2020-2021佛山市高中必修三数学上期末第一次模拟试卷带答案
- 格式:doc
- 大小:1.41 MB
- 文档页数:21
浙教版2020-2021学年度小学三年级数学上册期末模拟溜试题1 (附答案) 一、选择题1. 一万里有而()个2000. 2.0乘( )都得0.A.任何数B.任何不是。
的数)平方厘米.二、填空题7 .判断大小(填)8 .在除法里,0作除数无意义.9 .已经卖出了 24件,一共卖了多少钱?根据竖式在括号里填数.4件卖了 元.20件卖了 元.24件卖了 元. 10 .数一数下而每个图形中各有几个角〈〉 有()个角 [」有{)个角 / \有()个角11 . 360里而有几个8,和360是8的几倍意义和结果都相同.A. 3B. 4C.3. 与108X2不相等的算式是()o A. 108+108 B. 2X108 C. 108+24. A. 75 B. 750 C. 75005. 下列式子中, 积中间有零的是( )A. 105x4B. 103x7C. 701x2D. 250x36. 礼堂里每排22个座位,一共有18排, 350名学生来听课,够坐吗?() A. 够 B.不够(1) 2分30秒 200 秒 64x46 38x83(2) 900平方厘米 10平方分米750天 2年. J /l-1 4 8 x2 4 - --- . 一12.在横线里填上500克5千克4吨3900千克6000g 6t25x4 24x5 13x4 50 350+7 100^2.13. 415+9的商是位数.14. 64x4积在和之间,最接近.15. 12的3倍是(), ()的5倍是65.三、计算题16.估算.2.33+17.69+19.98+5.34+4.5- 65.2-8=17.列竖式计算,带*的要验算.84X= *94-r6= *65+5=18.用竖式计算(画“△”的要验算)642^6= 963+8= △ 363+5=19.估算298x7= 786079= 692*52= 212*89 = 482x29^ 6202上20.估算① 31x29= ②238+6=③209:3之@19x25= ⑤ 89x99 之21.估算:78x32之5卜29二4409之378+5=22.估算.399x6= 6300-7卜372+97= 1999 - 1001之23.直接写得数。
人教版2020-2021学年度上学期期末考试数学试卷(全册)一、选择题(本大题共10小题,共30.0分)1.下列关于事件发生可能性的表述,正确的是( )A. 事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B. 体育彩票的中奖率为10%,则买100张彩票必有10张中奖C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D. 掷两枚硬币,朝上的一面是一正面一反面的概率为 132.下列四个银行标志中,既是轴对称图形又是中心对称图形的是( ). A. B. C. D.3.关于 x 的一元二次方程 x 2−5x +2p =0 的一个根为 1 ,则另一根为( ).A. -6B. 2C. 4D. 14.下列关于二次函数 y =2x 2+3 ,下列说法正确的是( ).A. 它的开口方向向下B. 它的顶点坐标是 (2,3)C. 当 x <−1 时, y 随 x 的增大而增大D. 当 x =0 时, y 有最小值是35.如图,AB 为⊙O 的直径,点D 是弧AC 的中点,过点D 作DE ⊥AB 于点E ,延长DE 交⊙OO 于点F ,若AC = 12,AE = 3,则⊙O 的直径长为( )A. 10B. 13C. 15D. 166.某校食堂每天中午为学生提供A 、 B 两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为( )A. 12B. 13C. 14D. 237.如图,某幢建筑物从2.25米高的窗口A 用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面3米,则水流下落点B 离墙的距离OB 是( )A. 2.5米B. 3米C. 3.5米D. 4米8.小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编了苏轼诗词《念奴娇·哧壁怀古》:“大江东去浪淘尽,千古风流人物。
而立之年督东吴,早逝英年两位数。
章末检测(三) 圆锥曲线的方程A 卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =2x 2的焦点坐标是( ) A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫12,0 C.⎝⎛⎭⎫0,18 D.⎝⎛⎭⎫18,0解析:选C 抛物线的标准方程为x 2=12y ,焦点在y 轴上,∴焦点坐标为⎝⎛⎭⎫0,18. 2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线互相垂直,则该双曲线的离心率是( )A .2 B. 3 C. 2D.32解析:选C 由题可知y =b a x 与y =-b a x 互相垂直,可得-b a ·ba=-1,则a =b .由离心率的计算公式,可得e 2=c2a 2=a 2+b 2a2=2,e = 2.3.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为B .若|BF 2|=|F 1F 2|=2,则该椭圆的方程为( )A.x 24+y 23=1 B.x 23+y 2=1 C.x 22+y 2=1 D.x 24+y 2=1 解析:选A ∵|BF 2|=|F 1F 2|=2,∴a =2c =2, ∴a =2,c =1,∴b = 3.∴椭圆的方程为x 24+y 23=1.4.设P 是双曲线x 2a 2-y 29=1(a >0)上一点,双曲线的一条渐近线方程为3x -2y =0,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|=( )A .1或5B .6C .7D .8解析:选C 双曲线x 2a 2-y 29=1的一条渐近线方程为3x -2y =0,故a =2.又P 是双曲线上一点,故||PF 1|-|PF 2||=4,而|PF 1|=3,则|PF 2|=7.5.已知抛物线y 2=2px (p >0),过点C (-4,0)作抛物线的两条切线CA ,CB ,A ,B 为切点,若直线AB 经过抛物线y 2=2px 的焦点,△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( )A .y 2=4xB .y 2=-4xC .y 2=8xD .y 2=-8x解析:选D 由抛物线的对称性知A ⎝⎛⎭⎫p 2,p ,B ⎝⎛⎭⎫p 2,-p ,则S △CAB =12⎝⎛⎭⎫p2+4×2p =24,解得p =4,直线AB 的方程为x =2,所以所求抛物线的标准方程为y 2=-8x .6.