1章习题课
- 格式:ppt
- 大小:716.00 KB
- 文档页数:19
化工原理第一章习题课(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、概念题1.某封闭容器内盛有水,水面上方压强为p 0,如图所示器壁上分别装有两个水银压强计和一个水银压差计,其读数分别为R 1、R 2和R 3,试判断: 1)R 1 R 2(>,<,=); 2)R 3 0(>,<,=);3)若水面压强p 0增大,则R 1 R 2 R 3 有何变化(变大、变小,不变)2.如图所示,水从内径为d 1的管段流向内径为d 2管段,已知122d d =,d 1管段流体流动的速度头为,m h 7.01=,忽略流经AB 段的能量损失,则=2h m ,=3h m 。
3.如图所示,管中水的流向为A →B ,流经AB 段的能量损失可忽略,则p 1与p 2的关系为 。
21)p p A > m p p B 5.0)21+> m p p C 5.0)21-> 21)p p D <4.圆形直管内,Vs 一定,设计时若将d 增加一倍,则层流时h f 是原值的 倍,高度湍流时,h f 是原值的 倍(忽略管壁相对粗糙度的影响)。
5.某水平直管中,输水时流量为Vs ,今改为输2Vs 的有机物,且水μμ2=,水ρρ5.0=,设两种输液下,流体均处于高度湍流状态,则阻力损失为水的倍;管路两端压差为水的 倍。
6.已知图示均匀直管管路中输送水,在A 、B 两测压点间装一U 形管压差计,指示液为水银,读数为R (图示为正)。
则: 1)R 0(>,=,<)2)A 、B 两点的压差p ∆= Pa 。
)()ρρ-i Rg A gh Rg B i ρρρ+-)() )()ρρρ--i Rg gh C gh Rg D i ρρρ--)()3)流体流经A 、B 点间的阻力损失f h 为 J/kg 。
4)若将水管水平放置,U 形管压差计仍竖直,则R ,p ∆ ,f h 有何变化7.在垂直安装的水管中,装有水银压差计,管段很短,1,2两点间阻力可近似认为等于阀门阻力,如图所示,试讨论:1)当阀门全开,阀门阻力可忽略时,1p 2p (>,<,=);2)当阀门关小,阀门阻力较大时,1p 2p (>,<,=),R (变大,变小,不变);3)若流量不变,而流向改为向上流动时,则两压力表的读数差p ∆,R ;(变大,变小,不变)。
概率论与数理统计第一章习题课1. 掷3枚硬币, 求出现3个正面的概率. 解: 设事件A ={出现3个正面}基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件,则125.08121)(3====n n A P A .2. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率. 解: 设事件A ={能打开门}, 则A 为不能打开门基本事件总数210C n =, 有利于A 的基本事件数27C n A =, 467.0157910212167)(21027==⨯⨯⋅⨯⨯==C C A P因此, 533.0467.01)(1)(=-=-=A P A P .3. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率.解: 设A i 为取到i 个次品, i =0,1,2,3,基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i则138.09833209495432194959697396979899100543213)(856.0334920314719969798991009394959697)(510049711510059700=⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯=⨯===⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C n n A P00006.09833512196979697989910054321)(006.0983359532195969739697989910054321)(51002973351003972322=⨯⨯==⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯=⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C C n n A P4. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率.解: 设A 为任取三个球恰为一红一白一黑的事件,则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310121315==⨯⨯⨯⨯⨯⨯⨯===C C C C n n A P A5. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件,则基本事件总数1644=⨯=n , 有利于A 的基本事件数422=⨯=A n , 有利于B 的基本事件数632=⨯=B n , 则25.041164)(====n n A P A 375.083166)(====n n B P B . 