2018年浙教版八年级下册数学《第五章特殊平行四边形》单元测试题及答案
- 格式:doc
- 大小:153.50 KB
- 文档页数:8
浙教版八年级数学下册《第5章特殊平行四边形》[考查范围:第5章 5.1~5.3总分:100分]一、选择题(每小题5分,共30分)1.如图所示,已知面积为1的正方形ABCD的对角线相交于点O,过点O任意作一条直线分别交AD,BC于点E,F,则阴影部分的面积是()A.1B.0.5C.0.25D.无法确定2.如图所示,正方形ABCD的对角线AC,BD相交于点O,OA=3,则此正方形的面积为()A.32B.12C.18D.36第2题图第3题图3.下列四边形中,对角线互相垂直平分的是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形4.如图所示,在菱形ABCD中,对角线AC,BD相交于点O,作OE∥AB,交BC于点E,则OE的长一定等于()A.BE B.AO C.AD D.OB第4题图第5题图5.如图,四边形ABCD是正方形,BE⊥EF,DF⊥EF,BE=2.5dm,DF=4dm,那么EF的长为()A.6.5dmB.6dmC.5.5dmD.4dm6.如图所示ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若∠BAE=40°,∠CEF=15°,则∠D的度数是()A.65°B.55°C.70°D.75°二、填空题(每小题5分,共20分)7.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是__ __.(写出一个即可)第7题图第8题图8.如图所示,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是( ).9.如图所示,正方形ABCD的面积为5,正方形BEFG的面积为4,那么△GCE 的面积是___.第9题图第10题图10.在△ABC中,点D,E,F分别在BC,AB,CA上,且DE∥CA,DF∥BA,则下列三种说法:①如果∠BAC=90°,那么四边形AEDF是矩形.②如果AD平分∠BAC,那么四边形AEDF是菱形.③如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.其中正确的有__ .三、解答题(共50分)11.(10分)已知,如图,四边形ABCD是正方形,E,F分别是AB和AD延长线上的点,且BE=DF.(1)求证:CE=CF;(2)求∠CEF的度数.12.(10分)如图,在△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥BC交AD于点F.求证:四边形CDEF是菱形.13.(10分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB∶AD=________时,四边形MENF是正方形,并说明理由.14.(10分)折纸是一种传统的手工艺术,也是很多人从小就经历的事,在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想.如下图把一张直角三角形纸片按照图1中①~④的过程折叠后展开,便得到一个新的图形——叠加矩形.请按照上述操作过程完成下面的问题:(1)若上述直角三角形的面积为6,则叠加矩形的面积为________;(2)已知△ABC在正方形网格的格点上,在图2中画出△ABC的边BC上的叠加矩形EFGH(用虚线作出痕迹,实线呈现矩形,保留作图痕迹);(3)如图3所示的坐标系,OA=3,点P为第一象限内的整数点,使得△OAP的叠加矩形是正方形,写出所有满足条件的P点的坐标.15.(10分)如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的值.浙教版八年级数学下册《第5章特殊平行四边形》[考查范围:第5章 5.1~5.3总分:100分]一、选择题(每小题5分,共30分)1.如图所示,已知面积为1的正方形ABCD的对角线相交于点O,过点O任意作一条直线分别交AD,BC于点E,F,则阴影部分的面积是(C)A.1B.0.5C.0.25D.无法确定2.如图所示,正方形ABCD的对角线AC,BD相交于点O,OA=3,则此正方形的面积为(C)A.32B.12C.18D.36第2题图第3题图3.下列四边形中,对角线互相垂直平分的是(D)A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形4.如图所示,在菱形ABCD中,对角线AC,BD相交于点O,作OE∥AB,交BC于点E,则OE的长一定等于(A)A.BE B.AO C.AD D.OB第4题图第5题图5.如图,四边形ABCD是正方形,BE⊥EF,DF⊥EF,BE=2.5dm,DF=4dm,那么EF的长为(A)A.6.5dmB.6dmC.5.5dmD.4dm6.如图所示,在ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若∠BAE=40°,∠CEF=15°,则∠D的度数是(A)A.65°B.55°C.70°D.75°二、填空题(每小题5分,共20分)7.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是__如AC⊥BD__.(写出一个即可)第7题图第8题图8.如图所示,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是(2+3,1).9.如图所示,正方形ABCD的面积为5,正方形BEFG的面积为4,那么△GCE的面积是.第9题图第10题图10.在△ABC中,点D,E,F分别在BC,AB,CA上,且DE∥CA,DF∥BA,则下列三种说法:①如果∠BAC=90°,那么四边形AEDF是矩形.②如果AD平分∠BAC,那么四边形AEDF是菱形.③如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.其中正确的有__①②③__.三、解答题(共50分)11.(10分)已知,如图,四边形ABCD 是正方形,E ,F 分别是AB 和AD 延长线上的点,且BE =DF . (1)求证:CE =CF ; (2)求∠CEF 的度数.解:(1)证明:∵四边形ABCD 是正方形, ∴DC =BC ,∠B =∠ADC =90°, ∴∠CDF =90°=∠B . 在△CDF 和△CBE 中,∵⎩⎨⎧DC =BC ,∠CDF =∠B =90°,DF =BE ,∴△CDF ≌△CBE (ASA ). ∴CE =CF .(2)∵△CDF ≌△CBE , ∴∠DCF =∠BCE . ∴∠ECF =∠DCB =90°. ∵CF =CE ,∴∠CEF =∠CFE =45°.12.(10分)如图,在△ABC 中,∠BAC 的平分线交BC 于点D ,E 是AB 上一点,且AE =AC ,EF ∥BC 交AD 于点F . 求证:四边形CDEF 是菱形.证明:连结CE ,交AD 于点O . ∵AC =AE ,∴△ACE为等腰三角形.∵AO平分∠CAE,∴AO⊥CE,且OC=OE.∵EF∥CD,∴∠DCE=∠FEC.又∵∠DOC=∠FOE,∴△DOC≌△FOE(ASA).∴OD=OF.即CE与DF互相垂直且平分.∴四边形CDEF是菱形.13.(10分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB∶AD=________时,四边形MENF是正方形,并说明理由.解:(1)由SAS可证.(2)1∶2.理由:∵AB∶AD=1∶2,∴AB=12AD.∵AM=12AD,∴AB=AM,∴∠ABM=∠AMB.∵∠A=90°,∴∠AMB=45°.∵△ABM≌△DCM,∴BM=CM,∠DMC=∠AMB=45°,∴∠BMC=90°.∵E,F,N分别是BM,CM,BC的中点,∴EN∥CM,FN∥BM,EM=MF,∴四边形MENF是菱形,∵∠BMC=90°,∴菱形MENF是正方形.14.(10分)折纸是一种传统的手工艺术,也是很多人从小就经历的事,在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想.如下图把一张直角三角形纸片按照图1中①~④的过程折叠后展开,便得到一个新的图形——叠加矩形.请按照上述操作过程完成下面的问题:(1)若上述直角三角形的面积为6,则叠加矩形的面积为________;(2)已知△ABC在正方形网格的格点上,在图2中画出△ABC的边BC上的叠加矩形EFGH(用虚线作出痕迹,实线呈现矩形,保留作图痕迹);(3)如图3所示的坐标系,OA=3,点P为第一象限内的整数点,使得△OAP的叠加矩形是正方形,写出所有满足条件的P点的坐标.解:(1)叠加矩形的面积为6÷2=3.答案:3;(2)如图所示:(3)满足条件的P点的横坐标不大于3,纵坐标等于3,有P1(1,3);P2(2,3);P3(3,3).15.(10分)如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的值.解:(1)证明:在矩形ABCD中,有∠A=∠D=90°,∴∠DGH+∠DHG=90°.在菱形EFGH中,EH=GH,∵AH =2,DG =2,∴AH =DG , ∴△AEH ≌△DHG . ∴∠AHE =∠DGH . ∴∠AHE +∠DHG =90°. ∴∠EHG =90°.∴四边形EFGH 是正方形.(2)过点F 作FM ⊥DC 于点M ,则∠FMG =90°. ∴∠A =∠FMG =90°.连结EG .由矩形和菱形性质,知AB ∥DC ,HE ∥GF , ∴∠AEG =∠MGE , ∠HEG =∠FGE , ∴∠AEH =∠MGF . ∵EH =GF ,∴△AEH ≌△MGF .∴FM =AH =2. ∵S △FCG =12CG ·FM =12×CG ×2=2, ∴CG =2.。
第5章特殊平行四边形单元检测试题(满分100分;时间:90分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A.对角线相等的四边形B.对角线垂直的四边形C.对角线互相平分且相等的四边形D.对角线互相垂直平分的四边形2. 甲、乙、丙、丁四位同学到木工厂参观时,木工师傅拿尺子要他们帮助检测一个窗框是否是矩形,他们各自做了如下检测,检测后,他们都说窗框是矩形,你认为正确的是()A.甲量得窗框两组对边分别相等B.乙量得窗框对角线相等C.丙量得窗框的一组邻边相等D.丁量得窗框的两组对边分别相等且两条对角线相等3. 四边形ABCD是平行四边形,还需要补充一个条件使它为矩形,下列条件正确的是()A. AO=BOB. AB=ADC. ∠BOA=90∘D. ∠BAC=90∘4. 下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分5. 在△ABC中,点D、E、F分别在BC、AB、CA上,且DE // CA,DF // BA,则下列三种说法:①如果∠BAC=90∘,那么四边形AEDF是矩形②如果AD平分∠BAC,那么四边形AEDF是菱形③如果AD⊥BC且AB=AC,那么四边形AEDF是菱形其中正确的有()A.3个B.2个C.1个D.0个6. 如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍7. 如图,▱ABCD,从下列四个条件:从①AB=BC,②∠ABC=90∘,③AC=BD,④AC⊥BD中选两个作为补充条件,不能使▱ABCD为正方形的是()A.①②B.②③C.①③D.②④8. 已知正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,“爱琢磨”学习小组的小明说“若EG⊥FH,则EG=FH”,小红说“若EG=FH,则EG⊥FH”.则他们的说法()A.小明正确B.小红正确C.都正确D.都不正确9. 在四边形ABCD中,如果AB // CD,AB=BC,要使四边形ABCD是菱形,还需添加一个条件,这个条件不可以是()A.AB=DCB.AD // BCC.AC⊥BDD.AB=AD10. 如图1,将一块正方形木板用虚线划分成36个全等的小正方形,然后,按其中的实线切成七块形状不完全相同的小木片,制成一副七巧板.用这副七巧板拼成图2的图案,则图2中阴影部分的面积是整个图案面积的()A.1 8B.14C.17D.2√2二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,在▱ABCD中,AC平分∠DAB,AB=7,则▱ABCD的周长为________.12. 木工师傅做一个宽60cm,高80cm的矩形木框,为稳固起见,制作时需要在对角顶点间加一根木条,则木条的长为________cm.13. 正方形ABCD的对角线AC=8,则它的边AB=________.14. 如图,在四边形ABCD中,AD // BC,且AD=BC,若再补充一个条件,如∠A=________度时,就能推出四边形ABCD是矩形.15. 如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件________,使四边形ABCD是正方形(填一个即可).16. 点P是四边形ABCD内一点,若PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别是AB,BC,CD,DA的中点,则给△APB添加一个条件________使四边形EFGH为正方形.17. 如图,菱形ABCD中,AB=5cm,BD=6cm,则AC的长为________cm.18. 若矩形的一条对角线长为2,两条对角线的一个交角为60∘,则矩形两邻边中较长的一边长为________.19. 如图,在菱形ABCD中,AC,BD交于点O,AC=6,BD=8,若DE // AC,CE // BD,则OE的长为________.20. 如图,已知点D在△ABC的BC边上,DE // AC交AB于E,DF // AB交AC于F,若添加条件________,则四边形AEDF是矩形;若添加条件________,则四边形AEDF是菱形;若添加条件________,则四边形AEDF是正方形.三、解答题(本题共计6 小题,共计60分,)21. 如图所示,在矩形ABCD中,对角线AC、BD相交于点O,AE⊥BC于点E,BE:ED=1:3,AD=6cm,求AE的长.22. M为平行四边形ABCD的边AB的中点,且MD=MC,你能说明平行四边形ABCD一定为矩形吗?说明你的理由.23. 如图,已知E是正方形ABCD边BC延长线上的一点,且CE=AC.(1)求∠E的度数;(2)若AB=√2cm,求S△ACE.24. 已知:如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求菱形BMDN的面积.25. 如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)求∠ACB的度数.26. 如图,点F是正方形ABCD对角线AC上一点,EF⊥AC且交AD于E,交CD的延长线于点G,连接CE,AG.(1)求证:△ADG≅△CDE.(2)当CE平分∠ACD时,DG=2,求tan∠AGD的值.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:如图所示:∵ 四边形EFGH是矩形,∵ ∠E=90∘,∵ EF // AC,EH // BD,∵ ∠E+∠EAG=180∘,∠E+∠EBO=180∘,∵ ∠EAO=∠EBO=90∘,∵ 四边形AEBO是矩形,∵ ∠AOB=90∘,∵ AC⊥BD,故选:B.2.【答案】D【解答】解:A、两组对边相等可以为正方形,平行四边形,菱形,矩形等,所以甲错误;B、对角线相等的图形有正方形,菱形,矩形等,所以乙错误;C、邻边相等的图形有正方形,菱形,所以丙错误;D、根据矩形的判定(矩形的对角线平分且相等),故D正确.故选D.3.【答案】A【解答】解:当AO=BO时,可得AC=BD,根据对角线相等的平行四边形是矩形,可判定;当AB=AD时,可判断平行四边形ABCD是菱形;当∠BOA=90∘时,可判断平行四边形ABCD是菱形;当∠BAC=90∘时,不能判断平行四边形ABCD是矩形.故选A.4.【答案】B【解答】A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;5.【答案】A【解答】解:∵ DE // CA,DF // BA,∵ 四边形AEDF是平行四边形;∵ ∠BAC=90∘,∵ 四边形AEDF是矩形;∵ AD平分∠BAC,∵ ∠EAD=∠FAD,∵ ∠FAD=∠ADF,∵ AF=DF,∵ 四边形AEDF是菱形;∵ AD⊥BC且AB=AC,∵ AD平分∠BAC,∵ 四边形AEDF是菱形;故①②③正确.故选A.6.【答案】B【解答】解:A、∵ 四边形ABCD是菱形,∵ AB=BC=AD,∵ AC<BD,∵ △ABD与△ABC的周长不相等,故此选项错误;B、∵ S△ABD=12S平行四边形ABCD,S△ABC=12S平行四边形ABCD,∵ △ABD与△ABC的面积相等,故此选项正确;C、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;D、菱形的面积等于两条对角线之积的1,故此选项错误;2故选:B.7.【答案】B【解答】解:A、∵ 四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90∘时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵ 四边形ABCD是平行四边形,∵ 当②∠ABC=90∘时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵ 四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵ 四边形ABCD是平行四边形,∵ 当②∠ABC=90∘时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.8.【答案】A【解答】证明:如图,作EM⊥CD于M,HN⊥BC于N,∵ 四边形ABCD是正方形,∵ ∠B=∠C=90∘,BC=AB,∵ EM⊥CD∵ 四边形BCME是矩形,∵ EM=BC,同理HN=AB,∵ EM=HN,由题意可知FH⊥EG,EM⊥HN,∵ ∠FHN+∠HOG=∠MEG+∠EON=90∘,∵ ∠EON=∠HOG,∵ ∠FHN=∠MEG,∵ △HFN≅△EGM,∵ EG=HF;小明的说法是正确的;如图,在BC上找两个点F和F′,使BF′=CF取AD的中点H,连接FH和F′H,易证HF=HF′,作EG⊥HF′,其中点E在AB上,点G在CD上,由上题可知EG=F′H=FH,但HF和EG不互相垂直,小红的说法是错误的.故选:A.9.【答案】D【解答】解:A、∵ AB // CD,AB=DC,∵ 四边形ABCD是平行四边形,∵ AB=BC,∵ ▱ABCD是菱形,故本选项错误;B、∵ AB // CD,AD // BC,∵ 四边形ABCD是平行四边形,∵ AB=BC,∵ ▱ABCD是菱形,故本选项错误;C、∵ AB=BC,AC⊥BD,∵ BD平分AC,且∠ABD=∠CBD,∵ AB // CD,∵ ∠ABD=∠CDB,∵ ∠CBD=∠CDB,∵ AC⊥BD,∵ AC平分BD,∵ 四边形ABCD是菱形,故本选项错误;D、AB // CD,AB=BC,AB=AD,四边形ABCD可以是以AB、CD为底边的等腰梯形,故本选项正确.故选D.10.【答案】A【解答】∵ 由图知:小正方形的面积等于两个斜边为3的等腰直角三角形的面积之和,∵ 计算得小正方形的面积=92,∵ 大正方形面积=6×6=36,∵ 小正方形的面积:大正方形面积的=1:8.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】28【解答】解:∵ AC平分∠DAB,∵ ∠DAC=∠BAC,∵ 四边形ABCD为平行四边形,∵ ∠B=∠D,在△ADC和△ABC中,{∠B=∠D∠BAC=∠DACAC=AC,∵ △ADC≅△ABC,∵ AD=AB,∵ 四边形ABCD为菱形,∵ AD=AB=BC=CD=7,▱ABCD的周长为:7×4=28,故答案为:28.12.【答案】100【解答】解:设这条木板的长度为x厘米,由勾股定理得:x2=802+602,解得x=100cm.