膜处理技术课件
- 格式:ppt
- 大小:5.02 MB
- 文档页数:16
给水新技术—膜处理随着饮用水水源污染的不断加剧和饮用水水质标准的提高,给水厂常规处理工艺(混凝/沉淀/过滤/消毒)在以微污染水源作为处理原水时,很难保证出厂水水质达标。
为保证出厂水水质,目前给水厂多采用增加预处理工艺或深度处理工艺以及强化常规处理工艺的方法,预处理主要包括生物预处理、粉末活性炭预吸附以及化学预氧化,而深度处理主要有臭氧-活性炭吸附过滤和膜滤等。
常规处理工艺的主要去除指标是浊度和细菌,其他水质指标包括色度、嗅味、氨氮、铁、锰以及天然有机物和氯消毒副产物前驱物等仅靠常规处理工艺,它们的去除效果都不是很理想。
生物预处理对氨氮和部分有机物有很显著的去除效果,但是其对总的有机物去除率并不高。
化学预氧化按氧化剂不同,分为氯预氧化、臭氧预氧化以及高锰酸钾预氧化等,预氧化在氧化掉一些大分子有机物的同时,也会氧化一些低价的金属离子。
预氧化适应于轻微污染水源水,对于水源污染稍重的水源,受制于投加量(预氧化剂投加量不宜过大,否则会有副产物生成),预氧化效果不大。
投加粉末活性炭对于原水的色度、嗅味有很好的去除作用,另外其对部分小分子有机物还有吸附去除作用,但是由于粉末活性炭在水处理工序中的停留时间受水厂各自情况的限制,并且其对氨氮、金属离子以及大分子有机物去除效果不好,所以粉末活性炭单独使用情况不多。
臭氧-生物活性炭技术作为一种深度处理工艺,由于臭氧氧化、活性炭吸附以及生物降解作用,其对各种有机物、色度以及嗅味有很好的去除效果,但是生产运行过程中,活性炭滤池存在微生物泄漏的风险,另外,如果原水中溴离子浓度高,臭氧化过程中会有溴酸盐生成,造成水质进一步下降。
膜技术是20世纪60年代发展起来的水处理关键技术之一,作为新兴的给水深度处理工艺,其有以下基本性能:①它是一种物理过滤作用,不需要加注药剂;②它是一种绝对的过滤作用;③它不产生副产品;④它运行的驱动力是压力,容易实现自动控制,且其弥补了臭氧-生物活性炭技术的缺点,不存在微生物泄漏的问题。
膜处理技术简介膜处理技术指的是利用膜作为选择性过滤介质来实现分离、浓缩和纯化等目的的一种技术。
膜处理技术被广泛应用于水处理、食品加工、生物医药、化工等领域。
它具有高效、节能、环保等优势,正在成为一种重要的分离技术。
膜处理技术的分类根据膜的类型和使用方式的不同,膜处理技术可以分为以下几类:1. 微滤膜微滤膜是一种粗滤膜,其孔径通常在0.1-10微米之间。
微滤膜能够有效地去除悬浮物、细菌和大分子有机物等,广泛应用于饮用水处理、废水处理和食品加工等领域。
2. 超滤膜超滤膜的孔径介于纳滤膜和微滤膜之间,通常在0.01-0.1微米之间。
超滤膜可以去除细菌、病毒、胶体颗粒和高分子有机物等,被广泛应用于饮用水净化、工业废水处理和生物制药等领域。
3. 纳滤膜纳滤膜的孔径介于超滤膜和反渗透膜之间,通常在1-100纳米之间。
纳滤膜可以去除溶解性盐类、小分子有机物和胶体颗粒等,被广泛应用于饮用水净化、饮料加工和医药制造等领域。
4. 反渗透膜反渗透膜的孔径范围在0.0001-0.001微米之间,是一种最细微的膜。
反渗透膜可以去除溶解性盐类、有机物、重金属和微生物等,被广泛应用于海水淡化、饮用水净化、电子工业和生物医药等领域。
膜处理技术的应用1. 水处理膜处理技术在水处理中起着重要作用。
通过膜处理技术,可以高效地去除水中的悬浮物、细菌、病毒、溶解性盐类和有机物,从而得到高质量的饮用水和工业用水。
此外,膜处理技术还可以用于海水淡化、污水处理和水回用等领域。
2. 食品加工膜处理技术在食品加工中被广泛应用。
例如,在果汁加工过程中,可以使用膜处理技术去除果汁中的固体颗粒和悬浮物,从而得到清澈的果汁。
此外,膜处理技术还可以用于乳制品加工、酿酒等领域。
