电气化铁道供电1
- 格式:docx
- 大小:230.91 KB
- 文档页数:12
黑龙江交通职业技术学院毕业设计(论文)题目电气化铁路scott接线变压器牵引供电方式设计专业班级姓名学号2017年月日摘要随着我国铁路跨越式发展战略的逐步实施,我国铁路已逐步向高速客运专线的方向发展,电气化铁道接触网作为整个电力供电系统的重要组成部分,其牵引负荷的供电要求相以前的常规铁路已发生较大变化,对接触网系统的供电质量要求也越来越高。
牵引供电系统的供电质量好与坏?弓网是否有良好的受流质量?这与高速铁路供电系统方式有着密不可分关系,因为供电方式的不同将直接影响接触网的电压、电流等参数,最终影响受流质量。
目前,铁道部加快了重载高速电气化铁路的建设。
重载高速电气化铁路的重要特点是牵引负荷较以往电气化铁路有很大幅度的提高,如大秦线2亿t扩能改造工程,单列车牵引质量由1万t增加到2万t,牵引功率也由原来的12800kW增加至25600kW;高速客运专线速度为350km/h时,列车牵引功率可达到22000~25000kW,是普通速度客运机车功率的4~5倍。
如此大的负荷对供电系统的功率传输能力提出了新的要求。
因此,对高速铁路接触网供电方式研究是十分关键的。
关键词:变压器,斯科特,供电目录第1章绪论 (1)1.1 选题目的和意义 (1)1.2 国内外研究现状 (1)1.3 牵引变压器 (2)1.4 本文主要内容 (2)第2章斯科特变压器 (4)2.1 AT供电方式 (4)2.2 斯科特变压器特点 (4)2.3 斯科特变压器供电方式 (6)2.4 高压侧主接线 (7)2.5 馈线侧主接线设计 (8)第3章斯科特计算 (10)3.1 变压器计算容量 (10)3.2 变压器校核容量 (10)3.3 短路计算 (11)3.3.1 短路点的选取 (11)3.3 备用方式选择 (11)3.4 绘制电气主接线图 (12)第4章我国采用斯科特变压器的线路 (14)4.1 哈大铁路客运专线 (14)4.2 京沪高速铁路 (14)4.3 京沈客运专线 (15)第5章结论 (16)参考文献 (17)第1章绪论1.1 选题目的和意义我国自1961年8月15日建成开通宝鸡至凤州91km第一段山区电气化铁路、实现电气化铁路零的突破以来,到2005年末,电气化开通营业里程已突破2万km。
电气化铁路原理电气化铁道牵引供电装置,又称为牵引供电系统,其系统本身没有发电设备,而是从电力系统取得电能。
目前我国一般由110kV以上的高压电力系统向牵引变电所供电。
目前牵引供电系统的供电方式有直接供电方式、BT供电方式、AT供电方式、同轴电缆和直供加回流线供电方式四种,京沪、沪杭、浙赣都是采用的直供加回流线方式。
一、直接供电方式直接供电方式(T—R供电)是指牵引变电所通过接触网直接向电力机车供电,及回流经钢轨及大地直接返回牵引变电所的供电方式。
这种供电方式的电路构成及结构简单,设备少,施工及运营维修都较方便,因此造价也低。
但由于接触网在空中产生的强大磁场得不到平衡,对邻近的广播、通信干扰较大,所以一般不采用。
我国现在多采用加回流线的直接供电方式。
二、BT供电方式所谓BT供电方式就是在牵引供电系统中加装吸流变压器(约3~4km安装一台)和回流线的供电方式。
这种供电方式由于在接触网同高度的外侧增设了一条回流线,回流线上的电流与接触网上的电流方向相反,这样大大减轻了接触网对邻近通信线路的干扰。
BT供电的电路是由牵引变电所、接触悬挂、回流线、轨道以及吸上线等组成。
由图可知,牵引变电所作为电源向接触网供电;电力机车(EL)运行于接触网与轨道之间;吸流变压器的原边串接在接触网中,副边串接在回流线中。
吸流变压器是变比为1:1的特殊变压器。
它使流过原、副边线圈的电流相等,即接触网上的电流和回流线上的电流相等。
因此可以说是吸流变压器把经钢轨、大地回路返回变电所的电流吸引到回流线上,经回流线返回牵引变电所。
这样,回流线上的电流与接触网上的电流大小基本相等,方向却相反,故能抵消接触网产生的电磁场,从而起到防干扰作用。
以上是从理论上分析的理想情况,但实际上由于吸流变压器线圈中总需要励磁电流,所以经回流线的电流总小于接触网上的电流,因此不能完全抵消接触网对通信线路的电磁感应影响。
