,2,6C AC AB ∠=︒==,则下列结论正确的是( ) A .1sin 3A = B .2cos 4B = C .tan 22A = D .22tan 3B = 11.如图,拦水坝的横断面是梯形,高6BC =米,斜面坡度为1:2,则斜坡AB 的长为( )A .43米B .65米C .125米D .12米 12.如图,在Rt ABC △中,90C ∠=︒,4AC =,3BC =,则( )A .3sin 4A =B .4cos 5A =C .3cos 4B =D .3tan 5B =二、填空题13.如图,已知AB 为O 直径,若CD 是O 内接正n 边形的一边,AD 是O 内接正()4n +边形的一边,BD AC =,则n =_____.14.如图,ABC 内接于O ,30CAB ∠=︒,45CBA ∠=︒,CD AB ⊥于点D ,若O 的半径为4,则CD 的长为______.15.如图,二次函数2y x mx =-+的图象与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在14x <<的范围内有解,则t 的取值范围是_______.16.已知抛物线22y x x n =-+与x 轴只有一个公共点,则n =__________.17.已知二次函数2221y x mx m =-++(m 为常数),当自变量x 的值满足31x -≤≤-时,与其对应的函数值y 的最小值为5,则m 的值为__________.18.如图,在2×4的方格中,两条线段的夹角(锐角)为∠1,则sin ∠1=______________.19.在平面直角坐标系中,等边ABO 如图放置,其中()2,0B ,则过点A 的反比例函数的表达式为________.20.如图,四边形ABCD 中,AB=BC=3,∠A=∠C=90°,∠ABC=120°,点E 是对角线BD 上的一个动点,过点E 分别作AB ,BC ,CD ,AD 的垂线,垂足分别为点F ,H ,I ,G ,连结FG 和HI ,则FG+HI 的最小值为________.21.如图,在Rt △ABC 中,∠C =90°,AB =13,AC =5,则cos A 的值是_____.22.已知:等边△ABC ,点P 是直线BC 上一点,且PC:BC=1:4,则tan ∠APB=_______,三、解答题23.如图,AB 为O 的直径,点C 在O 上,AD 与过点C 的切线互相垂直,垂足为D ,连接BC 并延长,交AD 饿延长线于点E .(1)求证:AE AB =;(2)若20AB =,16BC =,求CD 的长.24.如图所示,AC 与O 相切于点C ,线段AO 交O 于点B .过点B 作//BD AC 交O 于点D ,连结,CD OC ,且OC 交DB 于点E .若30,53cm ∠=︒=CDB DB .(1)求COB ∠的大小和O 的半径长.(2)求由弦,CD BD 与弧BC 所围成的阴影部分的面积(结果保留π).25.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ;(2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 . 26.如图,抛物线()220y ax x c a =-+≠与直线3y x 交于A ,C 两点,与x 轴交于点B .(1)求抛物线的解析式.(2)点P 是抛物线上一动点,且在直线AC 下方,当ACP △的面积为6时,求点P 的坐标.(3)D 为抛物线上一点,E 为抛物线的对称轴上一点,请直接写出以A ,C ,D ,E 为顶点的四边形为平行四边形时点D 的坐标【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接BD ,根据直径所对的圆周角是直角,可求得∠ABD =90°,又由A β∠=,可求得∠ADB =90β︒-,再根据∠ADB =∠DBC +∠C ,可得∠DBC =90βα︒--,从而求出弧DE 的度数.【详解】解:连接BD ,∵AD 是直径,∴90ABD ∠=︒,∴90A ADB ∠+∠=︒,∴90ADB β∠=︒-,又∵∠ADB =∠DBC +∠C ,∴()90DBC αβ∠=︒-+,若70αβ+=︒,则()90907020DBC αβ∠=︒-+=︒-︒=︒,∴弧DE 的度数20240=︒⨯=︒,故选B .【点睛】此题主要考查了圆周角定理及推论、三角形外角的性质,熟练掌握圆周角定理、构造直径所对圆周角是解题的关键.2.B解析:B【分析】连接CD ,根据圆的内接四边形的性质得到∠CDB=180°-∠A=130°,根据垂径定理得到OD ⊥BC ,求得BD=CD ,根据等腰三角形的性质即可得到结论;【详解】∵ ∠A=50°,∴∠CDB=180°-∠A=130°,∵ E 是边BC 的中点,∴ OD ⊥BC ,∴ BD=CD ,∴ ∠ODB=∠ODC=12∠BDC=65°, 故选:B .【点睛】本题考查了三角形的外接圆与外心,圆内接四边形的性质,垂径定理,等腰三角形的性质,正确的理解题意是解题的关键.3.C解析:C【分析】根据圆周角定理得到ADC ABC ∠=∠,再根据余弦的定义计算即可;【详解】由图可知ADC ABC ∠=∠,在Rt △ABC 中,2AC =,3BC =,∴223213AB +=∴cos ∠ADC 3313cos 1313BC ABC AB =∠===; 故答案选C .【点睛】本题主要考查了圆周角定理、余弦定理、勾股定理,准确计算是解题的关键. 4.C解析:C【分析】首先连接AD ,由直径所对的圆周角是直角,即可求得∠ADB=90°,由直角三角形的性质,求得∠A 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD 的度数.【详解】∵AB 是⊙O 的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°-∠ABD=35°,∴∠BCD=∠A=35°.故选:C .【点睛】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.5.B解析:B【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断.【详解】解:A 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2b a >0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2b a<0,得b <0,由直线可知,a <0,b >0,故本选项错误.故选:B .【点睛】本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键.6.A解析:A【分析】根据反比例函数、一次函数、二次函数的性质,对各个选项逐个分析,即可得到答案.【详解】2y x =-是一次函数,故选项①不符合题意;3y x=是反比例函数,故选项②符合题意; 2y x 是二次函数,故选项③不符合题意;234y x x =++是二次函数,故选项④不符合题意;∴y 是x 的反比例函数的个数有:1个故选:A .【点睛】本题考查了反比例函数、二次函数、一次函数的知识;解题的关键是熟练掌握反比例函数、二次函数、一次函数的定义,从而完成求解.7.A解析:A【分析】根据二次三项式()()2121m x m x m +--+的值恒为正,可设()()2121m x x y m m +--+=,从而得到1m +>0且∆<0,进而即可求得m 的取值范围.【详解】解:设()()2121m x x y m m +--+=, ∵关于x 的二次三项式()()2121m x m x m +--+的值恒为正,∴()()2121m x m x m +--+>0,∴在函数()()2121m x x y m m +--+=中, 1m +>0,且()()22141m m m ∆=--⎡⎤-+⎣⎦<0,解得:m >18故选:A【点睛】本题考查二次函数的应用,解题的关键是明确题意,利用数形结合的思想,熟练掌握二次函数的性质. 8.B解析:B【分析】①抛物线开口向上,对称轴为直线x =1,即可得出a >0、b <0、c <0,进而可得出abc >0,结论①错误;②由抛物线的对称轴以及与x 轴的一个交点坐标,可得出另一交点坐标为(3,0),进而可得出9a +3b +c =0,结论②正确;③由对称轴直线x=1,可得结论③正确;④2()()0am bm a b +-+≥,可得结论④错误.综上即可得出结论.【详解】解:①∵抛物线开口向上,对称轴为直线x =1,∴a >0,12b a-=,c <0, ∴b =−2a <0,∴abc >0,结论①错误; ②∵二次函数y =ax 2+bx +c (a≠0)的图象与x 轴交于点A (−1,0),对称轴为直线x =1,∴二次函数y =ax 2+bx +c (a≠0)的图象与x 轴的另一个交点为(3,0),∴9a +3b +c =0,结论②正确;③∵对称轴为直线x =1, ∴12b a-=,即:b =−2a , ∴20a b +=,结论③正确;④∵222()()(2)(2)2am bm a b am am a a am am a +-+=---=-+22(21)(1)a m m a m =-+=-≥0,∴2am bm a b +≥+,结论④错误.