故答案为100.13.【答案】4√2【解答】解:∵ 四边形ABCD为正方形,∵ AB=BC,∠ABC=90∘,故AC=√2AB,即AB=4√2.故答案为:4√2.14.【答案】90【解答】解:∵ 四边形ABCD中,AD // BC,且AD=BC,∵ 四边形ABCD为平行四边形,∵ 有一个角为90∘的平行四边形是矩形,∵ 添加∠A=90∘就能推出四边形ABCD是矩形,故答案为:90.15.【答案】∠BAD=90∘【解答】解:∵ 四边形ABCD为菱形,∵ 当∠BAD=90∘时,四边形ABCD为正方形.故答案为∠BAD=90∘.16.【答案】△APB是等腰直角三角形【解答】解:如图:连接AC,BD,设AC,BD交点为O,AC与EH交于点N,AP与BD交于点M,∵ ∠APB=∠CPD,∴ ∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,{AP=BP,∠APC=∠BPD,PC=PD∴ △APC≅△BPD(SAS),∴ AC=BD,∵ 点E,F,G,H分别是AB,BC,CD,DA的中点,∵ EH//FG,EF//HG,EF=12AC,FG=12BD,∵ 四边形EFGH是菱形,∵ △APC≅△BPD,∴ ∠CAP=∠DBP,∵ ∠AMO=∠BMP,∴ ∠BOA=∠APB=90▱,∵ ∠EHG=∠ENO=∠AOB=∠NHG=90∘,∵ 四边形EFGH是正方形,故答案为:△APB是等腰直角三角形.17.【答案】8【解答】解:如图所示:∵ 菱形ABCD中,AB=5cm,BD=6cm,∵ BO=3cm,∠AOB=90∘,则AO=√AB2−BO2=4(cm),故AC=2AO=8cm.故答案为:8.18.【答案】√3【解答】解:依照题意画出图形,如图所示.∵ 四边形ABCD为矩形,且AC=BD=2,∵ AO=BO=1.∵ ∠AOB=60∘,∵ △AOB为等边三角形,∵ AB=AO=1.在Rt△ABC中,AB=1,AC=2,∵ BC=√AC2−AB2=√3.故答案为:√3.19.【答案】5【解答】解:∵ 四边形ABCD是菱形,∵ BO=OD=4,AO=OC=3,AC⊥BD,∵ CD=5.∵ DE // AC,CE // BD,∵ 四边形ODEC是平行四边形,且AC⊥BD,∵ 四边形ODEC是矩形,∵ OE=CD=5.故答案为:5.20.【答案】∠BAC=90∘,AD平分∠BAC,∠BAC=90∘且AD平分∠BAC【解答】解:∵ DE // AC交AB于E,DF // AB交AC于F,∵ 四边形AEDF为平行四边形,∵ 当∠BAC=90∘时,四边形AEDF是矩形;当AD平分∠BAC时,四边形AEDF是菱形;当∠BAC=90∘且AD平分∠BAC时,四边形AEDF是正方形.故答案为∠BAC=90∘,AD平分∠BAC,∠BAC=90∘且AD平分∠BAC.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:∵ 四边形ABCD是矩形,BD=AO,∵ ∠BAD=90∘,OB=OD=12∵ BE:ED=1:3,∵ BE=OE,∵ AE⊥BC,∵ AB=AO,∠AED=90∘,∵ AB=OB=AO,∵ ∠ABO=60∘,∵ ∠ADE=30∘,AD=3cm.∵ AE=12【解答】解:∵ 四边形ABCD是矩形,BD=AO,∵ ∠BAD=90∘,OB=OD=12∵ BE:ED=1:3,∵ BE=OE,∵ AE⊥BC,∵ AB=AO,∠AED=90∘,∵ AB=OB=AO,∵ ∠ABO=60∘,∵ ∠ADE=30∘,AD=3cm.∵ AE=1222.【答案】解:依题意,AM=BM,BC=AD,MD=MC⇒△MBC≅△MAD⇒∠A=∠B.又ABCD为平行四边形⇒∠A=∠B=90∘⇒平行四边形ABCD为矩形.【解答】解:依题意,AM=BM,BC=AD,MD=MC⇒△MBC≅△MAD⇒∠A=∠B.又ABCD为平行四边形⇒∠A=∠B=90∘⇒平行四边形ABCD为矩形.23.【答案】解:(1)∵ 四边形ABCD是正方形,∵ AB=BC,∠B=90∘,∠ACB=45∘.∵ CE=AC.∵ ∠CAE=∠E,∵ ∠CAE+∠E=∠ACB,∵ ∠CAE+∠E=45∘,∵ ∠E+∠E=45∘,即∠E=22.5∘(2)∵ ∠B=90∘,∵ △ABC是Rt△.由勾股定理,得AC=√2+2=2,∵ EC=2.∵ S△ACE=2×√22=√2.【解答】解:(1)∵ 四边形ABCD是正方形,∵ AB=BC,∠B=90∘,∠ACB=45∘.∵ CE=AC.∵ ∠CAE=∠E,∵ ∠CAE+∠E=∠ACB,∵ ∠CAE+∠E=45∘,∵ ∠E+∠E=45∘,即∠E=22.5∘(2)∵ ∠B=90∘,∵ △ABC是Rt△.由勾股定理,得AC=√2+2=2,∵ EC=2.∵ S△ACE=2×√22=√2.24.【答案】(1)证明:∵ 四边形ABCD是矩形∵ AD // BC,∠A=90∘,∵ ∠MDO=∠NBO,∠DMO=∠BNO,∵ 在△DMO和△BNO中{∠MDO=∠NBO BO=DO∠MOD=∠NOB∵ △DMO≅△BNO(ASA),∵ OM=ON,∵ OB=OD,∵ 四边形BMDN是平行四边形,∵ MN⊥BD,∵ 平行四边形BMDN是菱形.(2)解:∵ 四边形BMDN是菱形,∵ MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8−x)2+42,解得:x=5,∵ S菱形BMDN=DM⋅AB=5×4=20.【解答】(1)证明:∵ 四边形ABCD是矩形∵ AD // BC,∠A=90∘,∵ ∠MDO=∠NBO,∠DMO=∠BNO,∵ 在△DMO和△BNO中{∠MDO=∠NBO BO=DO∠MOD=∠NOB∵ △DMO≅△BNO(ASA),∵ OM=ON,∵ OB=OD,∵ 四边形BMDN是平行四边形,∵ MN⊥BD,∵ 平行四边形BMDN是菱形.(2)解:∵ 四边形BMDN是菱形,∵ MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8−x)2+42,解得:x=5,∵ S菱形BMDN=DM⋅AB=5×4=20.25.【答案】(1)证明:∵ 四边形ABCD是矩形,∵ AB // CD,∵ ∠OCF=∠OAE,在△OCF和△OAE中,{∠OCF=∠OAE ∠COF=∠AOECF=AE,∵ △COF≅△AOE(AAS),∵ OE=OF;(2)解:如图,连接OB,∵ BE=BF,OE=OF,∵ BO⊥EF,∵ 在Rt△BEO中,∠BEF+∠ABO=90∘,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∵ ∠BAC=∠ABO,又∵ ∠BEF=2∠BAC,即2∠BAC+∠BAC=90∘,解得∠BAC=∠ABO=30∘,∵ ∠ACB=90∘−∠BAC=60∘.【解答】(1)证明:∵ 四边形ABCD是矩形,∵ AB // CD,∵ ∠OCF=∠OAE,在△OCF和△OAE中,{∠OCF=∠OAE ∠COF=∠AOECF=AE,∵ △COF≅△AOE(AAS),∵ OE=OF;(2)解:如图,连接OB,∵ BE=BF,OE=OF,∵ BO⊥EF,∵ 在Rt△BEO中,∠BEF+∠ABO=90∘,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∵ ∠BAC=∠ABO,又∵ ∠BEF=2∠BAC,即2∠BAC+∠BAC=90∘,解得∠BAC=∠ABO=30∘,∵ ∠ACB=90∘−∠BAC=60∘.26.【答案】(1)证明:在正方形ABCD中,AD=CD,∠BAD=∠ADC=90∘,∵ ∠ADG=180∘−∠ADC=90∘,∵ ∠ADG=∠CDE,又∵ EF⊥AC,∵ ∠AEF=90∘−∠CAD=45∘,∵ ∠DEG=∠AEF=45∘,在Rt△EDG中,∠DGE=90∘−∠DEG=45∘,∵ ∠DGE=∠DEG,∵ DG=DE.在△ADG与△CDE中,{DG=DE∠ADG=∠CDE,AD=CD∵ △ADG≅△CDE(SAS);(2)解:tan∠AGD=√2+1.【解答】(1)证明:在正方形ABCD中,AD=CD,∠BAD=∠ADC=90∘,∵ ∠ADG=180∘−∠ADC=90∘,∵ ∠ADG=∠CDE,又∵ EF⊥AC,∵ ∠AEF=90∘−∠CAD=45∘,∵ ∠DEG=∠AEF=45∘,在Rt△EDG中,∠DGE=90∘−∠DEG=45∘,∵ ∠DGE=∠DEG,∵ DG=DE.在△ADG与△CDE中,{DG=DE∠ADG=∠CDE,AD=CD∵ △ADG≅△CDE(SAS);(2)解:tan∠AGD=√2+1.。
第五章特殊的平行四边形单元测试卷(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是( )A.1 B.2 C.3 D.42.矩形具有而菱形不具有的性质是( )A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.下列命题中,不正确的是( )A.一个四边形如果既是矩形又是菱形,那么它一定是正方形B.有一个角是直角,并且有一组邻边相等的平行四边形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直的平行四边形是正方形4.若顺次连结四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形5.在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连结AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连结AN,CM,则四边形ANCM 是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连结EF,则四边形ABEF是菱形.根据两人的作法可判断( )A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误6.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连结EF.若EF=3,BD=4,则菱形ABCD的周长为( )A.4 B.4 6 C.47 D.287.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF的面积是( )A .4 3B .3 3C .2 3 D.38.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( )A .AF =AEB .△ABE ≌△AGFC .EF =2 5D .AF =EF9.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于点E ,PF ⊥AC 于点F ,则EF 的最小值为( )A .2.5B .2.4C .2.2D .210.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,DE 平分∠ODC 交OC 于点E ,若AB =2,则线段OE 的长为( )A .2- 2 B.2-1 C.22 D.223, ,二、细心填一填(每小题3分,共24分)11.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是__ __.(补充一个即可)12.在菱形ABCD 中,对角线AC ,BD 的长分别是6和8,则菱形的周长是__ __,面积是__ __.13.如图,已知矩形ABCD 的对角线长为8 cm ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 的周长等于__ __cm.14.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为____.15.如图,在Rt△ABC中,AB=BC,∠B=90°,AC=102,四边形BDEF是△ABC 的内接正方形(点D,E,F在三角形的边上).则此正方形的面积是____.16.如图,正方形ABCD的边长为4,E是BC边的中点,P是对角线BC上一动点,则PE+PC的最小值是___.17.如图,矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E,交BC于点F,则EF=___.18.在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为____.三、耐心做一做(共66分)19.(8分)如图,在菱形ABCD中,AC为对角线,点E,F分别是边BC,AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.解:20.(8分)如图,在△ABC中,点D是BC的中点,点F是AD的中点,过点D作DE∥AC,交CF的延长线于点E,连结BE,AE.(1)求证:四边形ACDE是平行四边形;(2)若AB=AC,试判断四边形ADBE的形状,并证明你的结论.解:21.(8分)如图,已知△ABC中,∠BAC=45°,AD⊥BC于D,将△ABC沿AD剪开,并分别以AB,AC为轴翻转,点E,F分别是点D的对应点,得到△ABE和△ACF(与△ABC 在同一平面内).延长EB,FC相交于G点,求证:四边形AEGF是正方形.解:22.(10分)如图,△ABC中,AB=AC,AD,CD分别是△ABC两个外角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.23.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连结DO并延长到点E,使OE=OD,连结AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.解:24.(10分)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l上,如图①,他连结AD,CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图②,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图③,请你求出CF的长.解:25.(12分)如图①,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=90°,AB与CE交于点F,ED与AB,BC分别交于点M,H.(1)试说明CF=CH;(2)如图②,△ABC不动,将△EDC从△ABC的位置绕点C顺时针旋转,当旋转角∠1为多少度时,四边形ACDM是菱形,请说明理由:(3)当AC=2时,在(2)的条件下,求四边形ACDM的面积.解:第五章特殊的平行四边形单元测试卷参考答案(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是( C )A.1 B.2 C.3 D.42.矩形具有而菱形不具有的性质是( B )A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.下列命题中,不正确的是( D )A.一个四边形如果既是矩形又是菱形,那么它一定是正方形B.有一个角是直角,并且有一组邻边相等的平行四边形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直的平行四边形是正方形4.若顺次连结四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( C ) A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形5.,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连结AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连结AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连结EF,则四边形ABEF是菱形.根据两人的作法可判断( C )A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误6.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连结EF.若EF=3,BD=4,则菱形ABCD的周长为( C )A.4 B.4 6 C.47 D.287.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF的面积是( B )A.4 3 B.3 3 C.2 3 D.38.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( D )A.AF=AE B.△ABE≌△AGF C.EF=2 5 D.AF=EF9.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于点E ,PF ⊥AC 于点F ,则EF 的最小值为( B )A .2.5B .2.4C .2.2D .210.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,DE 平分∠ODC 交OC 于点E ,若AB =2,则线段OE 的长为( A )A .2- 2 B.2-1 C.22 D.223, ,二、细心填一填(每小题3分,共24分)11.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是__∠ABC =90°或AC =BD __.(补充一个即可)12.在菱形ABCD 中,对角线AC ,BD 的长分别是6和8,则菱形的周长是__20__,面积是__24__.13.如图,已知矩形ABCD 的对角线长为8 cm ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 的周长等于__16__cm.14.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为__14__.15.如图,在Rt △ABC 中,AB =BC ,∠B =90°,AC =102,四边形BDEF 是△ABC 的内接正方形(点D ,E ,F 在三角形的边上).则此正方形的面积是__25__.16.如图,正方形ABCD的边长为4,E是BC边的中点,P是对角线BC上一动点,则PE+PC的最小值是.17.如图,矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E,交BC于点F,则EF=.18.在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为__5.5或0.5__.三、耐心做一做(共66分)19.(8分)如图,在菱形ABCD中,AC为对角线,点E,F分别是边BC,AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.解:(1)略(2)AE=2320.(8分)如图,在△ABC中,点D是BC的中点,点F是AD的中点,过点D作DE∥AC,交CF的延长线于点E,连结BE,AE.(1)求证:四边形ACDE是平行四边形;(2)若AB=AC,试判断四边形ADBE的形状,并证明你的结论.解:(1)证△AFC≌△DFE得CF=EF,又AF=DF,∴四边形ACDE是平行四边形(2)四边形ADBE是矩形,由(1)知,四边形ACDE是平行四边形,∴AE∥BC,AE=CD=BD,∴四边形ADBE是平行四边形,又AB=AC,CD=BD,∴AD⊥BC,∴四边形ADBE是矩形21.(8分)如图,已知△ABC中,∠BAC=45°,AD⊥BC于D,将△ABC沿AD剪开,并分别以AB,AC为轴翻转,点E,F分别是点D的对应点,得到△ABE和△ACF(与△ABC 在同一平面内).延长EB,FC相交于G点,求证:四边形AEGF是正方形.解:由题意得AE=AF=AD,∠E=∠ADB=90°,∠F=∠ADC=90°,∠BAE=∠BAD,∠CAF=∠CAD,∴∠EAF=∠BAE+∠BAD+∠CAF+∠CAD=2∠BAC=90°,∴四边形AEGF是矩形,又AE=AF,∴四边形AEGF是正方形22.(10分)如图,△ABC中,AB=AC,AD,CD分别是△ABC两个外角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.解:(1)∵AB=AC,∴∠B=∠ACB,∵AD,CD分别平分∠CAF和∠ACE,∴∠DAF =∠DAC,∠DCA=∠DCE,∵∠CAF=∠B+∠ACB,∴∠DAC=∠ACB,∴AD∥BC,∴∠D=∠DCE=∠DCA,∴AC=AD(2)∵∠B=60°,∴∠ACB=60°,由(1)知∠DAC =∠ACB=60°,∴△ABC,△ACD都是等边三角形,∴AB=BC=AC=AD=CD,∴四边形ABCD是菱形23.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连结DO并延长到点E,使OE=OD,连结AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.解:(1)∵OA =OB ,OE =OD ,∴四边形AEBD 是平行四边形,由等腰三角形三线合一,得AD ⊥BC ,∴四边形AEBD 是矩形 (2)当∠BAC =90°时,矩形AEBD 是正方形,理由:∵∠BAC =90°,AD 是△ABC 的中线(三线合一),∴AD =BD =12BC ,∴矩形AEBD 是正方形24.(10分)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l上,如图①,他连结AD,CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图②,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图③,请你求出CF的长.解:(1)AD=CF,证△AOD≌△COF(SAS)(2)连结DF交OE于M,DF=OD2+OF2=2,∴DM=OM=1,∴AD=12+(1+3)2=17,由(1)得CF=AD=1725.(12分)如图①,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=90°,AB与CE交于点F,ED与AB,BC分别交于点M,H.(1)试说明CF=CH;(2)如图②,△ABC不动,将△EDC从△ABC的位置绕点C顺时针旋转,当旋转角∠1为多少度时,四边形ACDM是菱形,请说明理由:(3)当AC=2时,在(2)的条件下,求四边形ACDM的面积.解:(1)证△ACF≌△DCH(ASA)(2)当∠1=45°时,四边形ACDM是菱形.理由∠1=∠E=45°,∴AC∥ED,∠2=∠B=45°,∴AB∥CD,∴四边形ACDM是平行四边形,又AC=CD,∴四边形ACDM是菱形(3)∠1=∠A=45°,∴△ACF是等腰直角三=AM·CF=2角形,∴CF=AF=1,∴S四边形ACDM。