另外,当机车位于吸流变压器附近时回流还是从轨道中流过一段距离,至吸上线处才流向回流线,则该段回流线上的电流会小于接触网上的电流,这种情况称为“半段效应”。
电气化铁道供电系统新技术的发展电气化铁道供电系统是现代铁路运输中至关重要的一环,它保障了列车的正常运行,成为现代化铁路运输的基础设施之一。
随着科技的不断进步和社会的发展,电气化铁道供电系统也在不断进行着新技术的研发和应用。
本文将围绕电气化铁道供电系统新技术的发展进行探讨,并分析其对铁路运输的影响和意义。
一、传统电气化铁道供电系统存在的问题传统的电气化铁道供电系统多采用单相交流供电的方式,存在着供电不稳定、能源浪费、运行成本高等问题。
一方面,由于单相交流供电的特性,当列车在运行过程中通过区间线路时,供电系统无法实现完全的隔离,容易出现电流波动等问题,影响列车的运行安全性;传统供电系统在能源利用方面存在不少问题,能源利用率低,存在大量的能源浪费现象;传统供电系统的运行成本也比较高,维护、管理费用居高不下。
二、新技术的应用为了解决传统电气化铁道供电系统存在的问题,国内外的研究人员和企业纷纷开展了新技术的研发和应用,取得了一系列的科研成果,并在实际的工程项目中进行了应用。
具体而言,新技术主要包括以下几个方面:1. 高压直流供电技术高压直流供电技术被认为是未来电气化铁道供电系统的发展趋势之一。
相对于传统的交流供电系统,高压直流供电系统具有输电损耗小、供电稳定等优点。
近年来,中国正大力发展高铁路网,为了满足其对电气化技术的需求,高压直流供电技术已经在诸多高铁项目中得到了广泛的应用,是国内外铁道领域的一个热门研究课题。
2. 智能化监测技术随着信息技术的不断进步,智能化监测技术在电气化铁道供电系统中的应用越来越广泛。
通过网络传感器等技术手段,可以实时监测供电系统的运行状态和故障情况,使得维护人员可以及时发现并处理问题,提高了供电系统的运行效率和安全性。
3. 新型供电设备除了高压直流供电技术和智能化监测技术外,新型的供电设备也在电气化铁道供电系统中得到了应用,如柔性直流输电技术、换流器技术等,这些新型设备不仅能够提高供电系统的稳定性和能源利用率,还能降低系统的运行成本。
电气化铁道自耦变压器(AT)供电方式简介前言在电气化铁路中,电能的传输和变换至关重要。
自耦变压器(AT)的供电方式是铁路电气化中一个重要的技术应用,接下来我们将简单介绍该供电方式的相关内容。
自耦变压器(AT)供电方式的基本原理在电气化铁路供电系统中,自耦变压器(AT)的电路原理是由交流电源频率的高压电流通过自耦变压器(AT)降压后,再通过断路器、刀闸等开关进行控制和保护,最后通过铁路电网向电气化铁路传输能量。
自耦变压器(AT)供电方式的特点1.供电范围广:自耦变压器(AT)的供电范围广,可以为电气化铁路的各类设备提供稳定而高效的电能。
2.储能能力强:自耦变压器(AT)具有较强的储能能力,可根据铁路电气化设备的需求进行适配。
3.维修简便:自耦变压器(AT)的内部结构较为简单,维护和维修较为便捷。
4.安全稳定:自耦变压器(AT)供电方式可通过断路器等开关进行保护和控制,能够保证电气化铁路运行的安全稳定。
自耦变压器(AT)供电方式的应用领域自耦变压器(AT)供电方式主要应用于电气化铁路设备的供电和能量传输方面,如轨道电缆和牵引变流器等。
自耦变压器(AT)供电方式的优势相比传统的供电方式,自耦变压器(AT)供电方式具有以下几个方面的优势:1.成本更低:相比于传统的供电方式,自耦变压器(AT)供电方式的成本更低,能够为铁路建设的节约带来一定的经济效益。
2.设备效率更高:自耦变压器(AT)供电方式采用了高效的能量传输方式,能够为电气化铁路设备的使用效率带来提升。
3.更为稳定可靠:自耦变压器(AT)供电方式通过断路器等开关控制,能够为电气化铁路的安全稳定运行提供保障。
总结在电气化铁路中,自耦变压器(AT)供电方式是一种应用广泛且具有良好效果的能量传输技术。
通过了解自耦变压器(AT)供电方式的基本原理、特点、应用领域以及优势,我们可以更好地掌握这一技术,为电气化铁路的建设和运行提供更加稳定可靠的保障。