综上所述,正确的结论有:②③.故选:B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象与系数的关系、二次函数的性质以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.9.D解析:D【分析】连接OG ,由勾股定理求出AB=5,由直角三角形的性质求出CG ,CD ,AD 的长,由锐角三角函数的定义可得出答案.【详解】解:连接OG ,在Rt△ABC中,∠C=90°,AC=4,BC=3,∴222243AC BC+=+,∵点O是AC边的中点,∴OC=OA=OD=12AC=2,∴∠GCO=∠ODC=∠BAC,∠ADC=90°,∴AG=CG,∴OG⊥AC,在Rt△ABC中,sin∠BAC=35BCAB=,cos∠BAC=45ACAB=,∴sin∠OCG=35,cos∠OCG=45,在Rt△OCG中,CG=5 cos2OCOCG=∠,在Rt△ACD中,CD=AC•cos∠OCG=165,AD=AC•sin∠OCG=125,∴DG=CD-CG=165-52=710,∴tan∠DAG=771012245DGAD==.故选:D.【点睛】本题考查了旋转的性质,锐角三角函数的定义,勾股定理,直角三角形的性质,正确的作出辅助线构造直角三角形是解题的关键.10.C解析:C【分析】根据勾股定理求出42BC=【详解】∵在Rt ABC 中,90C ∠=︒,2AC =,6AB =, ∴BC =∴sin 63BC A AB ===,故A 错误;cos sin 3B A ==,故B 错误;tan 2===BC A AC C 正确;tan===AC B BC ,故D 错误; 故选:C .【点睛】本题主要考查了解直角三角形,结合勾股定理进行计算是解题的关键.11.B解析:B【分析】根据坡度求出AC 的长度,再利用勾股定理求出AB .【详解】∵坡度12BC i AC ==,6BC =米, ∴AC=12米,∴=故选:B .【点睛】此题考查已知正切值求边长,勾股定理求直角三角形边长,熟记坡度定义求出AC 是解题的关键.12.B解析:B【分析】首先由勾股定理求得斜边AB=5;然后由锐角三角函数的定义依次计算判断即可.【详解】解:∵在Rt △ABC 中,∠C=90°,AC=4,BC=3.∴5== A. 3sin =5BC A AB =,故此项错误; B. 4cos =5AC A AB =,故此项正确;C. os =35c BC B AB =,故此项错误; D. 4tan 3AC BC B ==,故此项错误; 故选B .【点睛】 本题考查了锐角三角函数定义,勾股定理.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.二、填空题13.【分析】连接ODOCBC 根据题意首先证明∠AOD=∠BOC 再根据题意分别用含n 的式子表示出∠AOD 和∠COD 建立关于n 的方程求解即可【详解】如图连接ODOCBC ∵AB 为直径∴∠ADB=∠BCA=90解析:4【分析】连接OD ,OC ,BC ,根据题意首先证明∠AOD=∠BOC ,再根据题意,分别用含n 的式子表示出∠AOD 和∠COD ,建立关于n 的方程求解即可.【详解】如图,连接OD ,OC ,BC ,∵AB 为直径,∴∠ADB=∠BCA=90°,又∵BD AC =,∴Rt △ABD ≌Rt △BAC (HL ),∴AD=BC ,∠AOD=∠BOC ,∵CD 是O 内接正n 边形的一边, ∴360COD n︒∠=, 同理:AD 是O 内接正()4n +边形的一边, ∴3604AOD BOC n ︒∠=∠=+, 由180AOD BOC COD ∠+∠+∠=︒, 得:36036021804n n︒︒⨯+=︒+, 解得:4n =,或2n =-(不符合题意,舍去) 经检验,4n =是原分式方程的解,故答案为:4.【点睛】本题主要考查了正多边形与圆,理解正多边形与圆的关系是解题关键.14.【分析】连接COOB 则∠O =2∠CAB =60°得到△BOC 是等边三角形求得BC =4根据等腰直角三角形的性质即可得到结论【详解】解:如图连接COOB ∵则∠O =2∠CAB =60°∵OC =OB ∴△BOC 是 解析:22【分析】连接CO ,OB ,则∠O =2∠CAB =60°,得到△BOC 是等边三角形,求得BC =4,根据等腰直角三角形的性质即可得到结论.【详解】解:如图,连接CO ,OB ,∵30CAB ∠=︒则∠O =2∠CAB =60°,∵OC =OB , ∴△BOC 是等边三角形,∵⊙O 的半径为4,∴BC =4,∵CD ⊥AB ,∠CBA =45°, ∴CD =22BC =22×4=2, 故答案为:2【点睛】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.15.【分析】求出函数解析式求出函数值取值范围把t 的取值范围转化为函数值的取值范围【详解】先由已知可得二次函数y=−x2+mx 的图象与x 轴交于坐标原点和(40)所以对称轴x==所以m=4代入方程y=−x2解析:04t <≤【分析】求出函数解析式,求出函数值取值范围,把t 的取值范围转化为函数值的取值范围.【详解】先由已知可得,二次函数 y=−x 2+mx 的图象与 x 轴交于坐标原点和 (4,0)所以对称轴 x=2b a-=()221m -=⨯-, 所以m=4,代入 方程y=−x 2+mx 得,y=-x 2+4x ,当x=2时,y=4即顶点坐标是(2,4)当x=1时,y=3,当x=4时,y=0由x 2−mx+t=0得 t=-x 2+4x=y因为当 1<x<4 时, 0<y≤4,所以在 1<x<4 范围内有实数解,则 t 的取值范围是0<t≤4,故答案为:0<t≤4 .【点睛】本题考查了二次函数和一元二次方程数形结合分析问题,注意函数的最低点和最高点. 16.【分析】由抛物线与x 轴只有一个公共点可知对应的一元二次方程根的判别式△=b2−4ac =0由此即可得到关于n 的方程解方程即可求得n 的值【详解】解:∵抛物线与x 轴只有一个公共点∴△=4−4×1×n =0解解析:1【分析】由抛物线22y x x n =-+与x 轴只有一个公共点可知,对应的一元二次方程220x x n -+=根的判别式△=b 2−4ac =0,由此即可得到关于n 的方程,解方程即可求得n 的值.【详解】解:∵抛物线22y x x n =-+与x 轴只有一个公共点,∴△=4−4×1×n =0,解得n =1.故答案为:1.【点睛】此题主要考查了抛物线与x 轴的交点问题,利用二次函数根的判别式的和抛物线与x 轴的交点个数建立方程是解题的关键.17.-5或1【分析】利用配方法可得出:当x=m 时y 的最小值为1分m <-3-3≤m≤-1和m >-1三种情况考虑:当m <-3时由y 的最小值为5可得出关于m 的一元二次方程解之取其较小值;当-3≤m≤-1时y 的解析:-5或1【分析】利用配方法可得出:当x=m 时,y 的最小值为1.分m <-3,-3≤m≤-1和m >-1三种情况考虑:当m <-3时,由y 的最小值为5可得出关于m 的一元二次方程,解之取其较小值;当-3≤m≤-1时,y 的最小值为1,舍去;当m >-1时,由y 的最小值为5可得出关于m 的一元二次方程,解之取其较大值.综上,此题得解.【详解】解:∵y=x 2-2mx+m 2+1=(x-m )2+1,∴当x=m 时,y 的最小值为1.当m <-3时,在-3≤x≤-1中,y 随x 的增大而增大,∴9+6m+m 2+1=5,解得:m 1=-5,m 2=-1(舍去);当-3≤m≤-1时,y 的最小值为1,舍去;当m >-1时,在-3≤x≤-1中,y 随x 的增大而减小,∴1+2m+m 2+1=5,解得:m 1=-3(舍去),m 2=1.∴m 的值为-5或1.故答案为:-5或1.【点睛】本题考查了二次函数的最值以及二次函数图象上点的坐标特征,分m <-3,-3≤m≤-1和m >-1三种情况求出m 的值是解题的关键.18.【分析】解:如图添加字母过A 作AB ∥ED 可得∠1=∠CAB 连结BC 在△ABC 中由勾股定理AC=AB=BC=由AB2+BC2=5+5=10=AC2证得∠ABC=90°由AB=BC 可得∠CAB=45°利解析:2【分析】解:如图添加字母,过A 作AB ∥ED ,可得∠1=∠CAB ,连结BC ,在△ABC 中由勾股定理,AB 2+BC 2=5+5=10=AC 2,证得∠ABC=90°,由AB=BC 可得∠CAB=45°,利用三角函数定义sin ∠CAB=2BC AC ===。