第五章 特殊的平行四边形姓名:---------- 成绩:------ --- 一.选择题 (每小题4分,共40分)1. 若菱形ABCD 中,AE 垂直平分BC 于E,AE=1cm,则BC 的长是 A.1cm B.332cm C.3cm D.4cm 2. 如果a 表示一个菱形的对角线的平方和,b 表示这个菱形的一边的平方,那么 A.a =4b B.a =2b C .a =b D.b =4a3. .已知ABCD 是平行四边形,下列结论中,不一定正确的是 A.AB=CD B.AC=BD C.当AC ⊥BD 时,它是菱形 D.当∠ABC=90º时,它是矩形4. 如图,矩形ABCD 的边长AB=6,BC=8,将矩形沿EF 折叠,使C 点与A 点重合,则折痕EF 的长是 A.7.5 B.6 C.10 D.55. 如图所示,过四边形ABCD 的各顶点,作对角线BD 、AC 的平行线,围城四边形EFGH,若四边形EFGH 是菱形,则原四边形一定是A.菱形B.平行四边形 C.矩形 D.对角线相等的四边形6. 在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是. A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格7. 图1中有8个完全相同的直角三角形,则图中矩形的个数是A. 5B. 6C. 7D. 8A E DB FC 图(2)图(1)MNN M 图1 图2A C8. 如图,正方形ABCD 中,∠︒=25DAF ,AF 交对角线BD 于点E ,那么∠BEC 等于A.︒45B.︒60C.︒70D.︒759. Rt △ABC 的两边长分别是3和4,若一个正方形的边长是△ABC 的第三边,则这个正方形的面积是 A.25 B.7C.12D.25或7 10. 下列图形中,不能..经过折叠围成正方形的是A. B C. D.第Ⅱ卷(非选择题 共8道填空题8道解答题)请将你认为正确的答案代号填在下表中1 2 3 4 5 6 7 8 9 10 二.简答题 (每小题3分,共24分)11. 如图矩形,ABCD 中,AC 、BD 相交于O,AE 平分∠BAD 交BC 于E,若∠CAE=15º,则∠BOE=_________ 12. M 为矩形ABCD 中AD 的中点,P 为BC 上一点,PE ⊥MC,PF ⊥MB,当AB 、BC 满足_________时,四边形PEMF 为矩形 13. 给定下列命题:(1)对角线相等的四边形是矩形;(2)对角相等的四边形是矩形;(3)有一个角是直角的平行四边形是矩形;(4)一个角为直角,两条对角线相等的四边形是矩形;(5)对角线相等的平行四边形是矩形;其中不正确的命题的序号是____________14. 如图,矩形ABCD 中,E 、F 分别为AD 、AB 上一点,且EF=EC,EF ⊥EC,若DE=2,矩形周长为16,则矩形ABCD 的面积为_________15. 现有一张长52cm,宽28cm 的矩形纸片,要从中剪出长15cm 宽、12cm 的矩形小纸片(不能粘贴),则最多能剪出__________张16. 已知矩形的周长是40cm,被两条对角线分成的相邻两个三角形的周长的差是8cm,则较长的边长为________17. 已知菱形ABCD 的边长为6,∠A=60º,如果点P是菱形内一点,切PB=PD=32,那么AP 的长为____________18. 矩形ABCD 的对角线AC 、BD 相交于点O,AB=4cm,∠AOB=60º,则这个矩形的对角线的长是_________cmA DERBC D B E C三.解答题(共56分)19. 如图,菱形AB CD中,点M、N分别在B C、CD上,且CM=CN,求证:(1)△AB M≌△A DN(2)∠A MN=∠A NM20. 如图,在四边形ABCD中,AD∥BC,对角线AC与BD相交于点O,AC平分∠BAD,请你再添一个什么条件? 就能推出四边形ABCD是菱形,并给出证明.21. 某课外学习小组在设计一个长方形时钟钟面时,欲使长方形的宽为20厘米,时钟的中心在长方形对角线的交点上,数字2在长方形的顶点上,数字3、6、9、12标在所在边的中点上,如图所示。
浙教版八年级下册数学第五章特殊平行四边形含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.4B.4.8C.5.2D.62、如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB =6,BC=9,则BF的长为()A.4B.3C.4.5D.53、如图,正方形中,在的延长线上取点,,使,,连接分别交,于,,下列结论:①;②;③图中有8个等腰三角形;④.其中正确的结论个数是()A.1个B.2个C.3个D.4个4、如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为36,则BE的长是()A.4B.5C.6D.95、一个长方形在平面直角坐标系中的三个顶点的坐标分别为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)6、如图,在扇形AOB中,∠AOB=90°,= ,点D在OB上,点E在OB 的延长线上,当正方形CDEF的边长为2 时,则阴影部分的面积为()A.2π﹣4B.4π﹣8C.2π﹣8D.4π﹣47、菱形具有而矩形不一定有的性质是( )A.对角线互相平分B.四条边都相等C.对角相等D.邻角互补8、如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E,F同时由A,C两点出发,分别沿AB,CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为()A.1B.C.D.9、如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD 内,在对角线BD上有一点P,使PC+PE的和最小,则这个最小值为()A.4B.2C.2D.210、如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE 上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()A.2B.2C.2D.11、下列命题正确的是()A.有一组邻边相等的平行四边形是正方形B.有一个角是直角的平行四边形是正方形C.对角线相等的菱形是正方形D.对角线互相平分的矩形是正方形12、如图,在平面直角坐标系中,矩形的顶点、的坐标分别为,,点是的中点点在上运动,当是腰长为的等腰三角形时,点的坐标不可能的是()A. B. C. D.13、如图,E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,F,G是垂足,若正方形ABCD周长为a,则EF+EG等于()A. B. C.a D.2a14、如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣)B.(﹣)C.(﹣)D.(﹣)15、菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()</p>A.8B.20C.8或20D.10二、填空题(共10题,共计30分)16、在菱形ABCD中,AB=5,AC=8,点P是AC上的一个动点,过点P作EF垂直于AC交AD于点E,交AB于点F,将△AEF沿EF折叠,使点A落在点A'处,当△A'CD是直角三角形时,AP的长为________.17、如图,在边长为8厘米的正方形中,动点在线段上以2厘米/秒的速度由点向点运动,同时动点在线段上以1厘米/秒的速度由点向点运动,当点到达点时整个运动过程立即停止.设运动时间为1秒,当时,的值为________.18、菱形有一个内角为60°,较短的对角线长为6,则它的面积为________.19、如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又不重叠的四边形EFGH,若EH=4,EF=5,那么线段AD与AB的比等于________.20、如图,在ABCD中,对角线AC,BD相交于点O,若再增加一个条件,就可得出ABCD是菱形,则你添加的条件是________.21、如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF;EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为________.22、在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为________.23、如图,正方形纸片ABCD边长为6,点E,F分别是AB,CD的中点,点G,H 分别在AD,AB上,将纸片沿直线GH对折,当顶点A与线段EF的三等分点重合时,AH的长为________.24、如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.探究:试判断BE和CN的位置关系和数量关系,并说明理由.应用:Q是线段BC的中点,若BC=6,则PQ=________.25、如图,在平行四边形ABCD中,添加一个条件________使平行四边形ABCD 是菱形.三、解答题(共5题,共计25分)26、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.若BC=8,DE=3,求△AEF的面积.27、已知▱ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.28、已知:如图,在正方形ABCD中,M,N分别是边AD,CD上的点,且∠MBN=45°,连接MN。
浙教版八年级下册数学第五章特殊平行四边形含答案一、单选题(共15题,共计45分)1、如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x 轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.-27C.-32D.-362、在如图所示的网格中,已知线段AB,现要在该网格内再确定格点C和格点D,某数学探究小组在探究时发现以下结论:以下结论错误的是()A.将线段平移得到线段,使四边形为正方形的有2种; B.将线段平移得到线段,使四边形为菱形的(正方形除外)有3种; C.将线段平移得到线段,使四边形为矩形的(正方形除外)有两种; D.不存在以为对角线的四边形是菱形.3、已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0,则;③对角线互相平分且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.其中原命题与逆命题均为真命题的个数是( )A.4个B.3个C.2个D.1个4、如图,一次函数的图象与两坐标轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长是()A.5B.7.5C.10D.255、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.17B.18C.19D.206、在▱ABCD中,AB=5,BC=7,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.5B.4或5C.3或4D.5或77、下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线相等且互相垂直D.矩形的对角线不能相等8、下列命题中,正确的是()A.对角线垂直的四边形是菱形B.矩形的对角线垂直且相等C.对角线相等的矩形是正方形D.位似图形一定是相似图形9、如图所示,E.F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥B F;③AO=OE;④S△AOB =S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个10、如图1,正方形纸片ABCD边长为2,折叠∠B和∠D,使两个直角的顶点重合于对角线BD上的一点P,EF、GH分别是折痕(图2),设AE=x(0<x<2),给出下列判断:①x= 时,EF+AB>AC;②六边形AEFCHG周长的值为定值;③六边形AEFCHG面积为定值,其中正确的是()A.①②B.①③C.②D.②③11、如图,在中,,,,为边上一动点,于点,于点为的中点,则的最小值为()A. B. C. D.12、正方形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相平分C.对边平行且相等D.对角线互相垂直平分13、如图,在矩形ABCD 中,AB=4,AD=a,点P在AD上,且AP=2,点E是边AB上的动点,以PE为边作直角∠EPF,射线PF交BC于点F,连接EF,给出下列结论:①tan∠PFE= ;②a的最小值为10.则下列说法正确的是( )A.①②都对B.①②都错C.①对②错D.①错②对14、如图,在Rt△ABC中,∠ACB=90°,CD是∠ACB的平分线,交AB于点D,过点D分别作AC、BC的平行线DE、DF,则下列结论不正确是()A. B. C. D.四边形DECF是正方形15、如图,ABCD、AEFC都是矩形,而且点B在EF上,这两个矩形的面积分别是S1, S2,则S1, S2的关系是()A.S1>S2B.S1<S2C.S1=S2D.3S1=2S2二、填空题(共10题,共计30分)16、如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB= ,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(且),作点A关于直线OM′的对称点C,画直线BC交于OM′与点D,连接AC,AD.有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着的变化而变化;③当时,四边形OADC为正方形;④ 面积的最大值为.其中正确的是________.(把你认为正确结论的序号都填上)17、在菱形ABCD中,DE⊥AB,cosA= ,BE=2,则tan∠DBE的值是________.18、如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为________.19、已知菱形的两条对角线长分别是6和8,则这个菱形的面积为________.20、在平面直角坐标系中,四边形是菱形,,反比例函数的图象经过点C,若将菱形向下平移2个单位,点B恰好落在反比例函数的图象上,则反比例函数的表达式为________.21、如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2.则AC长是________cm.22、已知正方形ABCD的对角线AC= ,则正方形ABCD的周长为________.23、如图,正方形ABCD的面积为3cm2, E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于________ cm.24、如图,两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是________.25、如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处.当为直角三角形时,则的长为________.三、解答题(共5题,共计25分)26、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.若BC=8,DE=3,求△AEF的面积.27、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,请计算耕地的面积.28、如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.求证:四边形AECD是菱形.29、如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.30、如图,已知菱形ABCD,延长AD到点F,使,延长CD到点E,使DE=CD,顺次连接点A,C,F,E,A.求证:四边形ACFE是矩形.参考答案一、单选题(共15题,共计45分)2、C3、D4、C5、B6、C7、C8、D9、A10、C11、D12、D13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、。