6. 为防止意外, 在矿内同时设有两种报警系统A 与B , 每种系统单独使用时, 其有效的概率系统A 为0.92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85, 求(1) 发生意外时, 这两个报警系统至少有一个有效的概率 (2) B 失灵的条件下, A 有效的概率解: 设A 为系统A 有效, B 为系统B 有效, 则根据题意有P (A )=0.92, P (B )=0.93, 85.0)|(=A B P(1) 两个系统至少一个有效的事件为A ∪B , 其对立事件为两个系统都失效, 即B A B A = , 而15.085.01)|(1)|(=-=-=A B P A B P , 则988.0012.01)(1)(012.015.008.015.0)92.01()|()()(=-=-==⨯=⨯-==B A P B A P A B P A P B A P(2) B 失灵条件下A 有效的概率为)|(B A P , 则829.093.01012.01)()(1)|(1)|(=--=-=-=B P B A P B A P B A P 7. 用3个机床加工同一种零件, 零件由各机床加工的概率分别为0.5, 0.3, 0.2, 各机床加工的零件为合格品的概率分别等于0.94, 0.9, 0.95, 求全部产品中的合格率.解: 设A 1,A 2,A 3零件由第1,2,3个机床加工, B 为产品合格,A 1,A 2,A 3构成完备事件组.则根据题意有P (A 1)=0.5, P (A 2)=0.3, P (A 3)=0.2, P (B |A 1)=0.94, P (B |A 2)=0.9, P (B |A 3)=0.95,由全概率公式得全部产品的合格率P (B )为93.095.02.09.03.094.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P8. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率.解: 设A 0,A 1,A 2,A 3为第一次比赛取到了0,1,2,3个新球, A 0,A 1,A 2,A 3构成完备事件组.设B 为第二次取到的3个球中有2个新球. 则有22962156101112321)|(,552132101112789321)(,442152167101112321)|(,55272101112389321)(,552842178101112321)|(,2202710111239321)(,552732189101112321)|(,2201101112321)(312162633123933121527231213292312142813122319131213290312330=⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯==C C C A B P C C A P C C C A B P C C C A P C C C A B P C C C A P C C C A B P C C A P根据全概率公式有455.01562.02341.00625.00022.022955214421552755282202755272201)|()()(30=+++=⋅+⋅+⋅+⋅==∑=i i i A B P A P B P9. 某商店收进甲厂生产的产品30箱, 乙厂生产的同种产品20箱, 甲厂每箱100个, 废品率为0.06, 乙厂每箱装120个, 废品率是0.05, 求:(1)任取一箱, 从中任取一个为废品的概率;(2)若将所有产品开箱混放, 求任取一个为废品的概率. 解: (1) 设B 为任取一箱, 从中任取一个为废品的事件. 设A 为取到甲厂的箱, 则A 与A 构成完备事件组4.05020)(,6.05030)(====A P A P 05.0)|(,06.0)|(==AB P A B P 056.005.04.006.06.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P(2) 设B 为开箱混放后任取一个为废品的事件.则甲厂产品的总数为30×100=3000个, 其中废品总数为3000×0.06=180个,乙厂产品的总数为20×120=2400个, 其中废品总数为2400×0.05=120个, 因此...055555555.0540030024003000120180)(==++=B P10. 有两个口袋, 甲袋中盛有两个白球, 一个黑球, 乙袋中盛有一个白球两个黑球. 由甲袋中任取一个球放入乙袋, 再从乙袋中取出一个球, 求取到白球的概率.解: 设事件A 为从甲袋中取出的是白球, 则A 为从甲袋中取出的是黑球, A 与A 构成完备事件组. 设事件B 为从乙袋中取到的是白球. 则P (A )=2/3, P (A )=1/3, P (B |A )=2/4=1/2, P (B |A )=1/4, 则根据全概率公式有417.012541312132)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P11. 