九年级数学第1页(共6页)2019-2020学年第二学期九年级数学教学质量检测(一)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1. 若小王沿坡度i =3∶4的斜坡向上行走10 m ,则他所在的位置比原来的位置升高了( ) A .3 m B .4 m C .6 m D .8 m 2. 如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是( ) A .主视图相同 B .左视图相同 C .俯视图相同 D .三种视图均不同3. 按如图所示的运算程序,能使输出的y 值为12的是( )A .α=60°,β=45°B .α=30°,β=45°C .α=30°,β=30°D .α=45°,β=30°4. 如图,AB 为⊙O 的切线,切点为A .连结AO ,BO ,BO 与⊙O 交于点C ,延长BO 与⊙O 交于点D ,连结AD .若∠ABO =36°,则∠ADC 的度数为( ) A .27° B .32° C .36° D .54°第4题图 第5题图5. 如图,已知⊙O 的半径为5,直线EF 经过⊙O 上一点P (点E ,F 在点P 的两旁),下列条件能判定直线EF 与⊙O 相切的是( ) A .OP = 5 B .OE =OF C .点O 到直线EF 的距离是4 D .OP ⊥EF6.如图,直线P A、PB、MN分别与⊙O相切于点A、B、D,P A=PB=8 cm,则△PMN的周长为()A.8 cm B.cm C.16 cm D.cm第6题图第7题图7.如图,O为圆锥的顶点,M为圆锥底面上一点,点P在OM上,一只蜗牛从点P出发,绕圆锥侧面沿最短路线爬行一圈回到点P,若沿OM将圆锥侧面剪开并展开,则所得的侧面展开图是()A B C D8.如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若∠ACE=20°,则∠D的度数是()A.40° B.50° C.60° D.70°第8题图第9题图第10题图9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.a sin x+b sin x B.a cos x+b sin xC.a sin x+b co sx D.a cos x+b cos x10.如图,有一内部装有水的直圆柱形水桶,桶高20 dm;另有一直圆柱形的实心铁柱,柱高30 dm,直立放置于水桶底面上,水桶内的水面高度为12 dm,且水桶与铁柱的底面半径比为2∶1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为()A.4.5 dm B.6 dm C.8 dm D.9 dm二、填空题(本大题有6小题,每小题5分,共30分)11.如图,在△ABC中,sin B=13,tan C=2,AB=3,则AC的长为.九年级数学第2页(共6页)九年级数学第3页(共6页)12.如图,∠MAN =60°,若△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,BC 的取值范围是 .第12题图 第14题图 第15题图13.已知等边三角形ABC 的边长为3,则它的内切圆半径为 .14.如图所示,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,若以点C 为圆心,r 为半径的圆与边AB 所在直线有公共点,则r 的取值范围为 .15.如图是由6个形状、大小完全相同的菱形组成的网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,点A ,B ,C 都在格点上,则sin ∠ABC 的值是 .16.已知直线m 与半径为10 cm 的⊙O 相切于点P ,AB 是⊙O 的一条弦,且 PAPB =,若AB =12 cm ,则直线m 与弦AB 之间的距离为 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 173sin 60cos302tan 45-︒-︒+︒.18.如图,在离铁塔150 m 的A 处,用测倾仪测得塔顶的仰角为30°12′,测倾仪高AD 为1.52 m .求铁塔的高BC .(精确到0.1 m )(参考数据:sin30°12′≈0.5030,cos30°12′≈0.8643,tan30°12′≈0.5820)19.如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过格点A(0,4)、B(-4,4)、C(-6,2),若该圆弧所在圆的圆心为D点,请你利用网格图回答下列问题:(1)圆心D的坐标为;(2)若扇形ADC是一个圆锥的侧面展开图,求该圆锥底面圆的半径长(结果保留根号).20.如图,在10×6的正方形网格中,每个小正方形的边长均为1,线段AB、线段EF的端点均在小正方形的顶点上.(1)在图中以AB为边画Rt△ABC,使点C在小正方形的顶点上,且∠BAC=90°,tan∠ACB=23;(2)在(1)的条件下,在图中画以EF为边且面积为3的△DEF,使点D在小正方形的顶点上,且∠CBD=45°,连结CD,直接写出线段CD的长.九年级数学第4页(共6页)九年级数学第5页(共6页)21.如图,在△ABC 中,AB =AC ,∠BAC =120°,点D 在BC 边上,⊙D 经过点A 和点B 且与BC 边相交于点E .(1)求证:AC 是⊙D 的切线.(2)若CE=,求⊙D 的半径.22.小明家的门框上装有一把防盗门锁(如图1),其平面结构图如图2所示,锁身可以看成由两条等弧 AD , BC 和矩形ABCD 组成的, BC 的圆心是倒锁按钮点M .已知 AD 的弓形高GH =2 cm ,AD =8 cm ,EP =11 cm .当锁柄PN 绕着点N 顺时针旋转至NQ 位置时,门锁打开,此时直线PQ 与 BC所在的圆相切,且PQ ∥DN ,tan ∠NQP =2. (1)求 BC所在圆的半径; (2)求线段AB≈2.236,结果精确到0.1 cm )23.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF.(2)若AC=,CE∶EB=1∶4,求CE的长.24.如图,已知直线l:483y x=-+交x轴于点E,点A为x轴上的一个动点(点A不与点E重合),在直线l上取一点B(点B在x轴上方),使BE=5AE,连结AB,以AB为边在AB的右侧作正方形ABCD,连结OB,以OB为直径作⊙P.(1)当点A在点E左侧时,若点B落在y轴上,则AE的长为,点D的坐标为;(2)若⊙P与正方形ABCD的边相切于点B,求点B的坐标;(3)⊙P与直线BE的交点为Q,连结CQ,当CQ平分∠BCD时,BE的长为.(直接写出答案)九年级数学第6页(共6页)2019-2020学年第二学期九年级数学教学质量检测(一)参考答案及评分建议一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1 2 3 4 5 6 7 8 9 10 C C C A D C D A B D二、填空题(本大题有6小题,每小题5分,共30分)11 12BC <<13.214.245r ≥15.716.2 cm 或18 cm三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.解:原式=32-+ ····································································· 4分2. ····················································································· 4分18.解:如图,过点A 作BC 的垂线,垂足为E .在△ABE 中,tan 3012150BE BEEA '︒==, 则BE =150×tan30°12′≈87.30, ··································································· 4分 ∴BC =BE +CE ≈87.30+1.52≈88.8.答:铁塔的高BC 约为88.8 m . ································································ 4分19. 解:(1)(-2,0) ························································································· 4分【解法提示】分别作AB 、BC 的垂直平分线,两直线交于点D ,则点D 即为该圆弧所在圆的圆心,可知点D的坐标为(-2,0).(2)圆D的半径长=,AC=∵AD2+CD2=20+20=40,AC2=40,∴AD2+CD2=AC2,∴∠ADC=90°.设圆锥的底面圆的半径长为r,则2rπ=,r=.解得:2所以该圆锥底面圆的半径长为. ·················································· 4分220.解:(1)如图,Rt△ABC即为所求.······································· 4分(2)如图,△DEF即为所求,CD= ··············································· 4分21.(1)证明:连结AD,如图.