浙教版八年级下册第5章《特殊平行四边形》测试卷考试时间:100分钟满分:120分班级:___________姓名:___________学号:___________成绩:___________一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等的矩形是正方形D.对角线相等的菱形是正方形2.(3分)下列说法中,错误的是()A.如果一个四边形绕对角线的交点旋转90°后,所得的图形能与原图形重合,那么这个四边形是正方形B.在一个平行四边形中,如果有一条对角线平分一个内角,那么该平行四边形是菱形C.在一个四边形中,如果有一条对角线平分一组内角,则该四边形是菱形D.两张等宽的纸条交叠在一起,重叠的部分是菱形3.(3分)如图,在▱ABCD中,对角线AC、BD相交于点O,下列条件中,不能判断这个平行四边形是菱形的是()A.AB=AD B.∠BAC=∠DAC C.∠BAC=∠ABD D.AC⊥BD4.(3分)在菱形ABCD中,∠ABC=60°,若AB=3,菱形ABCD的面积是()A.B.8C.D.5.(3分)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.156.(3分)已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 7.(3分)已知:如图,在矩形ABCD中,DE⊥AC,AE=CE,那么∠BDC等于()A.60°B.45°C.30°D.22.5°8.(3分)如图,直线m∥n,直线l与m、n分别相交于点A和点C,AC为对角线作四边形ABCD,使点B和点D分别在直线m和n上,则不能作出的图形是()A.平行四边形ABCD B.矩形ABCDC.菱形ABCD D.正方形ABCD9.(3分)如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为()A.B.2C.2D.10.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标()A.(﹣3,4)B.(﹣2,3)C.(﹣5,4)D.(5,4)11.(3分)下列可以判断是菱形的是()A.一组对边平行且相等的四边形B.对角线相等的平行四边形C.对角线垂直的四边形D.对角线互相垂直且平分的四边形12.(3分)如图,菱形ABCD沿对角线AC的方向平移到菱形A'B′C′D′的位置,点A′恰好是AC的中点.若菱形ABCD的边长为2,∠BCD=60°,则阴影部分的面积为()A.B.C.1D.二.填空题(共6小题,满分18分,每小题3分)13.(3分)已知矩形的两邻边的长分别为3cm和6cm,则顺次连接各边中点所得的四边形的面积为cm2.14.(3分)在矩形ABCD中,AE=CF=AD=1,BE的垂直平分线过点F,交BE于点H,交AB于点G,则AB的长度为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是.16.(3分)如图,在矩形ABCD中,如果AB=3,AD=4,EF是对角线BD的垂直平分线,分别交AD,BC于点EF,则ED的长为.17.(3分)如图,菱形ABCD的边长为8,∠ABC=60°,点E、F分别为AO、AB的中点,则EF的长度为.18.(3分)如图,点P是线段AB上的一个点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,点M,N分别是对角线AC,BE的中点,连接MN,PM,PN,若∠DAP=60°,AP2+3PB2=2,则线段MN的长为.三.解答题(共7小题,满分66分)19.(8分)▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.20.(8分)如图所示,在平行四边形ABCD中,∠A=60°,AD=6,且AD⊥BD于点D,点E,F分别是边AB,CD上的动点,且AE=CF.①求证:四边形DEBF是平行四边形;②当BE为何值时,四边形DEBF是矩形?21.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O,过点C作AC的垂线,过点D作BD的垂线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,求四边形的ABCD面积.22.(10分)如图,△ABC中,AB=BC,过A点作BC的平行线与∠ABC的平分线交于点D,连接OE,CD.(1)求证四边形ABCD是菱形;(2)连接AC与BD交于点O,过点D作DE⊥BC与BC的延长线交于E点,连接EO,若CE=3,DE=4,求OE的长.23.(10分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.(1)求证:平行四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.24.(10分)如图:正方形ABCD中,点E、点F、点G分别在边BC、AB、CD上,∠1=∠2=∠3,求证:(1)EF+EG=AE;(2)CE+CG=AF.25.(12分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC 上,EF与AC相交于点O,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)当EG=EH时,连接AF①求证:AF=FC;②若DC=8,AD=4,求AE的长.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等的矩形是正方形D.对角线相等的菱形是正方形【分析】根据矩形的判定方法对A进行判断;根据菱形的判定方法对B、D进行判断;根据正方形的判定方法对C进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线垂直的平行四边形是菱形,所以B选项错误;C、对角线垂直的矩形是正方形,所以C选项错误;D、对角线相等的菱形是正方形,所以D选项正确.故选:D.2.(3分)下列说法中,错误的是()A.如果一个四边形绕对角线的交点旋转90°后,所得的图形能与原图形重合,那么这个四边形是正方形B.在一个平行四边形中,如果有一条对角线平分一个内角,那么该平行四边形是菱形C.在一个四边形中,如果有一条对角线平分一组内角,则该四边形是菱形D.两张等宽的纸条交叠在一起,重叠的部分是菱形【分析】依据正方形的判定方法、菱形的判定方法,即可得出结论.【解答】解:A.如果一个四边形绕对角线的交点旋转90°后,所得的图形能与原图形重合,那么这个四边形是正方形,本选项正确;B.在一个平行四边形中,如果有一条对角线平分一个内角,那么该平行四边形是菱形,本选项正确;C.在一个四边形中,如果有一条对角线平分一组内角,则该四边形不一定是菱形,本选项错误;D.两张等宽的纸条交叠在一起,重叠的部分是菱形,本选项正确;故选:C.3.(3分)如图,在▱ABCD中,对角线AC、BD相交于点O,下列条件中,不能判断这个平行四边形是菱形的是()A.AB=AD B.∠BAC=∠DAC C.∠BAC=∠ABD D.AC⊥BD【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、邻边相等的平行四边形是菱形,故A选项不符合题意;B、对角线平分对角的平行四边形是菱形,故B选项不符合题意;C、由∠BAC=∠ABD不一定能够判断这个平行四边形是菱形,故C选项符合题意;D、对角线互相垂直平分的平行四边形是菱形,故D选项不符合题意.故选:C.4.(3分)在菱形ABCD中,∠ABC=60°,若AB=3,菱形ABCD的面积是()A.B.8C.D.【分析】过点A作AM⊥BC于点M,由直角的性质可求AM的长,即可求菱形ABCD的面积.【解答】解:如图,过点A作AM⊥BC于点M,∵四边形ABCD是菱形∴AB=BC=3,∵∠ABC=60°,AM⊥BC∴BM=,AM=BM=∴菱形ABCD的面积=BC×AM=故选:A.5.(3分)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.15【分析】根据等腰三角形的性质得到AC⊥BD,∠BAO=∠DAO,得到AD=CD,推出四边形ABCD是菱形,根据勾股定理得到AO=3,于是得到结论.【解答】解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积=×6×8=24,故选:B.6.(3分)已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 【分析】证出四边形ABCD是菱形,由菱形的性质即可得出结论.【解答】解:∵四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴AC⊥BD;故选:A.7.(3分)已知:如图,在矩形ABCD中,DE⊥AC,AE=CE,那么∠BDC等于()A.60°B.45°C.30°D.22.5°【分析】由矩形的性质可得AO=BO=CO=DO,可得DO=2OE,可求∠EDO=30°,可得∠EOD=60°,由等腰三角形的性质可求解.【解答】解:设AC与BD的交点为O,∵四边形ABCD是矩形∴AO=BO=CO=DO,∵AE=CE,∴AC=4AE,∴AO=BO=CO=DO=2AE,∴EA=EO∴DO=2AE=2EO∴∠EDO=30°,∴∠EOD=60°∵OD=OC∴∠OCD=∠BDC=30°故选:C.8.(3分)如图,直线m∥n,直线l与m、n分别相交于点A和点C,AC为对角线作四边形ABCD,使点B和点D分别在直线m和n上,则不能作出的图形是()A.平行四边形ABCD B.矩形ABCDC.菱形ABCD D.正方形ABCD【分析】依据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【解答】解:取AC的中O,过点O任意作直线交直线m、n于B、D,则四边形ABCD 为平行四边形,故A不符合题意;过点C作m的垂线,垂足为B,过点A作n的垂线,垂足为D,则ABCD为矩形,故B 不符合题意;取AC的中点O,过点O作AC的垂线交直线m、n于点B,D,则ABCD为菱形,故C 不符合题意.AC为对角线作四边形ABCD,ABCD不一定为正方形,故D错误,符合题意.故选:D.9.(3分)如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为()A.B.2C.2D.【分析】由矩形的性质得到∠ADC=90°,BD=AC,OD=BD,OC=AC,求得OC =OD,设DE=x,OE=2x,得到OD=OC=3x,根据勾股定理即可得到答案.【解答】解:∵四边形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴设DE=x,OE=2x,∴OD=OC=3x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,解得:x=∴DE=;故选:A.10.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标()A.(﹣3,4)B.(﹣2,3)C.(﹣5,4)D.(5,4)【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(﹣5,4).故选:C.11.(3分)下列可以判断是菱形的是()A.一组对边平行且相等的四边形B.对角线相等的平行四边形C.对角线垂直的四边形D.对角线互相垂直且平分的四边形【分析】由菱形的判定依次判断可求解.【解答】解:A、一组对边平行且相等的四边形是平行四边形,不一定是菱形,故A选项不符合题意;B、对角线相等的平行四边形是矩形,故B选项不符合题意;C、对角线垂直的四边形不一定是菱形,故C选项不符合题意;D、对角线互相垂直且平分的四边形是菱形,故D选项符合题意;故选:D.12.(3分)如图,菱形ABCD沿对角线AC的方向平移到菱形A'B′C′D′的位置,点A′恰好是AC的中点.若菱形ABCD的边长为2,∠BCD=60°,则阴影部分的面积为()A.B.C.1D.【分析】先求出菱形ABCD的面积,由平移的性质可得四边形A'ECF的面积是▱ABCD 面积的,即可求解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AD=2=CD,∠DCA=∠BCD=30°,∴A'D=1,A'C=DA'=,∴菱形ABCD的面积=4××A'D×A'C=2,如图,由平移的性质得,▱ABCD∽▱A'ECF,且A'C=AC,∴四边形A'ECF的面积是▱ABCD面积的,∴阴影部分的面积==,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.(3分)已知矩形的两邻边的长分别为3cm和6cm,则顺次连接各边中点所得的四边形的面积为9cm2.【分析】根据菱形的判定定理,顺次连接矩形各边中点所得的四边形是菱形,又菱形的面积为两条对角线乘积的一半,由此即可解得答案.【解答】解:如图:E,F,G,H为矩形的中点,则AH=HD=BF=CF,AE=BE=CG =DG,在Rt△AEH与Rt△DGH中,AH=HD,AE=DG,∴△AEH≌△DGH,∴EH=HG,同理,△AEH≌△DGH≌△BEF≌△CGF≌△DGH∴EH=HG=GF=EF,∠EHG=∠EFG,∴四边形EFGH为菱形.∴四边形的面积=×3×6=9.故答案为9.14.(3分)在矩形ABCD中,AE=CF=AD=1,BE的垂直平分线过点F,交BE于点H,交AB于点G,则AB的长度为.【分析】如图作EM⊥BC于M,连接EF.首先证明四边形ABME是矩形,在Rt△EFM 中,利用勾股定理求出EM即可解决问题;【解答】解:如图作EM⊥BC于M,连接EF.∵四边形ABCD是矩形,∴∠A=∠ABM=∠EMB=90°,∴四边形ABME是矩形,∴AE=BM=1,AD=BC=3,∵GF垂直平分BE,∴BF=EF=2,MF=BF﹣BM=1,在Rt△EFM中,EM===,∴AB=EM=,故答案为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是.【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出求解即可.【解答】解:如图,连接CD.∵∠ACB=90°,AC=5,BC=12,∴AB===13,∵DE⊥AC,DF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×12×5=×13•CD,解得:CD=,∴EF=.故答案为:.16.(3分)如图,在矩形ABCD中,如果AB=3,AD=4,EF是对角线BD的垂直平分线,分别交AD,BC于点EF,则ED的长为.【分析】连接EB,构造直角三角形,设AE为x,则DE=BE=4﹣x,利用勾股定理得到有关x的一元一次方程,求得x,即可求出BE的长.【解答】解:连接EB,∵EF垂直平分BD,∴ED=EB,设AE=xcm,则DE=EB=(4﹣x)cm,在Rt△AEB中,AE2+AB2=BE2,即:x2+32=(4﹣x)2,解得:x=.∴DE=AD=AE=,故答案为:.17.(3分)如图,菱形ABCD的边长为8,∠ABC=60°,点E、F分别为AO、AB的中点,则EF的长度为2.【分析】先根据菱形的性质得出∠ABO=∠ABC=30°,由30°的直角三角形的性质得出OA=AB=4,再根据勾股定理求出OB,然后证明EF为△AOB的中位线,根据三角形中位线定理即可得出结果【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∴OA=AB=4,∴OB==4,∵点E、F分别为AO、AB的中点,∴EF为△AOB的中位线,∴EF=OB=2.故答案为2.18.(3分)如图,点P是线段AB上的一个点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,点M,N分别是对角线AC,BE的中点,连接MN,PM,PN,若∠DAP=60°,AP2+3PB2=2,则线段MN的长为.【分析】连接PM、PN,△MPN是直角三角形,由勾股定理可得MN2=PM2+PN2,在在Rt△APM中,AP=2PM,在Rt△PNB中,PB=PN,代入已知的AP2+3PB2=2,即可.【解答】解:连接PM、PN.∵菱形APCD和菱形PBFE,∠DAP=60°,M,N分别是对角线AC,BE的中点,∴PM⊥AC,PN⊥BE,∠CAB=∠NPB=30°.∴∠MPC+∠NPC=90°,即△MPN是直角三角形.在Rt△APM中,AP=2PM,在Rt△PNB中,PB=PN.∵AP2+3PB2=1,∴(2PM)2+3(PN)2=2,整理得PM2+PN2=在Rt△MPN中,MN2=PM2+PN2,所以MN=.故答案为:.三.解答题(共7小题,满分66分)19.(8分)▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)由平行线和角平分线定义得出∠DF A=∠DAF,证出AD=DF=5,由勾股定理求出DE==4,即可得出矩形BFDE的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵AB∥CD,∴∠BAF=∠DF A,∵AF平分∠BAD,∴∠BAF=∠DAF,∴∠DF A=∠DAF,∴AD=DF=5,∵DE⊥AB,∴∠AED=90°,由勾股定理得:DE==4,∴矩形BFDE的面积=DF×DE=5×4=20.20.(8分)如图所示,在平行四边形ABCD中,∠A=60°,AD=6,且AD⊥BD于点D,点E,F分别是边AB,CD上的动点,且AE=CF.①求证:四边形DEBF是平行四边形;②当BE为何值时,四边形DEBF是矩形?【分析】①根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再求出BE=DF,然后根据一组对边平行且相等的四边形是平行四边形证明;②过D作DE⊥AB于E,根据直角三角形两锐角互余求出∠ADE=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AE=AD,解直角三角形即可得到结论.【解答】①证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD∵AE=CF,∴DF=BE,∵DF∥BE,∴四边形DEBF为平行四边形;②解:当BE=9时,∴四边形DEBF为矩形.理由是:过点D作DE⊥AB于点E,∴∠DEA=90°,∵∠A=60°,∴∠ADE=30°,在Rt△ADE中,∠ADE=30°,∴,∵AD⊥DB,∴∠ADB=90°在Rt△ADB中,∠A=60°,∠ABD=30°,AB=2AD=12,∴BE=AB﹣AE=12﹣3=9,∴当BE=9时,∠DEB=∠DEA=90°,即平行四边形DEBF是矩形.21.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O,过点C作AC的垂线,过点D作BD的垂线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,求四边形的ABCD面积.【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE⊥AC,DE⊥BD,∴平行四边形OCED是矩形;(2)解:由(1)知,四边形OCED是菱形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.22.(10分)如图,△ABC中,AB=BC,过A点作BC的平行线与∠ABC的平分线交于点D,连接OE,CD.(1)求证四边形ABCD是菱形;(2)连接AC与BD交于点O,过点D作DE⊥BC与BC的延长线交于E点,连接EO,若CE=3,DE=4,求OE的长.【分析】(1)由角平分线的性质和平行线的性质可得∠ABD=∠ADB,可得AB=AD=BC,由菱形的判定可证四边形ABCD是菱形;(2)由勾股定理可求DC=BC=5,由勾股定理可求BD的长,由直角三角形的性质可求OE的长.【解答】证明:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,∵AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠ADB∴AB=AD,且AB=BC,∴AD=BC,且AD∥BC∴四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形,(2)∵DE⊥BC,CE=3,DE=4,∴CD=5,∵四边形ABCD是菱形∴BC=CD=5,BO=DO∴BE=BC+CE=8,∴BD===4,∵BO=DO,DE⊥BC∴OE=BD=223.(10分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.(1)求证:平行四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.