上题中若发现从乙袋中取出的是白球, 问从甲袋中取出放入乙袋的球, 黑白哪种颜色可能性大?解: 事件假设如上题, 而现在要求的是在事件B 已经发生条件下, 事件A 和A 发生的条件概率P (A |B )和P (A |B )哪个大, 可以套用贝叶斯公式进行计算, 而计算时分母为P (B )已上题算出为0.417, 因此2.0417.04131)()|()()|(8.0417.02132)()|()()|(=⨯===⨯==B P A B P A P B A P B P A B P A P B A PP (A |B )>P (A |B ), 因此在乙袋取出的是白球的情况下, 甲袋放入乙袋的球是白球的可能性大.12. 假设有3箱同种型号的零件, 里面分别装有50件, 30件和40件, 而一等品分别有20件, 12件及24件. 现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回). 试求先取出的零件是一等品的概率; 并计算两次都取出一等品的概率.解: 称这三箱分别为甲,乙,丙箱, 假设A 1,A 2,A 3分别为取到甲,乙,丙箱的事件, 则A 1,A 2,A 3构成完备事件组. 易知P (A 1)=P (A 2)=P (A 3)=1/3. 设B 为先取出的是一等品的事件. 则6.04024)|(,4.03012)|(,4.05020)|(321======A B P A B P A B P 根据全概率公式有467.036.04.04.0)|()()(31=++==∑=i i i A B P A P B P 设C 为两次都取到一等品的事件, 则38.039402324)|(1517.029301112)|(1551.049501920)|(240224323021222502201=⨯⨯===⨯⨯===⨯⨯==C C A C P C C A C P C C A C P根据全概率公式有22.033538.01517.01551.0)|()()(31=++==∑=i i i A C P A P C P13. 发报台分别以概率0.6和0.4发出信号“·”和“—”。
第一章 电磁现象的普遍规律要求掌握§1—§6,其中重点是§3—§5。
具体要求是:1. 需要掌握的主要数学公式 (1) 矢量代数公式:cb a bc a c b a b a c a c b c b a)()()()()()(⋅-⋅=⨯⨯⨯⋅=⨯⋅=⨯⋅ (2) 梯度、散度和旋度定义及在直角坐标和球坐标中的表达式。
(3) 矢量场论公式AB B A A A A A A⨯∇⋅∇±∇==⨯∇=⨯∇⋅∇=∇⨯∇∇-⋅∇∇=⨯∇⨯∇=,可引入=若,可引入若000)(0)()(2ϕϕ(4)复合函数“三度”公式:dudf uu f ∇=∇)(du A d u u A⋅∇=⋅∇)(duA d u u A⨯∇=⨯∇)((5)有关x x r '-=的一些常用公式:为常数矢量)a a r a r rr r r r r r r r r rr()(0),0(0,10,3,333=⋅∇=⨯∇≠=⋅∇-=∇=⨯∇=⋅∇=∇(6)积分变换公式:Sd A A l d A V d A s d SLVS⋅⨯∇=⋅⋅∇=⋅⎰⎰⎰⎰)(2. 麦克斯韦方程组建立的主要实验定律和假定电磁感应定律:⎰-=B dt d εS d⋅(实质:变化磁场激发电场)电荷守恒定律:0=∂∂+⋅∇t J ρ位移电流假定:tEJ D ∂∂=0ε(实质:变化电场可以激发磁场)感生电场i E : 0,=⋅∇∂∂-=⨯∇i i E tBE3. 真空中的麦克斯韦方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂+=⨯∇∂∂-=⨯∇00000B E t E J B t B E ερμεμ4.介质中的电磁性质方程仅讨论均匀介质:E P 00εχ=, p m H M ρχ,==P ⋅∇-,tE J H B E D t P J M J D P m ∂∂===∂∂=⨯∇=0,,,,εμε5.介中的麦克斯韦方程组微分方程⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂+=⨯∇∂∂-=⨯∇0,B D t D J H t B Eρ 积分方程⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅⋅+=⋅⋅-=⋅⎰⎰⎰⎰⎰⎰s S LL s S d B Q S d D Sd D dtd I l d H S d B dt d l d E 0 其中M BH P E D-=+=00,με6. 洛伦兹力公式:B J E f⨯+=ρ(适用于电荷分布情况)B v e E e F⨯+=(适用于单个带电粒子)7. 电磁场的边值关系⎪⎪⎩⎪⎪⎨⎧=-⨯=-⨯=-⋅=-⋅0)()(0)()(12121212E E n H H n B B n D D n f fασ其它有用的边值关系:12)(εσσP f E E n +=-⋅, P P P n σ-=-⋅)(12,tJ J n f ∂∂-=-⋅σ)(128. 