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵AD=BD,∴∠BAD=∠B=30°,∴∠DAC=120°-30°=90°,又∵AD是⊙D的半径,∴AC是⊙D的切线. ·································································· 5分(2)解:连结AE.∵∠B=∠BAD =30°,∴∠ADE=60°.又∵AD=DE,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED-∠C=30°,∴∠EAC=∠C,∴AE=CE=,∴⊙D的半径AD=. ································································ 5分22.解:(1)如图,连结BM,设HM交BC于点K.设BM=r.在Rt△BMK中,r2=42+(r-2)2,解得r=5,∴BM=5,即BC所在圆的半径为5 cm.··························································· 6分(2)如图,延长PQ交NM的延长线于点T,若直线PQ与BC所在的圆相切于点J,连结MJ.∵DN∥PQ,∴∠DNE=∠P.∵NP=NQ,∴∠P=∠NQP,∴∠DNE=∠NQP,∴tan∠DNE=tan∠NQP=2=DE NE.∵NE=DG=4,∴DE=NG=8,∴NP =NE +EP =4+11=15.∵直线PQ 与 BC所在的圆相切于点J , ∴MJ ⊥PQ ,MJ =5,∴∠TMJ =∠P ,∴tan ∠TMJ =tan P =2,∴12MJ NP TJ NT ==, ∴NT =15×2=30,TJ =5×2=10,∴MT ===,∴MN =NT -MT =30-∴AB =GN +MN +MK =8+30--29.8(cm). ······················· 6分23.(1)证明:如图,连结BD .∵AB 为⊙O 的直径, ∴∠ADB =90°,∴∠DAB +∠ABD =90°. ∵AF 是⊙O 的切线,∴∠F AB =90°,即∠DAB +∠CAF =90°, ∴∠CAF =∠ABD .∵BA =BC ,∠ADB =90°, ∴∠ABC =2∠ABD ,∴∠ABC =2∠CAF . ····································································· 6分(2)解:连结AE ,∠AEB =90°.设CE =x ,∵CE ∶EB =1∶4,∴EB =4x ,BA =BC =5x , ∴AE =3x .在Rt △ACE 中,由勾股定理得222(3)x x =+,解得x =2(负值已舍去),∴CE 的长为2. ··········································································· 6分24.解:(1)2 (12,4) ··············································································· 每空1分【解法提示】∵直线l:483y x=-+交x轴于点E(6,0),交y轴于(0,8),∴B(0,8),∴OE=6,OB=8,BE=10.∵BE=5AE,∴AE=2,∴A(4,0),∴D(12,4).(2)①如图1,当⊙P与BC相切于点B时,∠OBC=90°,点A与点O重合,图1此时BE=5OE=30,B(-12,24). ············································································ 3分②如图2,当⊙P与直线AB相切于点B,点A在点E右侧时,作BH⊥OA于点H,∠OBA=90°,图2设AE=m,则BE=5m,∴BH=4m,EH=3m,∴AH=BH=4m,∴∠BAO=45°.∵∠OBA=90°,∴∠BOA=45°,即点B在直线y=x上,此时点B(247,247).·································································· 3分③如图3,当点A在点E左侧时,作BF⊥OA于点F,图3设AE=m,则BE=5m,∴BF=4m,EF=3m,AF=2m.∵∠OBA=∠OFB=90°,由△OFB∽△BF A,得BF2=OF·AF,∴16m2=(6-3m)·2m解得611m=,此时点B(4811,2411). ·································································· 3分综上,点B的坐标为(-12,24)或(247,247)或(4811,2411).(3)785······························································································ 3分【解法提示】如图4,作BG⊥OA于点G,连结OQ.图4设AE=m,则BE=5m,∴BG=4m,EG=3m,AG=2m,∴B(6-3m,4m),C(m+6,6m),A(6-m,0).∵OQ⊥直线l,且过圆心O,∴直线OQ的解析式为34y x =,∴Q(9625,7225).∵CQ平分∠BCD,∴C,Q,A三点共线,∴66(6) 7296(6) 2525m m mm+--=--,解得7825m ,∴AE=78 25,∴BE=785.。
一、选择题1.下列命题说法正确的有( ) ①三点确定一个圆; ②长度相等的弧是等弧; ③等边三角形都相似; ④直角三角形都相似; ⑤平分弦的直径垂直于弦.⑥一条弧所对的圆周角等于它所对的圆心角的一半. A .1个B .2个C .3个D .4个2.如图,AB 为半圆O 的直径,C 是半圆上一点,且60COA ∠=º,设扇形AOC 、COB △、弓形BmC 的面积为1S 、2S 、3S ,则他们之间的关系是( )A .123S S S <<B .213S S S <<C .132S S S <<D .321S S S <<3.如图,两个正六边形ABCDEF 、EDGHIJ 的顶点A 、B 、H 、I 在同一个圆上,点P 在ABI 上,则tan ∠API 的值是( )A .23B .22C .2D .14.如图,半圆的直径为AB ,圆心为点O ,C 、D 是半圆的3等分点,在该半圆内任取一点,则该点取自阴影部分的概率是( )A .3π B .6π C .12D .135.小凯在画一个开口向上的二次函数图象时,列出如下表格: x … -1 0 1 2 … y…1211…A .(-1,1)B .(0,2)C .(1,1)D .(2,1)6.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2ba =-;④80a c +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个7.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④8.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤9.如图,在ABC ∆中,AC BC ⊥,30ABC ︒∠=,点D 是CB 延长线上的一点,且AB BD =,则tan DAC ∠的值为( )A .33B .23C .23+D .23-10.关于直角三角形,下列说法正确的是( ) A .所有的直角三角形一定相似B .如果直角三角形的两边长分别是3和4,那么第三边的长一定是5C .如果已知直角三角形两个元素(直角除外),那么这个直角三角形一定可解D .如果已知直角三角形一锐角的三角函数值,那么这个直角三角形的三边之比一定确定 11.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25012.如图,△ABC 、△FED 区域为驾驶员的盲区,驾驶员视线PB 与地面BE 的央角∠PBE =43°,视线PE 与地面BE 的夹角∠PEB =20°,点A ,F 为视线与车窗底端的交点,AF //BE ,AC ⊥BE ,FD ⊥BE .若A 点到B 点的距离AB =1.6m ,则盲区中DE 的长度是( )(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A .2.6mB .2.8mC .3.4mD .4.5m二、填空题13.圆锥的底面半径是1,高是3,则这个圆锥的侧面展开图的圆心角的度数是_____. 14.如图,在ABC 中,D 是边BC 上的一点,以AD 为直径的O 交AC 于点E ,连接DE .若O 与BC 相切,55ADE ∠=︒,则C ∠的度数为______15.如图,抛物线2y ax bx c =++的对称轴是x =1,下列结论:①abc >0;②240b ac ->;③8a+c <0;④5a+b+2c >0,正确的有___(填序号).16.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).17.