【分析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【解答】(1)证明:∵AE垂直平分BF,∴AB=AF,∴∠BAE=∠F AE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠F AE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∴AF=BE.∵AF∥BC,∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形;(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.24.(10分)如图:正方形ABCD中,点E、点F、点G分别在边BC、AB、CD上,∠1=∠2=∠3,求证:(1)EF+EG=AE;(2)CE+CG=AF.【分析】(1)延长AB、GE交于点M,作MN⊥DC于N,则MN∥BC,MN=BC,BM =CN,∠N=90°,证明△BEF≌△BEM(ASA),得出EF=EM,BF=BM,证明△MNG ≌△ABE(ASA),得出MG=AE,即可得出结论;(2)由(1)得出BM=CN=BF,△MNG≌△ABE,得出BE=GN=CG+CN=CG+BM,由线段的和差即可得出结论.【解答】证明:(1)延长AB、GE交于点M,作MN⊥DC于N,如图所示:则MN∥BC,MN=BC,BM=CN,∠N=90°,∵四边形ABCD是正方形,∴∠BCD=∠EBF=90°,AB=BC=MN,∴∠EBM=90°,∵∠2=∠3,∠3=∠BEM,∴∠2=∠BEM,在△BEF和△BEM中,,∴△BEF≌△BEM(ASA),∴EF=EM,BF=BM,∵MN∥BC,∴∠NMG=∠3,∵∠1=∠3,∴∠NMG=∠1,在△MNG和△ABE中,,∴△MNG≌△ABE(ASA),∴MG=AE,∵MG=EM+EG=EF+EG,∴EF+EG=AE;(2)由(1)得:BM=CN=BF,△MNG≌△ABE,∴BE=GN=CG+CN=CG+BM,∴CE+CG=BC﹣BE+GN﹣CN=AB﹣BE+BE﹣BF=AB﹣BF=AF.25.(12分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC 上,EF与AC相交于点O,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)当EG=EH时,连接AF①求证:AF=FC;②若DC=8,AD=4,求AE的长.【分析】(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF =∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;(2)①由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF;②设AE=x,则FC=AF=x,DF=8﹣x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.【解答】解:(1)∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,又∵CH=AG,∠FCH=∠EAG∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形;(2)①如图,连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF;②设AE=x,则FC=AF=x,DF=8﹣x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8﹣x)2=x2,解得x=5,∴AE=5.。
八年级数学下册第五章特殊的平行四边形单元测试卷一.选择题(共10小题)1.如图,丝带重叠的部分一定是()A.正方形B.矩形C.菱形D.都有可能2.能判定一个平行四边形是矩形的条件是()A.两条对角线互相平分B.一组邻边相等C.两条对角线相等D.两条对角线互相垂直3.矩形ABCD中,已知5AD=,则AC长为()AB=,12A.9B.13C.17D.204.如图,正方形ABCD中,1AB=,则AC的长是()A.1B.2C.3D.25.如图,在菱形ABCD中,E,F分别是AB,AC的中点,若2EF=,6AC=,则菱形ABCD的面积为()A.67B.12C.15D.1056.已知四边形ABCD中,AB BC CD DA===,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC BD∠=︒D.ABC BAC∠=∠ABC=C.90⊥B.AC BD7.如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A .90ABC ∠=︒B .AC BD = C .AD AB = D .BAD ADC ∠=∠8.如图,是伸缩衣架的实物图和示意图,它是由4条短木棒和4条长木棒组成的三个全等的菱形,其中20AB cm =,当BAD ∠由60︒变为120︒时,衣架的总长度BE 拉长了( )A .(20320)cm -B .(40340)cm -C .(60303)cm -D .(60360)cm -9.如图,在正方形ABCD 中,E 为AB 中点,连结DE ,过点D 作DF DE ⊥交BC 的延长线于点F ,连结EF .若1AE =,则EF 的值为( )A .3B .10C .23D .410.如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定二.填空题(共10小题)11.在菱形ABCD 中,周长为16,30ABC ∠=︒,则其面积为 .12.在矩形ABCD 中,再增加条件 (只需填一个)可使矩形ABCD 成为正方形.13.长方形的一条对角线的长为10cm ,一边长为6cm ,它的面积是 2cm .14.如图, 点O 是矩形ABCD 的对角线AC 的中点,//OM AB 交AD 于点M ,若2OM =,6BC=,则OB的长为.15.如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线BF交于P,则BPD∠的度数为.16.如图,四边形ABCD是菱形,50⊥于H,连DAB∠=︒,对角线AC,BD相交于点O,DH AB 接OH,则DHO∠=度.17.如图,已知点O为ABCMN BC,分别交AB于AC点M、N,∆内角平分线的交点,过点O作//若12AB=,∆的周长是.AC=,则AMN1418.如图,菱形ABCD中,130⊥于E,对角线AC与BD相交于O,连接OE,∠=︒,BE CDADC则BEO∠=︒.19.如图,ABCDBC=,折叠ABCDY使C落在A处,折痕为EF,点AB=,4∠=︒,3BY中,60E、F分别在BC、AD上,则AF=.20.如图,正方形ABCD的边长为4cm,点E,F分别是BC,CD的中点,连结BF,DE,则图中阴影部分的面积是2cm三.解答题(共8小题)21.如图:正方形ABCD中,点E、F分别在边BC、CD上,BE CF=,连接AE,BF交于点O,点M为AB中点,连接OM,求证:12OM AB=.22.如图,正方形ABCD中,AB AD=,G为BC边上一点,BE AG⊥,于E,DF AG⊥于F,连接DE.(1)求证:ABE DAF∆≅∆;(2)若1AF=,4EF=,求四边形ABED的面积.23.如图,已知四边形ABCD是矩形,延长AB至点F,连结CF,使得CF AF=,过点A作AE FC⊥于点E.(1)求证:AD AE=.(2)连结CA,若70DCA∠=︒,求CAE∠的度数.24.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作//DE AC 且DE OC =,连接CE 、OE ,连接AE 交OD 于点F .(1)求证:OE CD =;(2)若菱形ABCD 的边长为6,60ABC ∠=︒,求AE 的长.25.如图,在ABC ∆中,DE 分别是AB ,AC 的中点,2BE DE =,延长DE 到点F ,使得EF BE =,连CF(1)求证:四边形BCFE 是菱形;(2)若6CE =,120BEF ∠=︒,求菱形BCFE 的面积.26.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE 是平行四边形;(2)若4AC =,3BD =,求ADE ∆的周长.27.如图,平行四边形ABCD 中,9AD cm =,32CD cm =,45B ∠=︒,点M 、N 分别以A 、C 为起点,1/cm 秒的速度沿AD 、CB 边运动,设点M 、N 运动的时间为t 秒(06)t 剟(1)求BC边上高AE的长度;(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;(3)作MP BC⊥于Q,当t为何值时,四边形MPNQ为正方形.⊥于P,NQ AD28.如图,在直角坐标系中,点O是坐标原点,四边形OABC是平行四边形,60∠=︒,点A的COA坐标为(6,0),点B的坐标为(10,43).动点P从点O出发,沿射线OA方向以每秒1个单位的速度匀速运动;动点Q同时从点A出发,到达点B之后,继续沿射线BC运动,以每秒2个单位的速度匀速运动,设点P运动的时间为t秒(0)t>.(1)当运动2秒时,求APQ∆的面积.(2)求点C的坐标和平行四边形OABC的周长;(3)在整个运动过程中,t为何值时,以A,P,Q,C为顶点的四边形是平行四边形?参考答案一.选择题(共10小题)1.如图,丝带重叠的部分一定是( )A .正方形B .矩形C .菱形D .都有可能【分析】首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【解答】解:过点A 作AE BC ⊥于E ,AF CD ⊥于F ,因为两条彩带宽度相同,所以//AB CD ,//AD BC ,AE AF =.∴四边形ABCD 是平行四边形.ABCD S BC AE CD AF =⋅=⋅Y Q .又AE AF =.BC CD ∴=,∴四边形ABCD 是菱形.故选:C .2.能判定一个平行四边形是矩形的条件是( )A .两条对角线互相平分B .一组邻边相等C .两条对角线相等D .两条对角线互相垂直【分析】根据平行四边形的判定(对角线互相平分),矩形的判定(对角线互相平分且相等),菱形的判定(对角线互相平分且垂直或一组邻边相等的平行四边形)判断即可.【解答】解:A 、两条对角线互相平分的四边形是平行四边形,故本选项错误;B 、一组邻边相等的平行四边形是菱形,菱形不一定是矩形,故本选项错误;C 、根据矩形的判定定理:对角线相等的平行四边形是矩形,故本选项正确;D 、两条对角线互相垂直的平行四边形是菱形,故本选项错误.故选:C .3.矩形ABCD 中,已知5AB =,12AD =,则AC 长为( )A .9B .13C .17D .20【分析】由勾股定理可求出BD 长,由矩形的性质可得13AC BD ==.【解答】解:如图,矩形ABCD 中,90BAD ∠=︒,5AB =,12AD =, ∴222251213BD AB AD =+=+=,13AC BD ∴==,故选:B .4.如图,正方形ABCD 中,1AB =,则AC 的长是( )A .1B .2C .3D .2【分析】在直角三角形ABC 中,利用勾股定理可直接求出AC 的长;【解答】解:在Rt ABC ∆中,1AB BC ==,2222112AC AB BC ∴=+=+=;故选:B .5.如图,在菱形ABCD 中,E ,F 分别是AB ,AC 的中点,若2EF =,6AC =,则菱形ABCD 的面积为( )A .67B .12C .15D .105【分析】由菱形的性质和等腰三角形的性质可得3AF FC ==,BF AC ⊥,由三角形中位线定理可求4BC =,由勾股定理可求BF 的长,即可求解.【解答】解:如图,连接BFQ 四边形ABCD 是菱形AB BC ∴=,且点F 是AC 中点3AF FC ∴==,BF AC ⊥E Q ,F 分别是AB ,AC 的中点24BC EF ∴== 227BF BC CF ∴=-=1372ABC S AC BF ∆∴=⨯⨯= ∴菱形ABCD 的面积267ABC S ∆==故选:A .6.已知四边形ABCD 中,AB BC CD DA ===,对角线AC ,BD 相交于点O .下列结论一定成立的是( )A .AC BD ⊥B .AC BD = C .90ABC ∠=︒ D .ABC BAC ∠=∠【分析】证出四边形ABCD 是菱形,由菱形的性质即可得出结论.【解答】解:Q 四边形ABCD 中,AB BC CD DA ===,∴四边形ABCD 是菱形,AC BD ∴⊥;故选:A .7.如图所示,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定平行四边形ABCD 为矩形的是( )A .90ABC ∠=︒B .AC BD = C .AD AB = D .BAD ADC ∠=∠【分析】本题考查的是矩形的判定,平行四边形的性质有关知识,利用矩形的判定,平行四边形的性质对选项进行逐一判断即可解答.【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.不能判定平行四边形ABCD为矩形,故此选项符合题意;D.平行四边形ABCD中,//AB CD,180BAD ADC∴∠+∠=︒,又BAD ADC∠=∠Q,90BAD ADC∴∠=∠=︒,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.8.如图,是伸缩衣架的实物图和示意图,它是由4条短木棒和4条长木棒组成的三个全等的菱形,其中20AB cm=,当BAD∠由60︒变为120︒时,衣架的总长度BE拉长了()A.(20320)cm-B.(40340)cm-C.(60303)cm-D.(60360)cm【分析】根据菱形的性质分别得出BAD∠由60︒变为120︒前后BE的长,进而得出答案.【解答】解:当60BAD∠=︒时,连接BD,Q四边形ABCD是菱形,则AB AD=,ABD∴∆是等边三角形,20AB BD cm∴==,如图所示:过点A作AF BD⊥于点F,120BAD∠=︒Q,60BAF∴∠=︒,则30B∠=︒,故3cos3020103() BF AB cm =︒==,则203BD cm=,可得衣架的总长度BE拉长了:320332060360⨯⨯=-.故选:D.9.如图,在正方形ABCD 中,E 为AB 中点,连结DE ,过点D 作DF DE ⊥交BC 的延长线于点F ,连结EF .若1AE =,则EF 的值为( )A .3B .10C .23D .4【分析】根据题意可得2AB =,ADE CDF ∠=∠,可证ADE DCF ∆≅∆,可得1CF =,根据勾股定理可得EF 的长.【解答】解:ABCD Q 是正方形AB BC CD ∴==,90A B DCB ADC ∠=∠=∠=∠=︒DF DE ⊥Q90EDC CDF ∴∠+∠=︒且90ADE EDC ∠+∠=︒ADE CDF ∴∠=∠且AD CD =,90A DCF ∠=∠=︒ADE CDF ∴∆≅∆1AE CF ∴==E Q 是AB 中点2AB BC ∴==3BF ∴=在Rt BEF ∆中,2210EF BE BF=+=故选:B . 10.如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定【分析】由矩形ABCD 可得:14AOD ABCD S S ∆=矩形,又由15AB =,20BC =,可求得AC 的长,则可求得OA 与OD 的长,又由1122AOD APO DPO S S S OA PE OD PF ∆∆∆=+=+g g ,代入数值即可求得结果. 【解答】解:连接OP ,如图所示:Q 四边形ABCD 是矩形,AC BD ∴=,12OA OC AC ==,12OB OD BD ==,90ABC ∠=︒, 14AOD ABCD S S ∆=矩形, 12OA OD AC ∴==, 15AB =Q ,20BC =,2222152025AC AB BC ∴=+=+=,1115207544AOD ABCD S S ∆==⨯⨯=矩形, 252OA OD ∴==, 111125()()7522222AOD APO DPO S S S OA PE OD PF OA PE PF PE PF ∆∆∆∴=+=+=+=⨯+=g g g , 12PE PF ∴+=.∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选:B .二.填空题(共10小题)11.在菱形ABCD 中,周长为16,30ABC ∠=︒,则其面积为 8 .【分析】如图,过点A 作AE BC ⊥于点E ,由菱形的性质可求4AB BC ==,由直角三角形的性质可求2AE =,即可求解.【解答】解:如图,过点A 作AE BC ⊥于点E ,Q 菱形ABCD 的周长为16,4AB BC ∴==,30ABC ∠=︒Q ,AE BC ⊥, 122AE AB ∴==, ∴菱形ABCD 的面积8BC AE =⨯=,故答案为:8.12.在矩形ABCD 中,再增加条件 AB BC = (只需填一个)可使矩形ABCD 成为正方形.【分析】由添加条件得出AB BC =,即可得出矩形ABCD 为正方形.【解答】解:AB BC =Q ,∴矩形ABCD 为正方形,故答案为:AB BC =.13.长方形的一条对角线的长为10cm ,一边长为6cm ,它的面积是 48 2cm .【分析】利用勾股定理列式求出另一边长,然后根据矩形的面积公式列式进行计算即可得解.【解答】解:Q 长方形的一条对角线的长为10cm ,一边长为6cm ,∴另一边长为221068cm -=,∴它的面积为28648cm ⨯=.故答案为:48.14.如图, 点O 是矩形ABCD 的对角线AC 的中点,//OM AB 交AD 于点M ,若2OM =,6BC =,则OB 的长为 13 .【分析】已知OM 是ADC ∆的中位线, 再结合已知条件则DC 的长可求出, 所以利用勾股定理可求出AC 的长, 由直角三角形斜边上中线的性质则BO 的长即可求出 .【解答】解:Q 四边形ABCD 是矩形,90D ∴∠=︒,O Q 是矩形ABCD 的对角线AC 的中点,//OM AB ,OM ∴是ADC ∆的中位线,2OM =Q ,4DC ∴=,6AD BC ==Q ,22213AC AD CD ∴=+=,1132BO AC ∴==, 故答案为:1315.如图,正方形ABCD 的对角线BD 是菱形BEFD 的一边,菱形BEFD 的对角线BF 交于P ,则BPD ∠的度数为 112.5︒ .【分析】根据菱形的性质对角线平分每一组对角以及正方形性质得出,22.5DBF FBE ∠=∠=︒,进而利用三角形外角性质求出即可.【解答】解:Q 正方形ABCD 的对角线BD 是菱形BEFD 的一边,菱形BEFD 的对角线BF 交于P , 45DBC BDC ∴∠=∠=︒,22.5DBF FBE ∠=∠=︒,BPD ∴∠的度数为:9022.5112.5PBC BCP ∠+∠=︒+︒=︒.故答案为:112.5︒.16.如图,四边形ABCD 是菱形,50DAB ∠=︒,对角线AC ,BD 相交于点O ,DH AB ⊥于H ,连接OH ,则DHO ∠= 25 度.【分析】根据菱形的对角线互相平分可得OD OB =,再根据直角三角形斜边上的中线等于斜边的一半可得OH OB =,然后根据等边对等角求出OHB OBH ∠=∠,根据两直线平行,内错角相等求出OBH ODC ∠=∠,然后根据等角的余角相等解答即可.【解答】解:Q 四边形ABCD 是菱形,OD OB ∴=,90COD ∠=︒,DH AB ⊥Q ,12OH BD OB ∴==, OHB OBH ∴∠=∠,又//AB CD Q ,OBH ODC ∴∠=∠,在Rt COD ∆中,90ODC DCO ∠+∠=︒,在Rt DHB ∆中,90DHO OHB ∠+∠=︒, 1252DHO DCO DAB ∴∠=∠=∠=︒, 故答案为:25.17.如图,已知点O 为ABC ∆内角平分线的交点,过点O 作//MN BC ,分别交AB 于AC 点M 、N ,若12AB =,14AC =,则AMN ∆的周长是 26 .【分析】根据角平分线性质和平行线的性质推出MOB MBO ∠=∠,推出BM OM =,同理CN ON =,代入三角形周长公式求出即可.