3. 生物医药膜处理技术在生物医药领域有着重要应用。
例如,在药物制剂过程中,可以使用膜处理技术去除杂质、浓缩药液和分离纯化目标产物。
此外,膜处理技术还可以用于生物反应器的分离和纯化等领域。
膜处理技术
2019.10.15
膜处理法是利用特殊膜的悬着透过性,对水或者其他中的某些微粒或离子性物质进行处理和浓缩的方法。
膜处理法主要有电渗析、扩散渗析、反渗透(RO)、超滤(UF)、微滤(MF)、纳滤等(NF)。
膜是膜处理法的关键。
现在市场上主要用的就是聚偏氟乙烯(PVDF)膜和聚乙烯乙二醇(PEG)膜,具有良好的抗油、耐腐蚀性。
表面光滑,容易清洗,广泛用于乳化油污水处理。
优点是处理效率高,操作简单,且在处理过程中无需投加任何药剂,,但膜需要定期清洗更换。
膜处理,一般指膜分离技术处理,而根据生物膜对物质选择性通透的原理所设计的一种对包含不同组分的混合样品进行分离的方法。
分离中使用的膜是根据需要设计合成的高分子聚合物,分离的混合样品可以是液体或气体。
另外,膜是具有选择性分离功能的材料。
利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。
它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。
膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微
滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要还只有微滤级别的膜,主要是陶瓷膜和金属膜。
有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。
以上由莱特莱德小编整理。
膜处理技术膜处理技术一直以来都扮演着重要的角色,应用广泛且具有巨大的潜力。
它可以用于水处理、气体分离、固体分离等各个领域,为解决许多环境和工业问题提供了有效的解决方案。
在本文中,我们将探讨膜处理技术的原理、应用以及发展趋势。
膜处理技术的原理是基于半透膜的选择性分离性质。
膜是由聚合物、陶瓷或金属制成的一个薄片,具有特殊的孔隙结构。
通过这些微孔或孔隙,膜可以选择性地过滤某些溶质,使其分离出来,而其他溶质则被阻挡在膜的表面上。
这种分离机制可以根据溶质的大小、电荷、溶解度等特性进行调控。
膜处理技术在水处理方面具有广泛的应用。
例如,逆渗透膜可以用于海水淡化,将海水中的盐分和杂质去除,得到淡水。
此外,超滤膜可以用于水中微生物、悬浮物等有害物质的去除,提供安全可靠的饮用水。
膜处理技术还可以应用于废水处理,通过选择性分离,将废水中的污染物分离出来,达到净化水质的目的。
膜处理技术在气体分离领域也有着广泛的应用。
例如,通过气体渗透膜可以实现二氧化碳的分离和回收,减少温室气体的排放。
此外,膜处理技术还可以用于气体混合物的分离,如空气中的氧气和氮气的分离。
除了水处理和气体分离,膜处理技术还可以应用于固体分离。
例如,通过微滤膜可以实现颗粒物质、胶体颗粒等的分离。
这在食品加工、化工工艺等领域具有重要的意义。
膜处理技术虽然在许多领域都具有广泛的应用,但仍面临一些挑战和限制。
例如,膜的稳定性和耐高温性需要进一步提高,以应对极端环境条件。
此外,膜的选择性和通量也需要进行优化,以提高膜处理过程的效率和经济性。
为了克服这些挑战,膜处理技术的发展趋势是多方面的。
一方面,新型材料的开发将推动膜性能的改善。
例如,纳米材料、多孔材料等的引入可以增强膜的选择性和通量。
另一方面,对膜结构和工艺的研究也具有重要意义。
通过优化孔径分布、表面修饰等手段,可以实现更高效的分离过程。
此外,膜模块的设计和优化也是膜处理技术发展的重要方向。
通过改进膜模块的流体动力学特性、减小压力损失等,可以进一步提高膜处理过程的性能。