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2021的坐标为____.18.在ABC 中,90C ∠=︒,若5sin 13B =,则cos A =________. 19.如图,在ABC 中,90ACB ∠=︒,AC BC =,点D 是AB 的中点,BAC ∠的平分线交CD 于点E ,22CE =.把ACE △沿AC 对折,得到ACF ,点G 为AE 的中点,连结FG ,GB .则四边形CFGB 的面积为_________.20.如图,矩形ABCD 的四个顶点分别在直线3421,,,l l l l 上.若这四条直线相互平行且相邻直线的间距均为1,若α=30°,则矩形ABCD 的面积为_________.21.如图,点D 在钝角ABC 的边BC 上,连接AD ,45B ∠=︒,CAD CDA ∠=∠,:5:7CA CB =,则CAD ∠的余弦值为__________.22.已知等腰ABC ,AB AC =,BH 为腰AC 上的高,3BH =,3tan ABH ∠=,则CH 的长为______.三、解答题23.如图,在直角坐标系中,⊙M 的圆心M 在y 轴上,⊙M 与x 轴交于点A 、B ,与y 轴交于点C 、D ,过点A 作⊙M 的切线AP 交y 轴于点P ,若点C 的坐标为(0,2),点A 的坐标为(﹣4,0).(1)求证:∠PAC =∠CAO ;(2)求点P 的坐标;(3)若点Q 为⊙M 上任意一点,连接OQ 、PQ ,问OQPQ的比值是否发生变化?若不变求出此值;若变化,说明变化规律.24.如图,一组等距的平行线上有一个半圆,点O 为圆心,AB 为直径,点A ,B ,C ,D 是半圆弧与平行线的交点.只用无刻度的直尺作图.(保留作图痕迹)(1)在图1中作出BD 边上的中线CE . (2)在图2中作BCD ∠的角平分线CF .25.如图,在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 出发沿着AB 以每秒1cm 的速度向点B 移动;同时点Q 从点B 出发沿着BC 以每秒2cm 的速度向点C 运动.设△DPQ 的面积为S ,运动时间为t 秒.(1)用含t 的代数式表示出BP 的长为 cm ,CQ 的长为 cm ; (2)写出S 与t 之问的函数关系式;(3)当△DPQ 的面积最小时,请判断线段PQ 与对角线AC 的关系,并说明理由.26.如图,在平面直角坐标系中,已知抛物线252y ax bx =++与x 轴交于()5,0A ,()1,0B -两点,与y 轴交于点C .(1)求抛物线的解析式;(2)若点M 是抛物线的顶点,连接AM ,CM ,求AMC 的面积;(3)若点Р是抛物线上的一个动点,过点Р作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据确定圆的条件对①进行判断;根据等弧的定义对②进行判断;根据相似三角形的判定对③④进行判断;根据垂径定理对⑤进行判断;根据圆周角定理对⑥进行判断.【详解】解:①不在同一直线上的三点确定一个圆,故①错误;②在同圆或等圆中,长度相等的弧是等弧,故②错误;③等边三角形的三个角都是60°,根据“两个三角形的两个角分别对应相等,则这两个三角形相似”可判定等边三角形都相似,故③正确;④直角三角形只有一个直角可以确定对应相等,其他条件不确定,故④错误;⑤平分弦(非直径)的直径垂直于弦,故⑤错误;⑥圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半,故⑥正确.故选B.【点睛】本题考查了确定圆的条件,等弧的定义,相似三角形的判定,垂径定理,圆周角定理等知识.熟练掌握基本知识是解题的关键.2.B解析:B【分析】设出半径,作出△COB底边BC上的高,利用扇形的面积公式和三角形的面积公式表示出三个图形面积,比较即可求解.【详解】解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB =120°,则∠COD =60°.∴S 扇形AOC =22603606ππ=R R ; S 扇形BOC =221203603ππ=R R . 在三角形OCD 中,∠OCD =30°, ∴OD =2R ,CD =3R ,BC =3R , ∴S △OBC =23R ,S 弓形=2233R R π-=2(433)π-R , 2(433)π-R >26πR >23R ,∴S 2<S 1<S 3. 故选:B .【点睛】此题考查扇形面积公式及弓形面积公式,解题的关键是算出三个图形的面积,首先利用扇形公式计算出第一个扇形的面积,再利用弓形等于扇形﹣三角形的关系求出弓形的面积,进行比较得出它们的面积关系.3.A解析:A 【分析】连接AE ,EI ,AH ,过点J 作JM ⊥EI 于M ,证明90AIH ∠=︒,设HI JI JE a ===,求出AI 即可. 【详解】解:如图,连接AE ,EI ,AH ,过点J 作JM ⊥EI 于M .∵ABCDEF 是正六边形,∴∠DEF =∠F =120°, ∵FA =FE ,∴∠FEA =∠FAE =30°, ∴∠AED =90°,同法可证,∠DEI =∠EIH =90°, ∴∠AED +∠DEI =180°, ∴A ,E ,I 共线, 设HI JI JE a ===, ∵JM ⊥EI ,∴EM =MI =2a , ∴AI =2EI =a , ∵∠API =∠AHI ,∴tan ∠API =tan ∠AHI =AIHI =a= 故选:A . 【点睛】本题考查了正多边形和圆,解直角三角形,圆周角定理等知识,解题关键是正确添加辅助线,构造直角三角形解决问题.4.D解析:D 【分析】由C 、D 是半圆的3等分点知∠AOC=∠COD=∠BOD=60°,据此得S 扇形AOC =S 扇形COD =S 扇形BOD=13S 半圆,再根据概率公式求解即可. 【详解】解:∵C 、D 是半圆的3等分点, ∴∠AOC =∠COD =∠BOD =60°,∴S 扇形AOC =S 扇形COD =S 扇形BOD =13S 半圆, ∴该点取自阴影部分的概率为1=3COD S S 扇形半圆, 故选:D . 【点睛】本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.5.A解析:A【分析】观察图表数据,根据二次函数的对称性即可判断出计算错误的一组数据,然后再利用二次函数的增减性得出结论.【详解】解:观察y 值发现y =1时x 有三个不同的值,因此这三个值中必有一对计算错误.由二次函数的对称性:如果(-1,1),(1,1)是图象的两个对称点,那么根据描点得到这个函数图象的开口应该是向下的.同理若(-1,1),(2,1)是两个对称点,那么该函数图象的开口也是向下的,所以(1,1),(2,1)是图象的两个对称点,因此该图像的对称轴为直线032x =,根据二次函数的增减性,当开口向上时,在对称轴的左边,y 随x 的增大而减小,所以1x =-时,y 一定是大于1的,故选A .【点睛】本题考查了二次函数的图象,找出图表数据特点,根据函数的对称性解答即可,熟练掌握二次函数的图象和性质,是解答的关键.6.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =, ∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0, ∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】 本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.7.A解析:A【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案.【详解】 解: 图像开口向下,a ∴<0,12b x a=-=-<0, b ∴<0, 函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12b x a=-=-, 2,b a ∴= 即1,2a b = 当1x =时,y a b c =++<0, 12b bc ∴++<0,32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.8.D解析:D【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案.【详解】解:由图象开口向上,可知a<0,与y 轴的交点在x 轴的下方,可知c<0, 又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误; ∵122b a -= ∴=-a b , ∴0a b +=,故B 错误; 当12x =时,则11042y a b c =++>, ∵=-a b , ∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误;当21x n =+时,222(1)(1)y a n b n c =++++4222an an a an a c =++--+42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥,∴22(1)an n c c ++≤,即y c ≤,故D 正确;故选:D .