【解答】解:BO Q 平分ABC ∠,MBO CBO ∴∠=∠,//MN BC Q ,MOB CBO ∴∠=∠,MOB MBO ∴∠=∠,OM BM ∴=,同理CN NO =,BM CN MN ∴+=,AMN ∴∆的周长是121426AN MN AM AN CN OM ON AB AC ++=+++=+=+=. 故答案为:26.18.如图,菱形ABCD 中,130ADC ∠=︒,BE CD ⊥于E ,对角线AC 与BD 相交于O ,连接OE ,则BEO ∠= 25 ︒.【分析】由菱形的性质得出1652BDC ADC ∠=∠=︒,OB OD =,求出906525OBE ∠=︒-︒=︒,由直角三角形斜边上的中线性质得出12OE BD OB ==,即可得出答案. 【解答】解:在菱形ABCD 中,130ADC ∠=︒,1652BDC ADC ∴∠=∠=︒,OB OD =, BE CD ⊥Q ,90BED ∴∠=︒,906525OBE ∴∠=︒-︒=︒,12OE BD OB ==, 25BEO OBE ∴∠=∠=︒. 故答案为:25.19.如图,ABCD Y 中,60B ∠=︒,3AB =,4BC =,折叠ABCD Y 使C 落在A 处,折痕为EF ,点E 、F 分别在BC 、AD 上,则AF = 135.【分析】连接AC 、CF .由题意四边形AECF 是菱形,设AF CF CE AE x ====,在Rt ABH ∆中,3AB =,60B ∠=︒,可得32BH =,332AH =,推出35422EH x x =+-=-,在Rt AEH ∆中,根据222AH EH AE +=,列出方程即可解决问题.【解答】解:连接AC 、CF .由题意四边形AECF 是菱形,设AF CF CE AE x ====,在Rt ABH ∆中,3AB =,60B ∠=︒, 32BH ∴=,332AH =, 35422EH x x ∴=+-=-, 在Rt AEH ∆中,222AH EH AE +=Q ,222335()()22x x ∴+-=, 135x ∴=, 故答案为135. 20.如图,正方形ABCD 的边长为4cm ,点E ,F 分别是BC ,CD 的中点,连结BF ,DE ,则图中阴影部分的面积是 3232cm【分析】连接BD ,可看出阴影部分的面积等于12正方形的面积+一个三角形的面积,用相似求出三角形的面积,阴影部分的面积可证.【解答】解:连接BD ,EF .Q 阴影部分的面积ABD =∆的面积BDG +∆的面积(G 为BF 与DE 的交点), BCD ∴∆的面积ABD =∆的面积12=正方形ABCD 的面积28cm =, Q 点E ,F 分别是BC ,CD 的中点,//EF BD ∴,12EF BD =, GEF GBD ∴∆∆∽,2DG GE ∴=,BDE ∴∆的面积12BCD =∆的面积. BDG ∴∆的面积23BDE =∆的面积13BCD =∆的面积283cm =, ∴阴影部分的面积2832833cm =+=, 故答案为:323.三.解答题(共8小题)21.如图:正方形ABCD 中,点E 、F 分别在边BC 、CD 上,BE CF =,连接AE ,BF 交于点O ,点M 为AB 中点,连接OM ,求证:12OM AB =.【分析】证明ABE BCF ∆≅∆,再推导出90AOB ∠=︒,在Rt ABO ∆中,M 点是斜边AB 中点,根据直角三角形斜边中线的性质可得结论.【解答】证明:Q 四边形ABCD 是正方形,AB BC ∴=,90ABE BCF ∠=∠=︒,又BE CF =,()ABE BCF SAS ∴∆≅∆.BAE CBF ∴∠=∠.90ABO CBF ∠+∠=︒Q ,90ABO BAO ∴∠+∠=︒,即90AOB ∠=︒.在Rt ABO ∆中,M 点是斜边AB 中点,12OM AB ∴=. 22.如图,正方形ABCD 中,AB AD =,G 为BC 边上一点,BE AG ⊥,于E ,DF AG ⊥于F ,连接DE .(1)求证:ABE DAF ∆≅∆;(2)若1AF =,4EF =,求四边形ABED 的面积.【分析】(1)易知90AFD BEA∠=∠=︒,再利用同角的余角相等证明BAE ADF∠=∠,由正方形的性质可知AD AB=,则用AAS可证ABE DAF∆≅∆;(2)根据全等三角形的性质和三角形的面积公式即可得到结论.【解答】证明:(1)Q四边形ABCD是正方形,AB AD∴=,DF AG⊥Q,BE AG⊥,90AEB DFA∴∠=∠=︒.90BAE DAF∴∠+∠=︒,90DAF ADF∠+∠=︒,BAE ADF∴∠=∠,()ABE DAF AAS∴∆≅∆;(2)ABE DAF∆≅∆Q,145DF AE AF EF∴==+=+=,∴四边形ABED的面积11215541522ABE ADE DFES S S∆∆∆=++=⨯⨯⨯+⨯⨯=.23.如图,已知四边形ABCD是矩形,延长AB至点F,连结CF,使得CF AF=,过点A作AE FC⊥于点E.(1)求证:AD AE=.(2)连结CA,若70DCA∠=︒,求CAE∠的度数.【分析】(1)由等腰三角形的性质和矩形的性质证出FCA DCA∠=∠,由AAS证明ADC CAE∆≅∆,即可得出结论;(2)由全等三角形的性质得出CAE CAD∠=∠,求出9020CAD DCA∠=︒-∠=︒,即可得出答案.【解答】(1)证明:连接AC,如图所示:CF AF=Q,FCA CAF∴∠=∠,Q四边形ABCD是矩形,//DC AB∴∴,DCA CAF∠=∠,FCA DCA∴∠=∠,AE FC⊥Q,90CEA∴∠=︒,90CDA CEA∴∠=∠=︒,在ADC∆和CAE∆中,CDA CEADCA FCAAC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,ADC CAE∴∆≅∆()AAS,AD AE∴=;(2)解:ADC CAE∆≅∆Q,CAE CAD∴∠=∠,Q四边形ABCD是矩形,90D∴∠=︒,90907020CAD DCA∴∠=︒-∠=︒-︒=︒,20CAE∴∠=︒.24.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作//DE AC且DE OC=,连接CE、OE,连接AE交OD于点F.(1)求证:OE CD=;(2)若菱形ABCD的边长为6,60ABC∠=︒,求AE的长.【分析】(1)只要证明四边形OCED是平行四边形,90COD∠=︒即可;(2)在Rt ACE∆中,利用勾股定理即可解决问题;【解答】(1)证明:Q四边形ABCD是菱形,12DE AC=,AC BD ∴⊥,DE OC =.//DE AC Q ,∴四边形OCED 是平行四边形,AC BD ⊥Q ,四边形OCED 是平行四边形,∴四边形OCED 是矩形,OE CD ∴=.(2)解:Q 菱形ABCD 的边长为6,6AB BC CD AD ∴====,BD AC ⊥,12AO CO AC ==. 60ABC ∠=︒Q ,AB BC =,ABC ∴∆是等边三角形,6AC AB ∴==,AOD ∆Q 中BD AC ⊥,6AD =,3AO =, 2233OD AD AO ∴=-=,Q 四边形OCED 是矩形,33CE OD ∴==,Q 在Rt ACE ∆中,6AC =,33CE =,22226(33)37AE AC CE ∴=+=+=.25.如图,在ABC ∆中,DE 分别是AB ,AC 的中点,2BE DE =,延长DE 到点F ,使得EF BE =,连CF(1)求证:四边形BCFE 是菱形;(2)若6CE =,120BEF ∠=︒,求菱形BCFE 的面积.【分析】(1)从所给的条件可知,DE 是ABC ∆中位线,所以//DE BC 且2DE BC =,所以BC 和EF 平行且相等,所以四边形BCFE 是平行四边形,又因为BE FE =,所以是菱形;(2)由BEF ∠是120︒,可得EBC ∠为60︒,即可得BEC ∆是等边三角形,求得6BE BC CE ===,再过点E 作EG BC ⊥于点G ,求的高EG 的长,即可求得答案.【解答】(1)证明:D Q 、E 分别是AB 、AC 的中点,//DE BC ∴且2DE BC =,又2BE DE =Q ,EF BE =,EF BC ∴=,//EF BC ,∴四边形BCFE 是平行四边形,又BE EF =Q ,∴四边形BCFE 是菱形;(2)解:120BEF ∠=︒Q ,60EBC ∴∠=︒,EBC ∴∆是等边三角形,6BE BC CE ∴===,过点E 作EG BC ⊥于点G , 3sin 606332EG BE ∴=︒=⨯=g , 633183BCFE S BC EG ∴=⋅=⨯=菱形.26.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE 是平行四边形;(2)若4AC =,3BD =,求ADE ∆的周长.【分析】(1)先根据菱形的性质得出//AB CD ,AC BD ⊥,再证明//DE AC ,然后根据平行四边形的定义证明即可;(2)先根据菱形的性质以及勾股定理得出22 2.5AD CD AO DO ==+=,再由平行四边形的性质得出 2.5AE CD ==,4DE AC ==,进而求出ADE ∆的周长.【解答】(1)证明:Q 四边形ABCD 是菱形,//AB CD ∴,AC BD ⊥,//AE CD ∴,90AOB ∠=︒.DE BD ⊥Q ,即90EDB ∠=︒,AOB EDB ∴∠=∠,//DE AC ∴,∴四边形ACDE 是平行四边形;(2)解:Q 四边形ABCD 是菱形,4AC =,3BD =,2AO ∴=, 1.5DO =,22 2.5AD CD AO DO ==+=.Q 四边形ACDE 是平行四边形,2.5AE CD ∴==,4DE AC ==,ADE ∴∆的周长 2.5 2.549AD AE DE =++=++=.27.如图,平行四边形ABCD 中,9AD cm =,32CD cm =,45B ∠=︒,点M 、N 分别以A 、C 为起点,1/cm 秒的速度沿AD 、CB 边运动,设点M 、N 运动的时间为t 秒(06)t 剟(1)求BC 边上高AE 的长度;(2)连接AN 、CM ,当t 为何值时,四边形AMCN 为菱形;(3)作MP BC ⊥于P ,NQ AD ⊥于Q ,当t 为何值时,四边形MPNQ 为正方形.【分析】(1)先由平行四边形的性质得出32AB CD cm ==.再解直角ABE ∆,即可求出AE 的长度;(2)先证明四边形AMCN 为平行四边形,则当AN AM =时,四边形AMCN 为菱形.根据AN AM =列出方程2223(6)t t +-=,解方程即可;(3)先证明四边形MPNQ 为矩形,则当QM QN =时,四边形MPNQ 为正方形.根据QM QN =列出方程|26|3t -=,解方程即可.【解答】解:(1)Q 四边形ABCD 是平行四边形,32AB CD cm ∴==.在直角ABE ∆中,90AEB ∠=︒Q ,45B ∠=︒,2sin 323()AE AB B cm ∴=∠==g ;(2)Q 点M 、N 分别以A 、C 为起点,1/cm 秒的速度沿AD 、CB 边运动,设点M 、N 运动的时间为t 秒(06)t 剟,AM CN t ∴==,//AM CN Q ,∴四边形AMCN 为平行四边形,∴当AN AM =时,四边形AMCN 为菱形.3BE AE ==Q ,6EN t =-,2223(6)AN t ∴=+-,2223(6)t t ∴+-=, 解得154t =. 故当t 为154时,四边形AMCN 为菱形;(3)MP BC ⊥Q 于P ,NQ AD ⊥于Q ,//QM NP ,∴四边形MPNQ为矩形,=时,四边形MPNQ为正方形.∴当QM QNBE=,Q,3==AM CN t∴==--=--=-,936AQ EN BC BE CN t t∴=-=--=-(注:分点Q在点M的左右两种情况),QM AM AQ t t t|(6)||26|Q,==QN AE3∴-=,|26|3t解得 4.5t=.t=或 1.5故当t为4.5或1.5秒时,四边形MPNQ为正方形.28.如图,在直角坐标系中,点O是坐标原点,四边形OABC是平行四边形,60∠=︒,点A的COA坐标为(6,0),点B的坐标为(10,43).动点P从点O出发,沿射线OA方向以每秒1个单位的速度匀速运动;动点Q同时从点A出发,到达点B之后,继续沿射线BC运动,以每秒2个单位的速度匀速运动,设点P运动的时间为t秒(0)t>.(1)当运动2秒时,求APQ∆的面积.(2)求点C的坐标和平行四边形OABC的周长;(3)在整个运动过程中,t为何值时,以A,P,Q,C为顶点的四边形是平行四边形?【分析】(1)如图1中,作QE x⊥轴于E,BF x⊥轴于F.求出PA.QE即可解决问题.(2)利用平行四边形的性质解决问解即可.(3)如图2中,当点Q在射线BC上时,CQ PA=时,A,P,Q,C为顶点的四边形是平行四边形.由此构建方程即可解决问题.【解答】解:(1)如图1中,作QE x⊥轴于E,BF x⊥轴于F.(6,0)A Q ,(10B ,3),6OA ∴=,10OF =,43BF =, 1064AF ∴=-=,228AB AF BF =+=, 当2t =时,2OP =,4PA =,4AQ =, Q 四边形OABC 是平行四边形, 60BAF COA ∴∠=∠=︒,QE AE ⊥Q ,90AEQ ∴∠=︒,sin 6023EQ AQ ∴=︒=g ,114234322PAQ S PA QE ∆∴==⨯⨯=g g(2)Q 四边形OABC 是平行四边形, 6OA BC ∴==,//BC OA , (10B Q ,43),(4C ∴,43),6OA BC ==Q ,8OC AB ==, ∴四边形OABC 的周长2(68)28=⨯+=.(3)如图2中,当点Q 在射线BC 上时,CQ PA =时,A ,P ,Q ,C 为顶点的四边形是平行四边形.|142||6|t t∴-=-,解得203t=或8,t∴为203s或8s时,以A,P,Q,C为顶点的四边形是平行四边形.。
浙教版数学八年级下册第五章特殊的平行四边形单元检测试卷班级_____________考号______________姓名_______________总分_________________一、选择题(10小题,每题3分,共30分)1.如图是一个边长为15 cm的活动菱形衣帽架,若墙上钉子间的距离AB=BC=15 cm,那么∠1的度数为( )A.45°B.60°C.75°D.90°2.课外活动时,王老师让同学们做一个对角线互相垂直的矩形形状的风筝,其面积为450cm2,则两条对角线所用的竹条至少需( ).A.30cm B.30cm C.60cm D.603.如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=50°,那么∠CAD的度数是()A.20°B.25°C.30°D.40°4.如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为()A.14 B.16 C.17 D.185.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则它的面积为()A.3cm2B.4 cm2C.12 cm2D.4 cm2或12 cm2 6.如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以点A和点B为圆心,大于AB 的长为半径画弧,两弧相交于点C,D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是( )A.矩形B.菱形C.一般的四边形D.平行四边形7.如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,且DE⊥AB,AC=6,则菱形ABCD的面积是()A.18 B.18C.9D.68.红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图所示.红丝带重叠部分形成的图形是( )A.一般四边形B.正方形C.菱形D.矩形9.如图,直线l过正方形ABCD的顶点B,点A、C至直线l的距离分别为2和3,则此正方形的面积为( )A.5 B.6 C.9 D.1310.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=( )A.2 B.3 C.D.二、填空题(8小题,每题3分,共24分)11.如图所示,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加一个条件____________,可以判定四边形BEDF是菱形.12.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=_____°.13.如图,△ABC中,∠C=,AC=BC,点G、F分别在AC、BC上,点D、E在AB上,四边形GDEF 是正方形,若GF=,则AB为______.14.在矩形ABCD中,AB=1,BG、DH分别平分∠ABC、∠ADC,交AD、BC于点G、H.要使四边形BHDG 为菱形,则AD的长为__________.15.如图,正方形ABCD的边长为4,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积为______.16.如图,菱形ABCD对角线AC,BD交于点O,∠BAD=60°,点E是AD的中点,OE=4,则菱形ABCD的面积为___.17.如图,在△ABC中,AD⊥BC,垂足为D,E,F分别是AB,AC的中点,连接DE,DF,当△ABC满足条件________时,四边形AEDF是菱形.(填写一个你认为恰当的条件即可)18.矩形ABCD的∠A的平分线AE分BC成两部分的比为1:3,若矩形ABCD的面积为36,则其周长为____.三、解答题(8小题,共66分)19.如图,在矩形ABCD中,以点B为圆心、BC长为半径画弧,交AD边于点E,连接BE,过C点作CF⊥BE,垂足为F.猜想线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,并加以证明.结论:BF=______.证明:20.如图,在△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥BC交AD于点F.求证:四边形CDEF是菱形.21.在正方形ABCD中,E在AB上,BE=2,AE=1,P是BD上的动点,求PE和PA的长度之和最小值.22.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M 为EF中点,求AM的最小值.23.如图,正方形ABCD中,点E是BC上一点,直线AE交BD于点M,交DC的延长线于点F,G是EF 的中点,连接CG.求证:(1)△ABM≌△CBM;(2)CG⊥CM.24.如图,在▱ABCD中,各内角的平分线相交于点E,F,G,H.(1)求证:四边形EFGH是矩形;(2)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.25.如图,ABCD是平行四边形,E、F是对角线AC上的两点,若∠ABF=∠CDE=90°.(1)求证:四边形BEDF是平行四边形;(2)若AB=AD=8,BF=6,求AE的长.26.在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和四边形CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)参考答案一、选择题1. B 2.C 3.B 4.D 5.D 6.B 7.D 8.C 9.D 10.C 二、填空题11.四边形BEDF是菱形. 12.60 13.3a 14.1+ 15.8 16.17. AB=AC或∠B=∠C或AD平分∠BAC或BD=CD 18. 30或14.三、解答题19.解:猜想:BF=AE.证明:∵四边形ABCD是矩形.∴∠A=90°.∵CF⊥BE.∴∠A=∠BFC=90°,∠AEB=∠FBC.∵BC=BE(同一半径).∴△BFC≌△EAB.∴BF=AE.20.证明:如图,连接CE,交AD于点O.∵AC=AE,∴△ACE为等腰三角形.∵AO平分∠CAE,∴AO⊥CE,且OC=OE.∵EF∥CD,∴∠OEF=∠OCD.又∵∠DOC=∠FOE,∴△DOC≌△FOE(ASA).∴OD=OF.即CE与DF互相垂直且平分,∴四边形CDEF是菱形.21.