电磁场的能量能流密度矢量H E S⨯=及其意义;均匀介质中的能量密度 )(21H B D E w⋅+⋅=;能量在场中传递,传递方向为S的方向三、 练习题(一) 单选题(在题干后的括号内填上正确选项前的序号,每题1分) 1.高斯定理→→⎰⋅E S d s=εQ中的Q 是 ( 4 )① 闭合曲面S 外的总电荷 ② 闭合曲面S 内的总电荷 ③ 闭合曲面S 外的自由电荷 ④ 闭合曲面S 内的自由电荷 2.高斯定理→→⎰⋅E S d s=0εQ中的E是 ( 3 )① 曲面S 外的电荷产生的电场强度 ② 曲面S 内的电荷产生的电场强度③ 空间所有电荷产生的电场强度 ④ 空间所有静止电荷产生的电场强度 3.下列哪一个方程不属于高斯定理 (3 )①→→⎰⋅E S d s=εQ②→→⎰⋅E S d S=V d V'⎰ρε01② ▽→⨯E =-tB∂∂→④→⋅∇E =ερ4.静电场方程▽→⨯E = 0 ( 1 )① 表明静电场的无旋性 ② 适用于变化电磁场 ③ 表明静电场的无源性 ④ 仅对场中个别点成立5.对电荷守恒定律下面哪一个说法成立 ( 3 )① 一个闭合面内总电荷保持不变 ② 仅对稳恒电流成立 ③ 对任意变化电流成立 ④ 仅对静止电荷成立6.在假定磁荷不存在的情况下,稳恒电流磁场是 ( 4 ) ① 无源无旋场 ② 有源无旋场 ③有源有旋场 ④ 无源有旋场7.下面哪一个方程适用于变化电磁场 ( 3 )① ▽→⨯B =→J 0μ ②▽→⨯E =0 ③→⋅∇B =0 ④ →⋅∇E =08.下面哪一个方程不适用于变化电磁场 ( 1 )① ▽→⨯B =→J 0μ ②▽→⨯E =-t B ∂∂→③▽•→B =0 ④ ▽•→E =0ερ 9.通过闭合曲面S 的电场强度的通量等于 ( 1 )① ⎰⋅∇VdV E )( ②⎰⋅⨯∇L l d E )( ③ ⎰⨯∇V dV E )( ④⎰⋅∇SdS E )(10.电场强度沿闭合曲线L 的环量等于 ( 2 )① ⎰⋅∇VdV E )( ② ⎰⋅⨯∇SS d E )( ③⎰⨯∇VdV E )( ④⎰⋅∇SdS E )(11.磁感应强度沿闭合曲线L 的环量等于 ( 2 )① l d B L⋅⨯∇⎰)( ② ⎰⋅⨯∇SS d B )( ③⎰⨯SS d B ④⎰⋅∇VdV B )(12. 位置矢量r的散度等于 ( 2 )①0 ②3 ③r1④r 13.位置矢量r的旋度等于 ( 1 )①0 ②3 ③r r ④3rr14.位置矢量大小r 的梯度等于 ( 3 )①0 ② r 1 ③ r r ④3rr15.)(r a⋅∇=? (其中a 为常矢量) ( 4 )① r ② 0 ③ rr④a16.r1∇=? ( 2 )① 0 ② -3rr ③ r r④ r17.⨯∇ 3rr=? ( 1 )① 0 ② r r③ r ④r118.⋅∇ 3rr=?(其中r ≠0) ( 1 )①0 ② 1 ③ r ④r119.)]sin([0r k E ⋅⋅∇ 的值为(其中0E和k 为常矢量) ( 3 )①)sin(0r k k E ⋅⋅②)cos(0r k r E ⋅⋅③)cos(0r k k E ⋅⋅④)sin(0r k r E⋅⋅20.对于感应电场下面哪一个说法正确 ( 4 )①感应电场的旋度为零 ②感应电场散度不等于零③感应电场为无源无旋场 ④感应电场由变化磁场激发21.位移电流 ( 4 )①是真实电流,按传导电流的规律激发磁场 ②与传导电流一样,激发磁场和放出焦耳热 ③与传导电流一起构成闭合环量,其散度恒不为零 ④实质是电场随时间的变化率22.麦氏方程中tBE ∂∂-=⨯∇ 的建立是依据哪一个实验定律 ( 3 )①电荷守恒定律 ②安培定律 ③电磁感应定律 ④库仑定律23.麦克斯韦方程组实际上是几个标量方程 ( 2 )①4个 ②6个 ③8个 ④10个24.从麦克斯韦方程组可知变化电场是 ( 2? )①有源无旋场 ②有源有旋场 ③无源无旋场 ④无源无旋场25.从麦克斯韦方程组可知变化磁场是 ( 3 4 )①有源无旋场 ②有源有旋场 ③无源无旋场 ④无源无旋场26.束缚电荷体密度等于 ( 3 )①0 ②P ⨯∇ ③-P⋅∇ ④)(12P P n-⋅27.束缚电荷面密度等于 ( 4 )①0 ②P ⨯∇ ③-P ⋅∇ ④-)(12P P n -⋅28.极化电流体密度等于 ( 4 )①0 ②M ⋅∇ ③M ⨯∇ ④tP∂∂29.磁化电流体密度等于 ( 1 )①M ⨯∇ ②M ⋅∇ ③tM ∂∂④)(12M M n -⋅30.对于介质中的电磁场 ( 3 )①(E,H )是基本量,(D ,B )是辅助量②(D ,B )是基本量,(E,H )是辅助量 ③(E,B )是基本量,(D ,H )是辅助量 ④(D ,H )是基本量,(E,B )是辅助量31. 电场强度在介质分界面上 ( )①法线方向连续,切线方向不连续 ②法线方向不连续,切线方向不连续③法线方向连续,切线方向连续 ④法线方向不连续,切线方向连续32.磁感应强度在介质分界面上 ( )①法线方向连续,切线方向不连续 ②法线方向不连续,切线方向不连续③法线方向连续,切线方向连续 ④法线方向不连续,切线方向连续33.玻印亭矢量S( )①只与E垂直 ②H 垂直 ③与E 和H 均垂直 ④与E 和H均不垂直(二)填空题(在题中横线上填充正确的文字或公式)1.连续分布的电荷体系)(/x ρ产生的电场强度=)(x E ___________________。