【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明9.C解析:C【分析】设AC=x ,根据三角函数可得,,AB=2x ,求出DC 即可.【详解】解:设AC=x ,∵AC BC ⊥,30ABC ︒∠=,tan ∠ABC=AC BC,AC BC =,sin ∠ABC=AC AB, 12AC AB =, AB=2x ,BD=2x ,=(2x +,tan ∠DAC=2DC AC ==, 故选:C .【点睛】本题考查了特殊角的三角函数和求三角函数值,解题关键是根据三角函数的定义,利用特殊角,表示出相关线段长. 10.D解析:D【分析】根据题目条件,利用举反例的方法判断即可.【详解】∵因为等腰直角三角形和一般直角三角形是不相似的,∴选项A 错误;若斜边长为4,∴选项B 错误;已知两个角分别为45°,45°,这个直角三角形是无法求解的,缺少解直角三角形需要的边元素,∴选项C 错误;∵已知直角三角形的一个锐角的三角函数值,∴就能确定斜边与直角边的比或两直角边的比,根据勾股定理可以确定第三边的量比,∴直角三角形的三边之比一定确定,故选D.【点睛】本题考查了命题的真伪,以数学基本概念,基本性质,基本法则为基础,通过举反例的方法判断是解题的关键.11.B解析:B【分析】根据正弦的定义求解即可;【详解】由题可知sin 340.56500280AC AB =︒=⨯=(米);故选B .【点睛】本题主要考查了解直角三角形的应用,准确计算是解题的关键.12.B解析:B【分析】首先证明四边形ACDF 是矩形,利用∠PBE 的正弦值可求出AC 的长,即可得DF 的长,利用∠PEB 的正切值即可得答案.【详解】∵FD ⊥AB ,AC ⊥EB ,∴DF ∥AC ,∵AF ∥EB ,∴四边形ACDF 是平行四边形,∵∠ACD =90°,∴四边形ACDF 是矩形,∴DF =AC ,在Rt△ACB中,∵∠ACB=90°,∠ABE=43°,∴AC=AB•sin43°≈1.6×0.7=1.12(m),∴DF=AC=1.12(m),在Rt△DEF中,∵∠FDE=90°,∠PEB=20°,∴tan∠PEB=DFDE≈0.4,∴DE≈1.120.4=2.8(m),故选:B.【点睛】本题考查解直角三角形的应用及矩形的判定与性质,熟练掌握各三角函数的定义是解题关键.二、填空题13.180°【分析】先根据勾股定理求出圆锥的母线为2进而求得展开图的弧长然后根据弧长公式即可求解【详解】解:设圆锥的母线为a根据勾股定理得:a ==2设圆锥的侧面展开图的圆心角度数为n°根据题意得2π•1解析:180°【分析】先根据勾股定理求出圆锥的母线为2,进而求得展开图的弧长,然后根据弧长公式即可求解.【详解】解:设圆锥的母线为a,根据勾股定理得:a2,设圆锥的侧面展开图的圆心角度数为n°,根据题意得2π•1=2180nπ⋅⋅,解得n=180,即圆锥的侧面展开图的圆心角度数为180°.故答案为:180°.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.55°【分析】由直径所对的圆周角为直角得∠AED=90°由切线的性质得∠ADC=90°然后由同角的余角相等得∠C=∠ADE=55°【详解】解:∵AD为的直径∴∠AED=90°∴∠ADE+∠DAE=9解析:55°【分析】由直径所对的圆周角为直角得∠AED=90°,由切线的性质得∠ADC=90°,然后由同角的余角相等得∠C=∠ADE=55°.【详解】解:∵AD 为O 的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°,∵O 与BC 相切,∴∠ADC=90°,∴∠DAE+∠C=90°,∴∠C=∠ADE=55°.故答案为55°.【点睛】本题考查了切线的性质,圆的相关概念及性质,互余关系等知识点.掌握圆的相关性质是解题的关键.15.②③④【分析】由抛物线的性质和对称轴是分别判断abc 的符号即可判断①;抛物线与x 轴有两个交点可判断②;由得令求函数值即可判断③;令时则令时即可判断④;然后得到答案【详解】解:根据题意则∵∴∴故①错误解析:②③④【分析】由抛物线的性质和对称轴是1x =,分别判断a 、b 、c 的符号,即可判断①;抛物线与x轴有两个交点,可判断②;由12b x a=-=,得2b a =-,令2x =-,求函数值,即可判断③;令2x =时,则420y a b c =++>,令1x =-时,0y a b c =-+>,即可判断④;然后得到答案.【详解】解:根据题意,则0a <,0c >, ∵12b x a=-=, ∴20b a =->, ∴0abc <,故①错误;由抛物线与x 轴有两个交点,则240b ac ->,故②正确;∵2b a =-,令2x =-时,420y a b c =-+<,∴80a c +<,故③正确;在2y ax bx c =++中,令2x =时,则420y a b c =++>,令1x =-时,0y a b c =-+>,由两式相加,得520a b c ++>,故④正确;综上,正确的结论有:②③④;故答案为:②③④.【点睛】本题考查了二次函数的图象和性质,解题的关键是熟练掌握二次函数的性质,熟练判断各个式子的符号.16.③④【分析】利用数形结合思想从抛物线的开口与坐标轴的交点对称轴等方面着手分析判断即可【详解】解:∵抛物线的开口向下对称轴在原点的右边与y 轴交于正半轴∴a <0b >0c >0∴abc <0∴结论①错误;∵抛解析:③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0, b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴b=-2a ;∵ c+a+b >0,∴c-a >0,∴a-c <0, ∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x;当p=0时,()()12=0--p m x m x当p<0时,()()120<--p m x m x∴()()120p m x m x--≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.17.(-101110112)【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变化规律即解析:(-1011,10112)【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2021的坐标.【详解】解:∵A点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==,得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A 2021(-1011,10112),故答案为(-1011,10112).【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.18.【分析】根据三角函数的性质一个锐角的正弦值等于它余角的余弦值可求【详解】解:∴故答案为:【点睛】本题考查了三角函数的性质解题关键是正确理解三角函数的意义得出一个锐角的正弦值等于它余角的余弦值 解析:513【分析】根据三角函数的性质一个锐角的正弦值等于它余角的余弦值可求.【详解】解:90C ∠=︒,5sin 13B =, ∴513=AC AB , 5cos 13AC A AB ==, 故答案为:513. 【点睛】 本题考查了三角函数的性质,解题关键是正确理解三角函数的意义,得出一个锐角的正弦值等于它余角的余弦值.19.【分析】如图连接交于连接解直角三角形求出再根据求解即可【详解】解:如图连接交于连接是由翻折得到平分故答案为:【点睛】本题考查翻折变换解直角三角形等腰直角三角形的判定和性质三角形中线的性质等知识解题的解析:12+【分析】如图,连接EF 交AC 于T ,连接BE .解直角三角形求出CT ,ET ,DE ,AD ,CD ,AC ,再根据()11222AFG AGB AFC ACB AEC EFC AEB CFGB ABCE S S S S S S S S S ∆∆∆∆∆∆∆=--=+---四边形四边形求解即可. 【详解】解:如图,连接EF 交AC 于T ,连接BE .ACF ∆是由ACE ∆翻折得到,EF AC ∴⊥,90ACB ∠=︒,CA CB =,AD DB =,CD AB ∴⊥,1452ACD ACB ∠=∠=︒, 90CTE ∠=︒,45ECT CET ∴∠=∠=︒,22CT ET ∴===, ED AD ⊥,ET AC ⊥,AE 平分CAD ∠,2ET ED ∴==,222AD CD ∴==+224AC BC ==,AG EG =,AFG EFG S S ∆∆∴=,ABG EBG S S ∆∆=,AFG AGB CFGB ABCF S S S S ∆∆∴=--四边形四边形11(2)22AFC ACB AEC EFC AEB S S S S S ∆∆∆∆∆=+--- 21111111(224)(222)22[2(222)222222](442)22222222=⨯+⨯⨯⨯⨯⨯⨯-⨯⨯+⨯1262=+, 故答案为:1262+【点睛】本题考查翻折变换,解直角三角形,等腰直角三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用分割法求四边形面积,属于中考常考题型.20.