解:连接AC,EC,EC与BD交于点P,此时PA+PE的最小,即PA+PE就是CE的长度∵正方形ABCD中,BE=2,AE=1,∴BC=AB=3,∴CE= == ,故答案为:.22.解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴,当AP⊥BC时,AP的最小值即为直角三角形ABC斜边上的高,∴AM的最小值是.23.证明:(1)∵四边形ABCD是正方形,∴AB=CB,∠ABM=∠CBM,在△ABM和△CBM中,∴△ABM≌△CBM(SAS),(2)∵△ABM≌△CBM,∴∠BAM=∠BCM,∵∠ECF=90°,G是EF的中点,∴GC=GF,∴∠GCF=∠F,又∵AB∥DF,∴∠BAM=∠F,∴∠BCM=∠GCF,∴∠BCM+∠GCE=∠GCF+∠GCE=90°,∴GC⊥CM.24.解:(1)∵GA平分∠BAD,GB平分∠ABC,∴∠GAB∠BAD,∠GBA∠ABC.∵▱ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得:∠DEC=90°,∠AHD=90°=∠EHG,∴四边形EFGH是矩形;(2)依题意得:∠BAG∠BAD=30°.∵AB=6,∴BG AB=3,AG=3CE.∵BC=4,∠BCF∠BCD=30°,∴BF BC=2,CF=2,∴EF=3,GF=3﹣2=1,∴矩形EFGH的面积=EF×GF.25.解:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠DCA,在△ABF和△CDE中,,∴△ABF≌△CDE(ASA),∴BF=DE,∠AFB=∠CED,∴BF∥DE,∴四边形BEDF是平行四边形;(2)连接BD交AC于G,如图所示:∵AB=AD,∴四边形ABCD是菱形,∴AC⊥BD,∴四边形BEDF是菱形,∴BE=BF=6,EG=FG,∵∠ABF=90°,AB=AD=8,BF=6,∴AF==10,∵△ABF的面积=AF·BG=AB×BF,∴BG==,∴EG==,∴AE=AF-2EG=10-2×=.26. (1)证明:∵四边形BCGF为正方形,∴BF=BM=MN,∠FBM=90°,∵四边形CDHN为正方形,∴DM=DH=MN,∠HDM=90°,∵BF=BM=MN,DM=DH=MN,∴BF=BM=DM=DH,∵BF=DH,∠FBM=∠HDM,BM=DM,∴△FBM≌△HDM,∴FM=MH,∵∠FMB=∠DMH= 45°,∴∠FMH=90°,∴FM⊥HM.(2)证明:连接MB、MD,如图2,设FM与AC交于点P.∵B、D、M分别是AC、CE、AE的中点,∴MD∥BC,且MD=AC=BC=BF;MB∥CD,且MB=CE=CD=DH,∴四边形BCDM是平行四边形,∴∠CBM=∠CDM,∵∠FBP=∠HDC,∴∠FBM=∠MDH,∵MD =BF,∠FBM=∠MDH,MB=DH,∴△FBM≌△MDH(SAS),∴FM=MH,且∠MFB=∠HMD,∵BC∥MD,∴∠APM=∠FMD,∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°,∴△FMH是等腰直角三角形;(3)△FMH还是等腰直角三角形.连接MB、MD,如图3,设FM与AC交于点P.∵B、D、M分别是AC、CE、AE的中点,∴MD∥BC,且MD=BC=BF;MB∥CD,且MB=CD=DH,∴四边形BCDM是平行四边形,∴∠CBM=∠CDM,又∵∠FBP=∠HDC,∴∠FBM=∠MDH,在△FBM和△MDH中,,∴△FBM≌△MDH(SAS),∴FM=MH,且∠MFB=∠HMD,∵BC∥MD,∴∠APM=∠FMD,∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°,∴△FMH是等腰直角三角形.。
八年级数学下册 第五章 特殊的平行四边形 单元测试卷一.选择题(共10小题)1.正方形具有而菱形不具有的性质是( )A .对角线互相平分B .对角线相等C .对角线平分一组对角D .对角线互相垂直2.下列给出的条件中不能判定一个四边形是矩形的是( )A .一组对边平行且相等,一个角是直角B .对角线互相平分且相等C .有三个角是直角D .一组对边平行,另一组对边相等,且对角线相等3.如图,添加下列条件仍然不能使ABCD Y 成为菱形的是( )A .AB BC = B .AC BD ⊥ C .90ABC ∠=︒ D .12∠=∠4.如图,矩形ABCD 的对角线交于点O .若55BAO ∠=︒,则AOD ∠等于( )A .110︒B .115︒C .120︒D .125︒5.如图,在菱形ABCD 中,E ,F 分别是AB ,AC 的中点,若50B ∠=︒,则AFE ∠的度数为( )A .50︒B .60︒C .65︒D .70︒6.如图,矩形ABCD 的对角线交于点O ,3AB =,5AC =,则AOD ∆的周长是( )A.7B.8C.9D.107.如图,四边形ABCD为平行四边形,延长AD到点E,使DE AD=连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB BE=B.90ADB∠=︒C.BE DC⊥D.CE DE⊥8.已知:如图,M是正方形ABCD内的一点,且MC MD AD==,则AMB∠的度数为()A.120︒B.135︒C.145︒D.150︒9.如图,已知菱形ABCD的对角线AC,BD交于点O,则下列结论不一定成立的是()A.AB AD=B.AO BD⊥C.90BAD∠=︒D.CAB CAD∠=∠10.如图,矩形ABCD中,AC与BD交于点O,BE AC⊥于点E,DF平分ADC∠,交EB的延长线于点F,6BC=,3CD=,则BEBF为()A.23B.34C.25D.35二.填空题(共10小题)11.已知菱形的周长为20cm,一条对角线长为6cm,则这个菱形的面积是2cm.12.已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若5EF=,则AC=.13.如图,在矩形ABCD中,对角线AC,BD交于点O,要使矩形ABCD成为正方形,应添加的一个条件是.14.如图,菱形ABCD中,60B∠=︒,5AB=,则以AC为边长的正方形ACFE的周长是.15.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE平分BAD∠交BC于点E,若15CAE∠=︒,则BOE∠的度数等于.16.如图,菱形ABCD的对角线AC、BC相交于点O,E、F分别是AB、BC边上的中点,连接EF.若3EF=,4BD=,则菱形ABCD的周长为.17.如图,在正方形ABCD中,以A为顶点作等边三角形AEF,交BC边于点E,交DC边于点F,若AEF∆的边长为2,则图中阴影部分的面积为.18.如图,菱形ABCD 中,30ABC ∠=︒,点E 是直线BC 上的一点.已知ADE ∆的面积为6,则线段AB 的长是 .19.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点E ,且DE CE =,若3AB =,则DE = .20.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D ,下列四个结论:①EF BE CF =+;②1902BOC A ∠=︒+∠; ③点O 到ABC ∆各边的距离相等;④设OD m =,AE AF n +=,则AEF S mn ∆=.其中正确的结论是 .(填序号)三.解答题(共7小题)21.如图,过正方形ABCD 的顶点B 作直线l ,过点A ,C 作l 的垂线,垂足分别为E ,F ,若1AE =,3CF =,求AB 的长.22.如图,已知正方形ABCD中,4AB=,点E,F在对角线BD上,//AE CF.(1)求证:ABE CDF∆≅∆;(2)若2∠=∠,求DF的长.ABE BAE23.如图,已知菱形ABCD的对角线AC,BD相交于点O,过C作CE AC⊥,交AB的延长线于点E.(1)求证:四边形BECD是平行四边形;(2)若50∠的度数.∠=︒,求DABE24.如图,已知在ABC∆中,D为BC的中点,连接AD,E为AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:四边形ADCF为平行四边形.(2)当四边形ADCF为矩形时,AB与AC应满足怎样的数量关系?请说明理由.25.如图,点A,B,C,D依次在同一条直线上,点E,F分别在直线AD的两侧,已知//BE CF,=.A D∠=∠,AE DF(1)求证:四边形BFCE是平行四边形.(2)若10∠=︒,当四边形BFCE是菱形时,求AB的长.EBDEC=,60AD=,326.如图,已知正方形ABCD 的边长为12,点E 在DC 边上,点G 在BC 的延长线上,设正方形CEFG 的面积为1S ,以线段AD 和DE 为邻边的矩形的面积为2S ,且1243S S =. (1)求线段DE 的长.(2)若H 为BC 边上一点,5CH =,连接DH ,DG ,判断DHG ∆的形状.27.已知,如图,矩形ABCD 中,6AD =,7DC =,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB ,CD ,DA 上,2AH =,连接CF .(1)如图1,若2DG =,求证四边形EFGH 为正方形;(2)如图2,若4DG =,求FCG ∆的面积;(3)当DG 为何值时,FCG ∆的面积最小.参考答案一.选择题(共10小题)1.正方形具有而菱形不具有的性质是( )A . 对角线互相平分B . 对角线相等C . 对角线平分一组对角D . 对角线互相垂直【分析】根据正方形的性质以及菱形的性质即可判断 .【解答】解: 正方形和菱形都满足: 四条边都相等, 对角线平分一组对角, 对角线垂直且互相平分;菱形的对角线不一定相等, 而正方形的对角线一定相等 .故选:B .2.下列给出的条件中不能判定一个四边形是矩形的是( )A .一组对边平行且相等,一个角是直角B .对角线互相平分且相等C .有三个角是直角D .一组对边平行,另一组对边相等,且对角线相等【分析】利用矩形的判定方法即可对各选项进行判断,得到符合题意的选项.【解答】解:A 、正确.一组对边平行且相等,一个角是直角的四边形是矩形;B 、正确.对角线互相平分且相等的四边形是矩形;C 、正确.有三个角是直角的四边形是矩形;D 、错误.一组对边平行,另一组对边相等,且对角线相等,等腰梯形满足此条件,不是矩形; 故选:D .3.如图,添加下列条件仍然不能使ABCD Y 成为菱形的是( )A .AB BC = B .AC BD ⊥ C .90ABC ∠=︒ D .12∠=∠【分析】根据菱形的性质逐个进行证明,再进行判断即可.【解答】解:A 、Q 四边形ABCD 是平行四边形,AB BC =,∴平行四边形ABCD 是菱形,故本选项错误;⊥,B、Q四边形ABCD是平行四边形,AC BD∴平行四边形ABCD是菱形,故本选项错误;ABC∠=︒不能推出,平行四边形ABCD是菱形,故本选C、Q四边形ABCD是平行四边形和90项正确;D、Q四边形ABCD是平行四边形,∴,//AB CD∴∠=∠,2ADB12Q,∠=∠∴∠=∠,1ADB∴=,AB AD∴平行四边形ABCD是菱形,故本选项错误;故选:C.4.如图,矩形ABCD的对角线交于点O.若55∠等于()∠=︒,则AODBAOA.110︒B.115︒C.120︒D.125︒【分析】根据矩形的性质可得55BAO ABO∠=∠=︒,再依据三角形外角性质可知∠=∠+∠=︒+︒=︒.5555110AOD BAO ABO【解答】解:Q四边形ABCD是矩形,∴=.OA OB∴∠=∠=︒.55BAO ABO∴∠=∠+∠=︒+︒=︒.AOD BAO ABO5555110故选:A.5.如图,在菱形ABCD中,E,F分别是AB,AC的中点,若50∠的度数为(∠=︒,则AFEB)A .50︒B .60︒C .65︒D .70︒【分析】由菱形的性质和等腰三角形的性质可得65BCA BAC ∠=∠=︒,由三角形中位线定理可得//EF BC ,即可求解.【解答】解:Q 四边形ABCD 是菱形AB BC ∴=,且50B ∠=︒65BCA BAC ∴∠=∠=︒E Q ,F 分别是AB ,AC 的中点,//EF BC ∴65AFE BCA ∴∠=∠=︒故选:C .6.如图,矩形ABCD 的对角线交于点O ,3AB =,5AC =,则AOD ∆的周长是( )A .7B .8C .9D .10【分析】由矩形的性质得出OA OD =,由勾股定理求出BC ,即可求出AOD ∆的周长.【解答】解:Q 四边形ABCD 是矩形,12OA AC ∴=,12OD BD =,AC BD =,90BAD ∠=︒,5AC =, 52OA OD ∴==, 在Rt BAC ∆中,2222534BC AC AB =-=-=,4AD BC ∴==,AOD ∴∆的周长554922OA OD AD =++=++=; 故选:C .7.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =连接EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是( )A.AB BE=B.90⊥⊥D.CE DEADB∠=︒C.BE DC【分析】先证明四边形BCDE为平行四边形,再根据矩形的判定进行解答.【解答】解:Q四边形ABCD为平行四边形,//∴,AD BC=,AD BC又AD DEQ,==,∴,且DE BCDE BC//∴四边形BCED为平行四边形,=,BD AE∴⊥,DBCE=Q,DE ADA、AB BE∴Y为矩形,故本选项错误;B、Q对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;∴∠=︒,DBCE∴Y为矩形,故本选项错误;C、90EDBQ,90ADB∠=︒D、CE DE∴∠=︒,DBCE∴Y为矩形,故本选项错误.Q,90CED⊥故选:B.8.已知:如图,M是正方形ABCD内的一点,且MC MD AD∠的度数为()==,则AMBA.120︒B.135︒C.145︒D.150︒【分析】利用等边三角形和正方形的性质求得30∠ADM∠=︒,然后利用等腰三角形的性质求得MAD 的度数,从而求得BAM ABM∠=∠的度数,利用三角形的内角和求得AMB∠的度数.【解答】解:MC MD AD CDQ,===∴∆是等边三角形,MDC∴∠=∠=∠=︒,60MDC DMC MCD∠=∠=︒Q,ADC BCD90∴∠=︒,30ADM∴∠=∠=︒,75MAD AMD∴∠=︒,15BAM同理可得15ABM∠=︒,1801515150AMB∴∠=︒-︒-︒=︒,故选:D.9.如图,已知菱形ABCD的对角线AC,BD交于点O,则下列结论不一定成立的是()A.AB AD=B.AO BD⊥C.90BAD∠=︒D.CAB CAD∠=∠【分析】直接利用菱形的四条边相等、对角线平分对角、对角线互相垂直且平分进而分析即可.【解答】解:Q四边形ABCD是菱形,AB AD∴=,故选项A正确,不合题意;AO BD⊥,故选项B正确,不合题意;无法得到90BAD=︒,故选项C不正确,符合题意;CAB CAD∠=∠,故选项D正确,不合题意;故选:C.10.如图,矩形ABCD中,AC与BD交于点O,BE AC⊥于点E,DF平分ADC∠,交EB的延长线于点F,6BC=,3CD=,则BEBF为()A.23B.34C.25D.35【分析】由矩形的性质可得2COB CDO∠=∠,EBO BDF F∠=∠+∠,结合角平分线的定义可求得F BDF∠=∠,可证明BF BD=,结合矩形的性质可得AC BF=,根据三角形的面积公式得到BE,于是得到结论.【解答】证明:Q四边形ABCD为矩形,AC BD∴=,90ADC∠=︒,OA OD=,2COD ADO∴∠=∠,又BE AC⊥Q,90EOB EBO ∴∠+∠=︒,EBO BDF F ∠=∠+∠Q ,290ADO BDF F ∴∠+∠+∠=︒,又DF Q 平分ADC ∠, 1452ADO BDF ADC ∴∠+∠=∠=︒, 24590ADO BDF F ADO F ∴∠+∠+∠=︒+∠+∠=︒,45ADO F ∴∠+∠=︒,又45BDF ADO ∠+∠=︒Q ,BDF F ∴∠=∠,BF BD ∴=,AC BF ∴=,6BC =Q ,3CD =,6AD ∴=,226335BF AC ∴==+=,1122ABC S AC BE AB BC ∆==Q g g , 3635BE ⨯∴=, ∴625535BE BF ==, 故选:C .二.填空题(共10小题)11.已知菱形的周长为20cm ,一条对角线长为6cm ,则这个菱形的面积是 24 2cm .【分析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【解答】解:如图,在菱形ABCD 中,6BD =.Q 菱形的周长为20,6BD =,5AB ∴=,3BO =,22534AO∴=-=,8AC=.∴面积168242S=⨯⨯=.故答案为24.12.已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若5EF=,则AC=10.【分析】连接BD,由三角形中位线的性质可得到BD的长,然后依据矩形的性质可得到AC BD=.【解答】解:如图所示:连接BD.EQ,F分别是AB,AD的中点,5EF=,210BD EF∴==.ABCDQ为矩形,10AC BD∴==.故答案为:10.13.如图,在矩形ABCD中,对角线AC,BD交于点O,要使矩形ABCD成为正方形,应添加的一个条件是AB BC=(答案不唯一).【分析】根据正方形的判定添加条件即可.【解答】解:添加的条件可以是AB BC=.理由如下:Q四边形ABCD是矩形,AB BC=,∴四边形ABCD是正方形.故答案为:AB BC =(答案不唯一).14.如图,菱形ABCD 中,60B ∠=︒,5AB =,则以AC 为边长的正方形ACFE 的周长是 20 .【分析】根据菱形得出AB BC =,得出等边三角形ABC ,求出AC 的长度,根据正方形的性质得出5AF EF EC AC ====,求出即可.【解答】解:Q 四边形ABCD 是菱形,AB BC ∴=,60B ∠=︒Q ,ABC ∴∆是等边三角形,5AC AB ∴==,∴正方形ACEF 的周长是4520AC CE EF AF +++=⨯=,故答案是:20.15.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AE 平分BAD ∠交BC 于点E ,若15CAE ∠=︒,则BOE ∠的度数等于 75︒ .【分析】由矩形ABCD ,得到OA OB =,根据AE 平分BAD ∠,得到等边三角形OAB ,推出AB OB =,求出OAB ∠、OBC ∠的度数,根据平行线的性质和等角对等边得到OB BE =,根据三角形的内角和定理即可求出答案.【解答】解:Q 四边形ABCD 是矩形,//AD BC ∴,AC BD =,OA OC =,OB OD =,90BAD ∠=︒,OA OB ∴=,DAE AEB ∠=∠,AE Q 平分BAD ∠,45BAE DAE AEB ∴∠=∠=︒=∠,AB BE ∴=,15CAE ∠=︒Q ,451530DAC ∴∠=︒-︒=︒,60BAC ∠=︒,BAO ∴∆是等边三角形,AB OB ∴=,60ABO ∠=︒,906030OBC ∴∠=︒-︒=︒,AB OB BE ==Q , 1(18030)752BOE BEO ∴∠=∠=︒-︒=︒. 故答案为75︒.16.如图,菱形ABCD 的对角线AC 、BC 相交于点O ,E 、F 分别是AB 、BC 边上的中点,连接EF .若3EF =,4BD =,则菱形ABCD 的周长为 47 .【分析】由菱形的性质得出AB BC CD AD ===,AC BD ⊥,12OA AC =,122OB BD ==,证出EF 是ABC ∆的中位线,由三角形中位线定理得出223AC EF ==3OA =,由勾股定理求出AB ,即可求出菱形的周长.【解答】解:Q 四边形ABCD 是菱形,AB BC CD AD ∴===,AC BD ⊥,12OA AC =,122OB BD ==, 90AOB ∴∠=︒, E Q 、F 分别是AB 、BC 边上的中点,EF ∴是ABC ∆的中位线,223AC EF ∴==,3OA ∴=,2222(3)27AB OA OB ∴=++=∴菱形ABCD 的周长447AB ==;故答案为:4717.