【分析】过B 点作直线EF 与平行线垂直与l2交于点E 与l3交于点F 得AB=2进而求得矩形的面积;【详解】解:如图过B 作于E 点交于F 点∵∴∠又∵相邻直线的间距均为1∴BF=EF=1则∴又∵矩形ABCD 中 83 【分析】过B 点作直线EF 与平行线垂直,与l 2交于点E ,与l 3交于点F .得AB=2,43BC =.进而求得矩形的面积;【详解】解:如图,过B 作2BE l ⊥于E 点,交2l 于F 点∵34//l l∴∠=30BAF α∠=︒又∵相邻直线的间距均为1,∴BF=EF=1 则1sin 2BF AB α== ∴2212AB BF ==⨯=又∵矩形ABCD 中,∠90ABC =° 而∠+90ABF α∠=︒∴30EBC α∠=∠=︒,且BE=2 ∴3cos BE EBC BC ∠== ∴3432233BC BE =÷== 则S 矩形ABCD=AB×BC=4832333= 83 【点睛】 本题考查了矩形的性质、直角三角形中三角函数的应用,锐角三角函数值的计算等知识,根据平行线之间的距离构造全等的直角三角形是关键.21.【分析】作AH ⊥BC 于H 设AC ═CD=5k 则BC=7k 设AH=BH=x 在Rt △ACH 中利用勾股定理求得x 的值(x 用k 表示求得的值需淘汰不构成钝角三角形的值)然后表示ADDH 利用余弦的定义即可求得【详 10 【分析】作AH ⊥BC 于H ,设AC ═CD=5k ,则BC=7k ,设AH=BH=x ,在Rt △ACH 中,利用勾股定理求得x 的值(x 用k 表示,求得的值需淘汰不构成钝角三角形的值),然后表示AD ,DH ,利用余弦的定义即可求得.【详解】解:如图作AH ⊥BC 于H ,∵CAD CDA ∠=∠,:5:7CA CB =,设AC ═CD=5k ,BC=7k ,∵∠B=45°,∠AHB=90°,∴AH=BH ,设AH=BH=x ,在Rt △ACH 中,∵AH 2+HC 2=AC 2,∴x 2+(7k-x )2=(5k )2,解得x=3k 或4k ,当x=4k 时,即AH=4k ,HC=7k-4k=3k ,AH>HC ,此时根据大边对大角,∠HAC<∠HCA ,又∠HAC+∠HCA=90°,∴∠HAC<45°,∴∠BAC<90°,与△ABC 为钝角三角形矛盾,故x=4k 舍去,当x=3k 时,∴BH=AH=3k ,HC=7k-3k=4k ,DH=k , ∴2210AD AH DH k +, ∴10cos cos 10DH CAD ADH AD k ∠=∠===. 故答案为:1010. 【点睛】 本题考查解直角三角形,等腰三角形的判定定理,勾股定理,一元二次方程的应用等.解决本题的关键是作辅助线构造直角三角形,注意作辅助线时尽量不要破坏已给的角. 22.或【分析】如图所示分两种情况利用特殊角的三角函数值求出的度数利用勾股定理求出所求即可【详解】当为钝角时如图所示在中根据勾股定理得:即;当为锐角时如图所示在中设则有根据勾股定理得:解得:则故答案为或【 解析:333【分析】如图所示,分两种情况,利用特殊角的三角函数值求出ABH ∠的度数,利用勾股定理求出所求即可.【详解】当BAC ∠为钝角时,如图所示,在Rt ABH 中,3tan AH ABH BH ∠==,3BH =, 3AH ∴=, 根据勾股定理得:22(3)323AB =+=,即23AC =,23333CH CA AH ∴=+=+=;当BAC ∠为锐角时,如图所示,在Rt ABH 中,3tan ABH ∠=, 30ABH ∴∠=,1122AH AB AC ∴==, 设AH x =,则有2AB AC x ==, 根据勾股定理得:222(2)3x x =+,解得:3x =则3HC AC AH =-=故答案为333【点睛】此题属于解直角三角形题型,涉及的知识有:等腰三角形的性质,勾股定理,以及特殊角的三角函数值,熟练掌握直角三角形的性质及分类的求解的数学思想是解本题的关键.三、解答题23.(1)见解析;(2)点P 的坐标为(0,163);(3)OQ PQ 不变,等于35. 【分析】(1)根据切线性质,∠PAC +∠MAC =90°,由∠MCA =∠MAC ,∠OAC +∠MCA =90°,实现解题目标;(2)先证明△AOM ∽△PAM ,后使用勾股定理计算即可;(3)证明△MOQ ∽△MQP 即可实现解题目标.【详解】(1)连接MA ,如图1,∵PA 是⊙M 的切线,∴AM ⊥AP ,∴∠PAC +∠MAC =90°,∵MA =MC ,∴∠MCA =∠MAC ,∵∠OAC +∠MCA =90°,∴∠PAC =∠OAC ;(2)如图1,∵∠AMO =∠PMA ,∠AOM =∠PAM =90°,∴△AOM ∽△PAM , ∴MA MO MP MA=, ∴2MA =MO •MP ,设AM =R ,∵A (﹣4,0),C (0,2),∴OA =4,OC =2,在Rt △AOM 中,∵OA =4,OM =R ﹣2,由222MA OM AO =+得,222(2)4R R =-+,解得R =5,即AM =5,∴OM =5﹣2=3.∴25=3MP ,∴MP =253, ∴OP =MP ﹣OM =253﹣3=163, ∴点P 的坐标为(0,163) (3)OQ PQ 不变,等于35. 连接MQ ,如图2, ∵MA MO MP MA=(已证),MA =MQ ,∴MQ MO MP MQ=.∵∠QMO=∠PMQ,∴△MOQ∽△MQP,∴35 OQ MO MOPQ MQ MA===,∴OQPQ不变,等于35.【点睛】本题考查了圆的切线的性质,三角形的相似,勾股定理,圆的半径相等,猜想型问题,熟练掌握圆的基本性质,灵活证明三角形的相似是解题的关键.24.(1)见解析;(2)见解析【分析】(1)根据平行线之间的距离处处相等可取BD中点E,连接CE即可;(2)连接OE并延长,与圆O交于点F,连接CF即可.【详解】解:(1)如图,CE即为所作;(2)如图,CF即为所作.【点睛】本题考查了平行线之间的距离处处相等,垂径定理,圆周角定理,实质上是考验学生的阅读理解能力及知识的迁移能力.25.(1)(6-t),(12-2t);(2)S=t2-6t+36;(3)PQ∥AC,理由见解析【分析】(1)由题意可得出答案;(2)根据△PQD的面积=矩形ABCD的面积-△APD的面积-△PBQ的面积-△CDQ的面积可得出答案;(3)由二次函数的性质及中位线定理可得出答案.【详解】解:(1)根据题意得:AP=t(cm),BQ=2t(cm),则BP=(6-t)cm,CQ=(12-2t)cm,故答案为:(6-t),(12-2t);(2)∵BP=6-t(cm),CQ=12-2t(cm),∴△PQD的面积=矩形ABCD的面积-△APD的面积-△PBQ的面积-△CDQ的面积=12×6-12×12t-12×2t×(6-t)-12×6(12-2t)=t2-6t+36,∴S=t2-6t+36;(3)∵S=t2-6t+36=(t-3)2+27,且1>0,∴当t=3时,S最小;即经过3s时,△PQD的面积最小,此时,PQ∥AC.理由:∵t=3,∴AP=PB=3(cm),CQ=BQ=6(cm),∴PQ∥AC..【点睛】本题考查了矩形的性质,二次函数的最值,中位线定理,熟练掌握二次函数的性质是解题的关键.26.(1)y=−12x2+2x+52;(2)152;(3)(25+,2)或(25-,2)【分析】(1)利用二次函数的交点式,结合待定系数法即可求解;(2)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(3)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【详解】解:(1)令x=0,则y=52,即C(0,52),设抛物线的表达式为y=a(x−5)(x+1),将点C的坐标代入上式得:52=a(0−5)(0+1),解得a=−12,∴抛物线的表达式为:y=−12(x−5)(x+1)=−12x2+2x+52;(2)由抛物线的表达式得:顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC的表达式为y=kx+t,则5205tk t⎧⎪⎨⎪⎩==+,解得:1252kt⎧-⎪⎪⎨⎪⎪⎩==,∴直线AC的表达式为:y=−12x+52,当x =2时,y =32,则MH =92−32=3, 则△AMC 的面积=S △MHC +S △MHA =12×MH×OA =12×3×5=152; (3)点D 在直线AC 上,设点D (m ,−12m +52), 由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,∴EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254, ∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, ∴点D (1,2),∵点P 、D 的纵坐标相同,∴2=−12x 2+2x +52,解得x =25± 故点P 的坐标为(25+2)或(25-,2).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,是解题的关键.。
下册·第一次质量评估试卷[考查范围:上册+下册第1章]一、选择题(每小题3分,共30分)1.若∠A 为锐角,且sin A =12,则∠A 的度数为( A )A .30°B .45°C .60°D .90° 2.在Rt △ABC 中,∠C =90°,∠B =30°,AB =8,则BC 的长是( D ) A.433B .4C .8 3D .4 33.如图所示,厂房屋顶人字形(等腰三角形)钢架的跨度BC =10 m ,∠B 为36°,则中柱AD(D 为底边中点)的长是( C )A .5sin 36° mB .5cos 36° mC .5tan 36° mD .10tan 36° m第3题图第4题图4.如图所示,点A(t ,3)在第一象限,OA 与x 轴所夹的锐角为α, tan α=32,则t的值是( C )A .1B .1.5C .2D .35.计算12cos 60°-2sin 45°的结果是( B )A.1-22B .-34C.3-44D.1-2346.一斜面的坡比i =1∶3,则坡角α满足( C ) A .sin α=33B .cos α= 3C .tan α=33D .tan α= 37.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若AC =23,AB =42,则tan ∠BCD 的值为( B )A. 2B.153C.155D.337题图第8题图第10题图8.直角三角形纸片的两直角边长分别为6,8,现将△ABC 按如图所示那样折叠,使点A 与点B 重合,折痕为DE ,则cos ∠CBE 的值是( A )A.2425B.2524C.247D.7249.已知抛物线y =-x 2-2x +3与x 轴交于A ,B 两点,将这条抛物线的顶点记为C ,连结AC ,BC ,则tan ∠CAB 的值为( D )A.12B.55C.255D .210.如图所示,已知在Rt △ABC 中,∠ABC =90°,点D 沿BC 自B 向C 运动(点D 与点B ,C 不重合),作BE ⊥AD 于点E ,CF ⊥AD 于点F ,则BE +CF 的值( C )A .不变B .增大C .减小D .先变大再变小二、填空题(每小题4分,共24分) 11.tan 245°-1=__0__.12.在Rt △ABC 中,∠C =90°,sin A =35,则tan A 的值为__34__.13.若α,β均为锐角,且⎪⎪⎪⎪sin α-12+(tan β-1)2=0,则α+β=__75°__. 14.如图①为折叠椅,图②是折叠椅撑开后的侧面示意图,其中椅腿AB 和CD 的长度相等,O 是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32 cm ,∠DOB =100°,那么椅腿AB 的长应设计为__41.6_cm__. (结果精确到0.1 cm ,参考数据:sin 50°=cos 40°≈0.77,sin 40°=cos 50°≈0.64,tan 40°≈0.84,tan 50°≈1.19)第14题图15题图15.如图所示,在△ABC 中,AB =4,将△ABC绕点B 按逆时针方向旋转30°后得到△A 1BC 1 , 则阴影部分的面积为__4__.16.已知在△ABC 中,tan B =23,BC =6,过点A 作AD ⊥BC 于点D ,且满足BD ∶CD=2∶1,则△ABC 的面积为__8或24__.三、解答题(共66分) 17.(6分)计算:(1) 4sin 260°-3tan 30°;(2)3tan 60°-2cos 60°sin 30°+cos 245°+sin 245°.解:(1)原式=4×34-3×33=3- 3. (2)原式=3-112+1=5.第18题图18.(8分)如图所示,在△ABC 中,AB =BC =4,CD ∥AB ,过D 点的直线交AC ,AB 于点F ,E ,交CB 的延长线于点G ,DF =EF.(1)求证:AE =CD.(2)若GB =2,求BE 的长.解:(1)证明:∵CD ∥AB ,∴∠D =∠AEF ,在△CDF 与△AEF 中,⎩⎪⎨⎪⎧∠D =∠AEF ,DF =EF ,∠DFC =∠EFA ,∴△CDF ≌△AEF(ASA),∴AE =CD.(2)∵CD ∥AB ,∴△GBE ∽△GCD ,∴GB GC =BE CD ,∴26=BE CD ,∵AE =CD ,∴BE AE =13,∴3BE =AE ,∵AB =4,∴AE +BE =4,即4BE =4,∴BE =1.第19题图19.(8分)如图所示,AD 是△ABC 的中线,tan B =13,cos C =22,AC = 2.求:(1)BC 的长;(2)sin ∠ADC 的值.解:(1)过点A 作AE ⊥BC 于点E.∵cos C =22,∴∠C =45°. 在Rt △ACE 中,CE =AC·cos C =2×22=1,∴AE =CE =1. 在Rt △ABE 中,∵tan B =13,∴AE BE =13,∴BE =3AE =3,∴BC =BE +CE =4.(2)由(1)可知BC =4,CE =1.∵AD 是△ABC 的中线,∴CD =12BC =2,∴DE =CD -CE=1.∵AE ⊥BC ,DE =AE ,∴∠ADC =45°,∴sin ∠ADC =22.第20题图20.(8分)如图所示,某办公大楼正前方有一根高度是15 m 的旗杆ED ,从办公楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20 m ,梯坎坡长BC 是12 m ,梯坎坡度i =1∶ 3.求大楼AB 的高度.(精确到0.1 m ,参考数据:2≈1.41,3≈1.73,6≈2.45)第20题答图解:延长AB交DC于点H,作EG⊥AB于点G,如图所示,则GH=DE=15 m,EG =DH,∵梯坎坡度i=1∶3,∴BH∶CH=1∶3,设BH=x m,则CH=3x m,在Rt△BCH中,BC=12 m,由勾股定理,得x2+(3x)2=122,解得x=6,∴BH=6 m,CH=6 3 m,∴BG=GH-BH=15-6=9(m),EG=DH=CH+CD=(63+20) m,∵∠α=45°,∴∠EAG=90°-45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=63+20(m),∴AB=AG+BG=63+20+9≈39.4(m).第21题图21.(8分)如图所示,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米.求居民楼的高度.(精确到0.1米,参考数据:3≈1.73)解:设每层楼高为x 米,由题意,得MC′=MC -CC′=2.5-1.5=1米, ∴DC ′=5x +1, EC ′=4x +1,在Rt △DC ′A ′中,∠D ′A ′C =60°,∴C ′A ′=DC′tan 60°=3(5x +1)3,在Rt △EC ′B ′中,∠EB ′C ′=30°,∴C ′B ′=EC′tan 30°=3(4x+1),∵A ′B ′=C′B′-C′A ′=AB ,∴3(4x +1)-3(5x +1)3=14,解得x ≈3.17,则居民楼高为5×3.17+2.5≈18.4(米).第22题图22.(8分)如图所示,二次函数y =-58x 2+74x +3的图象与x 轴交于点A ,B ,与y 轴交于点C ,点D 在该抛物线上,且点D 的横坐标为2,连结BC ,BD ,设∠OCB =α,∠DBC=β,求cos(α-β)的值.第22题答图解:延长BD 交y 轴于点P ,∵∠OCB =α,∠DBC =β,∴∠OPB =α-β, 令-58x 2+74x +3=0,解得x 1=-1.2,x 2=4,∴点A 的坐标为(-1.2,0),点B 的坐标为(4,0),x =0时,y =3,∴点C 的坐标为(0,3), ∵点D 在该抛物线上,且点D 的横坐标为2, ∴点D 的纵坐标为4,∴点D 的坐标为(2,4), ∴直线BD 的解析式为:y =-2x +8, ∴OP =8,PB =OB 2+OP 2=45,∴cos(α-β)=cos ∠OPB =OP PB =255.第23题图23.(10分)如图所示,以△ABC 的一边AB 为直径的半圆与其他两边AC ,BC 的交点分别为D ,E ,且DE ︵=BE ︵.(1)试判断△ABC 的形状,并说明理由;(2)已知半圆的半径为5,BC =12,求sin ∠ABD 的值. 解:(1)△ABC 为等腰三角形.第23题答图理由如下:连结AE ,如图,∵DE ︵=BE ︵, ∴∠DAE =∠BAE ,即AE 平分∠BAC , ∵AB 为直径,∴∠AEB =90°,∴AE ⊥BC ,∴△ABC 为等腰三角形. (2)∵△ABC 为等腰三角形,AE ⊥BC , ∴BE =CE =12BC =12×12=6,。