如图,在正方形ABCD 中,以A 为顶点作等边三角形AEF ,交BC 边于点E ,交DC 边于点F ,若AEF ∆的边长为2,则图中阴影部分的面积为 1 .【分析】先根据直角边和斜边相等,证出ABE ADF ∆≅∆,得到ECF ∆为等腰直角三角形,根据三角形的面积公式即可得到阴影部分面积.【解答】解:AEF ∆Q 是等边三角形,AE AF ∴=,Q 四边形ABCD 是正方形,AB AD ∴=,90B D ∠=∠=︒,Rt ABE Rt ADF(Hl)∴∆≅∆,BE DF ∴=,EC CF ∴=,又90C ∠=︒Q ,ECF ∴∆是等腰直角三角形,2cos 45222EC EF ∴=︒=⨯=, 12212ECF S S ∆∴==⨯⨯=阴影, 故答案为:1.18.如图,菱形ABCD 中,30ABC ∠=︒,点E 是直线BC 上的一点.已知ADE ∆的面积为6,则线段AB 的长是 26 .【分析】作AF BC ⊥于F ,由菱形的性质得出AB AD =,//AD BC ,由直角三角形的性质得出1122AF AB AD ==,由ADE ∆的面积162AD AF =⨯=,即2162AB =,解得:3AB =即可. 【解答】解:作AF BC ⊥于F ,如图所示:Q 四边形ABCD 是菱形,AB AD ∴=,//AD BC ,30ABC ∠=︒Q ,1122AF AB AD ∴==, ADE ∆Q 的面积162AD AF =⨯=, 即2164AB =, 解得:26AB =;故答案为:26.19.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点E ,且DE CE =,若3AB =,则DE = 1 .【分析】根据菱形的性质及等腰三角形的性质可知22BEC EDC EBC ∠=∠=∠,从而可求30EBC ∠=︒,在Rt BCE ∆中可求EC 值,由DE EC =可求DE 的长.【解答】解:Q 四边形ABCD 是菱形,3CD BC AB ∴===EDC EBC ∴∠=∠.DE CE =Q ,EDC ECD ∴∠=∠.22BEC EDC EBC ∴∠=∠=∠,在Rt BCE ∆中,90EBC BEC ∠+∠=︒,30EBC ∴∠=︒.3BC EC ∴,313EC ∴==.1DE EC ∴==;故答案为:1.20.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D ,下列四个结论:①EF BE CF =+; ②1902BOC A ∠=︒+∠; ③点O 到ABC ∆各边的距离相等;④设OD m =,AE AF n +=,则AEF S mn ∆=.其中正确的结论是 ①②③ .(填序号)【分析】由在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得②1902BOC A ∠=︒+∠正确;由平行线的性质和角平分线的定义得出BEO ∆和CFO ∆是等腰三角形得出EF BE CF =+故①正确;由角平分线的性质得出点O 到ABC ∆各边的距离相等,故③正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD m =,AE AF n +=,则12AEF S mn ∆=,故④错误. 【解答】解:Q 在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O , 12OBC ABC ∴∠=∠,12OCB ACB ∠=∠,180A ABC ACB ∠+∠+∠=︒, 1902OBC OCB A ∴∠+∠=︒-∠, 1180()902BOC OBC OCB A ∴∠=︒-∠+∠=︒+∠;故②正确; Q 在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,OBC OBE ∴∠=∠,OCB OCF ∠=∠,//EF BC Q ,OBC EOB ∴∠=∠,OCB FOC ∠=∠,EOB OBE ∴∠=∠,FOC OCF ∠=∠,BE OE ∴=,CF OF =,EF OE OF BE CF ∴=+=+,故①正确;过点O 作OM AB ⊥于M ,作ON BC ⊥于N ,连接OA ,Q 在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,ON OD OM m ∴===,11111()22222AEF AOE AOF S S S AE OM AF OD OD AE AF mn ∆∆∆∴=+=+=+=g g g ;故④错误;Q 在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,∴点O 到ABC ∆各边的距离相等,故③正确.故答案是:①②③三.解答题(共7小题)21.如图,过正方形ABCD 的顶点B 作直线l ,过点A ,C 作l 的垂线,垂足分别为E ,F ,若1AE =,3CF =,求AB 的长.【分析】先利用AAS 判定ABE BCF ∆≅∆,从而得出AE BF =,BE CF =,最后得出AB 的长.【解答】解:Q 四边形ABCD 是正方形,90CBF FBA ∴∠+∠=︒,AB BC =,CF BE ⊥Q ,90CBF BCF ∴∠+∠=︒,BCF ABE ∴∠=∠,90AEB BFC ∠=∠=︒Q ,AB BC =,()ABE BCF AAS ∴∆≅∆1AE BF ∴==,3BE CF ==,221910AB AE BE ∴=+=+=.22.如图,已知正方形ABCD 中,4AB =,点E ,F 在对角线BD 上,//AE CF .(1)求证:ABE CDF ∆≅∆;(2)若2ABE BAE ∠=∠,求DF 的长.【分析】(1)利用平行线性质和正方形的性质可得AEB CFD ∠=∠,ABE CDF ∠=∠,AB CD =,则借助AAS 可证明ABE CDF ∆≅∆;(2)过点E 作HE BE ⊥,交AB 于H 点,证明HAE HEA ∠=∠,得到AH HE =.设BE DF HE AH x ====,则2HB x =.根据4AB =,构造关于x 的方程,解方程即可.【解答】证明:(1)//AE CF Q ,AEF CFB ∴∠=∠.AEB CFD ∴∠=∠.Q 四边形ABCD 是正方形,ABE CDF ∴∠=∠,AB CD =,()ABE CDF AAS ∴∆≅∆.(2)过点E 作HE BE ⊥,交AB 于H 点,45BHE HBE ∴∠=∠=︒.2ABE BAE ∠=∠Q ,2BHE BAE ∴∠=∠.又BHE HAE AEH ∠=∠+∠Q ,HAE HEA ∴∠=∠.AH HE ∴=.设BE DF HE AH x ====,则2HB =.∴24x x +=,解得24x =.所以424DF=-.23.如图,已知菱形ABCD的对角线AC,BD相交于点O,过C作CE AC⊥,交AB的延长线于点E.(1)求证:四边形BECD是平行四边形;(2)若50∠的度数.∠=︒,求DABE【分析】(1)直接利用菱形的性质对角线互相垂直,得出//BD EC,进而得出答案;(2)利用菱形、平行四边形的性质得出50∠=∠=︒,进而利用三角形内角和定理得出答案.CEA DBA【解答】(1)证明:Q四边形ABCD是菱形,DC BE,AC BD∴⊥,//又CE ACQ,⊥∴,BD EC//∴四边形BECD是平行四边形;(2)解:Q四边形ABCD是菱形,AD AB∴=,∴∠=∠,ADB ABDQ四边形BECD是平行四边形,∴,DB CE//∴∠=∠=︒,CEA DBA50∴∠=︒,ADB50∴∠=︒-︒-︒=︒.DAB18050508024.如图,已知在ABC∆中,D为BC的中点,连接AD,E为AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:四边形ADCF为平行四边形.(2)当四边形ADCF为矩形时,AB与AC应满足怎样的数量关系?请说明理由.【分析】(1)利用AEF DEB=,所以AF DC∆≅∆得到AF DB=,根据一组对边平行且相等的四边形是平行四边形可证明四边形ADCF为平行四边形;(2)利用等腰三角形的性质以及矩形的性质得出即可.【解答】(1)证明://Q,AF BC∴∠=∠,AFE EBD∠=∠.FAE EDB∴∆≅∆,AEF DEB AAS()∴=,AF DB又BD DCQ,=∴=,AF DC∴四边形ADCF为平行四边形;(2)四边形ADCF为矩形时AB AC=;理由:Q四边形ADCF为矩形,AD BC∴⊥,∴∠=︒,90ADCQ为BC的中点,D∴=,AB AC=.∴四边形ADCF为矩形时AB AC25.如图,点A,B,C,D依次在同一条直线上,点E,F分别在直线AD的两侧,已知//BE CF,=.A D∠=∠,AE DF(1)求证:四边形BFCE是平行四边形.(2)若10∠=︒,当四边形BFCE是菱形时,求AB的长.EBDEC=,60AD=,3【分析】(1)想办法证明BE CF=即可解决问题.(2)利用全等三角形的性质证明AB CD=即可解决问题.【解答】(1)证明://BE CF Q ,EBC FCB ∴∠=∠,EBA FCD ∴∠=∠,A D ∠=∠Q ,AE DF =,()ABE DCF AAS ∴∆≅∆,BE CF ∴=,AB CD =,∴四边形BFCE 是平行四边形.(2)解:Q 四边形BFCE 是菱形,60EBD ∠=︒,CBE ∴∆是等边三角形,3BC EC ∴==,10AD =Q ,AB DC =, 17(103)22AB ∴=-=. 26.如图,已知正方形ABCD 的边长为12,点E 在DC 边上,点G 在BC 的延长线上,设正方形CEFG 的面积为1S ,以线段AD 和DE 为邻边的矩形的面积为2S ,且1243S S =. (1)求线段DE 的长.(2)若H 为BC 边上一点,5CH =,连接DH ,DG ,判断DHG ∆的形状.【分析】(1)设正方形CEFG 的边长为a ,则12DE a =-,由1243S S =.得出方程2412(12)3a a =⨯⨯-,解得:8a =,得出4DE =; (2)由勾股定理得出2213DH CH CD =+=,2213DG CD CG =+=,求出13GH CG CH =+=,得出DH GH =即可.【解答】解:(1)设正方形CEFG 的边长为a ,Q 正方形ABCD 的边长为12,12DE a ∴=-, 1243S S =Q .2412(12)3a a ∴=⨯⨯-, 解得:8a =,或24a =-(舍去),1284DE ∴=-=;(2)DHG ∆是等腰三角形;理由如下:Q 四边形ABCD 和四边形CEFG 是正方形,90DCH DCG ∴∠=∠=︒,12CD =,8CG =,222251213DH CH CD ∴=+=+=,2222128413DG CD CG =+=+=,5CH =Q ,13GH CG CH ∴=+=,DH GH ∴=,DHG ∴∆是等腰三角形.27.已知,如图,矩形ABCD 中,6AD =,7DC =,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB ,CD ,DA 上,2AH =,连接CF .(1)如图1,若2DG =,求证四边形EFGH 为正方形;(2)如图2,若4DG =,求FCG ∆的面积;(3)当DG 为何值时,FCG ∆的面积最小.【分析】(1)由于四边形ABCD 为矩形,四边形HEFG 为菱形,那么90D A ∠=∠=︒,HG HE =,而2AH DG ==,易证AHE DGH ∆≅∆,从而有DHG HEA ∠=∠,等量代换可得90AHE DHG ∠+∠=︒,易证四边形HEFG 为正方形;(2)过F 作FM DC ⊥,交DC 延长线于M ,连接GE ,由于//AB CD ,可得AEG MGE ∠=∠,同理有HEG FGE ∠=∠,利用等式性质有AEH MGF ∠=∠,再结合90A M ∠=∠=︒,HE FG =,可证AHE MFG ∆≅∆,从而有2FM HA ==(即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2),进而可求三角形面积;(3)先设DG x =,由第(2)小题得,7FCG S x ∆=-,在AHE ∆中,7AE AB =…,利用勾股定理可得253HE …,在Rt DHG ∆中,再利用勾股定理可得21653x +…,进而可求37x …,从而可得当37x =时,GCF ∆的面积最小.【解答】解:(1)Q 四边形ABCD 为矩形,四边形HEFG 为菱形, 90D A ∴∠=∠=︒,HG HE =,又2AH DG ==, Rt AHE Rt DGH(HL)∴∆≅∆,DHG HEA ∴∠=∠,90AHE HEA ∠+∠=︒Q ,90AHE DHG ∴∠+∠=︒,90EHG ∴∠=︒,∴四边形HEFG 为正方形;(2)过F 作FM DC ⊥,交DC 延长线于M ,连接GE , //AB CD Q ,AEG MGE ∴∠=∠,//HE GF Q ,HEG FGE ∴∠=∠,AEH MGF ∴∠=∠,在AHE ∆和MFG ∆中,90A M ∠=∠=︒,HE FG =, AHE MFG ∴∆≅∆,2FM HA ∴==,即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2, 因此112(76)122S FCG FM GC ∆=⨯⨯=⨯⨯-=; (3)设DG x =,则由第(2)小题得,7FCG S x ∆=-,在AHE ∆中,7AE AB =…, 253HE ∴…,21653x ∴+…,x ∴…,FCG S ∆∴的最小值为7DG =,∴当DG 时,FCG ∆的面积最小为(7-.。
第五章特殊平行四边形单元检测卷
姓名:__________ 班级:__________
一、选择题(共12题;共36分)
1.一个正方形的边长为3,则它的对角线长为()
A. 3
B. 3
C.
D. 2
2.如图,在矩形ABCD中,AB=6,BC=8,AC与BD相交于O,E为DC的一点,过点O作OF⊥OE交BC于F.记d=,则关于d的正确的结论是()
A. d=5
B. d<5
C. d≤5
D. d≥5
3.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=()
A. 30°
B. 45°
C. 22.5°
D. 135°
4.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()
A. 14
B. 15
C. 16
D. 17
5.如图,正方形的边长为4cm,则图中阴影部分的面积为()cm2.
A. 8
B. 16
C. 4
D. 无法确定
6.已知:如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则菱形ABCD的周长是()
A. 20
B. 16
C. 12
D. 10
7.矩形边长为10cm和15cm,其中一内角平分线把长边分为两部分,这两部分是()
A. 6cm和9cm
B. 7cm和8 cm
C. 5cm和10cm
D. 4cm和11cm
8.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的是()
A. AO=CO,BO=DO
B. AO=CO=BO=DO
C. AO=CO,BO=DO,AC⊥BD
D. AO=BO=CO=DO,AC⊥BD
9.在菱形ABCD中,若AB=2,则菱形的周长为()
A. 4
B. 6
C. 8
D. 10
10.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()
A. 4﹣2
B. 3﹣4
C. 1
D.
11.如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()
A. 35°
B. 45°
C. 55°
D. 60°
12.已知一个矩形的两条对角线夹角为60°,一条对角线长为10cm,则该矩形的周长为()
A. 10(1+ )cm
B. 20 cm
C. 20(1+ )cm
D. 20cm
二、填空题(共10题;共30分)
13.如图,边长为8的正方形ABCD中,M是BC上的一点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则GH=________ .
14.已知:在正方形ABCD中,对角线AC长为10,点A、C到直线l的距离均为3,则点B到直线l的距离为________.
15.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为________
16.过Rt△ABC的斜边AB上一点D,作DE⊥AC于点E,DF⊥BC于点F,则∠FDE=________.
17.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC+BD=16,则该矩形的面积为________
18.________的矩形是正方形,________的菱形是正方形.
19.在平面直角坐标系xOy中,记直线y=x+1为l.点A1是直线l与y轴的交点,以A1O为边作正方形A1OC1B1,使点C1落在在x轴正半轴上,作射线C1B1交直线l于点A2,以A2C1为边作正方形
A2C1C2B2,使点C2落在在x轴正半轴上,依次作下去,得到如图所示的图形.则点B4的坐标是
________ ,点B n的坐标是________ .
20.如图,在长方形ABCD中,AB:BC=3:5,以点B为圆心,BC的长为半径画弧,交边AD于点E.若AE•DE=16,则长方形ABCD的面积为________ .
21.已知矩形ABCD的两条对角线AC、BD交于点O,若AC+BD=8cm,∠AOD=120°.则AB的长为
________cm.
22. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE= ________.
三、解答题(共4题;共34分)
23.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD 的面积是多少?
24.在矩形ABCD中,已知AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,求CE的长.
25.已知:如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
求证:四边形BCFE是菱形
26.已知矩形BEDG和矩形BNDQ中,BE=BN ,DE=DN .
(1)将两个矩形叠合成如上图,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.
参考答案
一、选择题
B D
C C A A C
D C A B A
二、填空题
13.10 14.2或4或8 15.60°16.90°
17.16 18.有一组邻边相等;有一个角为直角
19.(15,8);(2n﹣1,2n﹣1)20.60 21.2 22.
三、解答题
23.【解答】∵四边形为矩形,
∴OB=OD=OA=OC,
在△EBO与△FDO中,∠EOB=∠DOF,OB=OD,∠EBO=∠FDO,△EBO≌△FDO,∴阴影部分的面积=S△AEO+S△EBO=S△AOB,
∵△AOB与△ABC同底且△AOB的高是△ABC高的,
∴S△AOB=S△OBC=S
.
矩形ABCD
24.解:∵四边形ABCD是矩形,
∴AD=BC=4,DC=AB=2,∠D=90°,
∵OE垂直平分AC,
∴EC=AE,
设CE=x,则AE=x,DE=4﹣x,
在△DEC中,由勾股定理得:DE2+DC2=EC2,
即(4﹣x)2+22=x2,
解得:x=,
∴CE的长是.
25.解:∵BE=2DE,EF=BE,
∴EF=2DE.
∵D、E分别是AB、AC的中点,
∴BC=2DE且DE∥BC.
∴EF=BC.
又EF∥BC,
∴四边形BCFE是平行四边形.
又EF=BE,
∴四边形BCFE是菱形.
26.(1)解答:证明:作AR⊥BC于R ,AS⊥CD于S ,由题意知:AD∥BC ,AB∥CD ,∴四边形ABCD是平行四边形,∵矩形BEDG和矩形BNDQ中,BE=BN ,DE=DN ,∴AR=AS ,
∵AR•BC=AS•CD ,∴BC=CD ,∴平行四边形ABCD是菱形.
(2)解答:解:∵菱形ABCD的周长为20,
∴AD=AB=BC=CD=5,
∵BE=3,
∴AE=4,
∴DE=5+4=9,
∴矩形BEDG的面积为:3×9=27.。