探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯口的直径为60 cm ,灯深40 cm ,则抛物线的标准方程可能是( )A .y 2=254xB .y 2=454x C .x 2=-452yD .x 2=-454y 解析:选C 如果设抛物线的方程为y 2=2px (p >0),则抛物线过点(40,30),从而有302=2p ×40,即2p =452,所以所求抛物线方程为y 2=452x .虽然选项中没有y 2=452x ,但C 中的2p =452符合题意.7.我们把由半椭圆x 2a 2+y 2b 2=1(x ≥0)与半椭圆y 2b 2+x 2c 2=1(x <0)合成的曲线称作“果圆”(其中a 2=b 2+c 2,a >b >c >0),如图所示,其中点F 0,F 1,F 2是相应椭圆的焦点.若△F 0F 1F 2是边长为1的等边三角形,则a ,b 的值分别为( )A.72,1 B.3,1 C .5,3D .5,4解析:选A ∵|OF 2|=b 2-c 2=12,|OF 0|=c =3|OF 2|=32,∴b =1,∴a 2=b 2+c 2=1+34=74,得a =72. 8.设双曲线C :x 2a2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点,则双曲线C的离心率e 的取值范围为( )A.⎝⎛⎭⎫62,2 B .(2,+∞) C.⎝⎛⎭⎫62,+∞ D.⎝⎛⎭⎫62,2∪(2,+∞)解析:选D 由⎩⎪⎨⎪⎧x 2a 2-y 2=1,x +y =1消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.由于直线与双曲线相交于两个不同的点,则1-a 2≠0⇒a 2≠1,且此时Δ=4a 2(2-a 2)>0⇒a 2<2,所以a 2∈(0,1)∪(1,2).另一方面e =1a 2+1,则a 2=1e 2-1,从而e ∈⎝⎛⎭⎫62,2∪(2,+∞).二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.θ是任意实数,则方程x 2+y 2sin θ=4的曲线可能是( ) A .椭圆 B .双曲线 C .抛物线D .圆解析:选ABD 由于θ∈R ,对sin θ的值举例代入判断.sin θ可以等于1,这时曲线表示圆,sin θ可以小于0,这时曲线表示双曲线,sin θ可以大于0且小于1,这时曲线表示椭圆.10.已知椭圆的长轴长为10,其焦点到中心的距离为4,则这个椭圆的标准方程为( ) A.x 2100+y 284=1 B.x 225+y 29=1 C.x 284+y 2100=1 D.y 225+x 29=1 解析:选BD 因为椭圆的长轴长为10,其焦点到中心的距离为4,所以⎩⎪⎨⎪⎧2a =10,c =4,解得a =5,b 2=25-16=9.所以当椭圆焦点在x 轴时,椭圆方程为x 225+y 29=1;当椭圆焦点在y轴时,椭圆方程为x 29+y 225=1.11.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则( )A .|AB |=12B .OA ―→·OB ―→=-2716C .y A y B =-3D .x A x B =3解析:选AB 抛物线C :y 2=3x 的焦点为F ⎝⎛⎭⎫34,0,所以AB 所在的直线方程为y =33⎝⎛⎭⎫x -34.将y =33⎝⎛⎭⎫x -34代入y 2=3x , 整理得x 2-212x +916=0.设A (x A ,y A ),B (x B ,y B ),由根与系数的关系得x A +x B =212,x A x B =916,故D 错误,y 2Ay 2B =3x A ·3x B =9x A x B =8116, ∴y 1y 2=-94,故C 错误.OA ―→·OB ―→=x A x B +y A y B =916-94=-2716,故B 正确.由抛物线的定义可得|AB |=x A +x B +p =212+32=12,故选A 、B.12.设圆锥曲线Γ的两个焦点分别为F 1,F 2.若曲线Γ上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于( )A.12 B .2 C.32D.23解析:选AC 设圆锥曲线的离心率为e ,由|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,知①若圆锥曲线为椭圆,则由椭圆的定义,得e =|F 1F 2||PF 1|+|PF 2|=34+2=12;②若圆锥曲线为双曲线,则由双曲线的定义,得e =|F 1F 2||PF 1|-|PF 2|=34-2=32.综上,所求的离心率为12或32.故选A 、C.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.以双曲线x 24-y 212=1的焦点为顶点,顶点为焦点的椭圆方程为________.解析:双曲线焦点(±4,0),顶点(±2,0), 故椭圆的焦点为(±2,0),顶点(±4,0).答案:x 216+y 212=114.已知二次曲线x 24+y 2m =1,当m ∈[-2,-1]时,该曲线的离心率的取值范围是________.解析:∵m ∈[-2,-1],∴曲线方程化为x 24-y 2-m =1,曲线为双曲线,∴e =4-m 2.∵m ∈[-2,-1],∴52≤e ≤62. 答案:⎣⎡⎦⎤52,62 15.抛物线y 2=8x的焦点到双曲线x 216-y 29=1渐近线的距离为________,双曲线右焦点到抛物线准线的距离为________.解析:抛物线y 2=8x的焦点F (2,0),双曲线x 216-y 29=1的一条渐近线方程为y =34x ,即3x -4y =0,则点F (2,0)到渐近线3x -4y =0的距离为|3×2-4×0|32+42=65.双曲线右焦点的坐标为(5,0),抛物线的准线方程为x =-2,所以双曲线右焦点到抛物线准线的距离为7.答案:65716.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:由椭圆的定义知|PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|,|PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于点P (图略),此时|PM |-|PF 2|取最大值|MF 2|,故|PM |+|PF 1|的最大值为10+|MF 2|=10+(6-3)2+42=15.答案:15四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)命题p :方程x 22m -y 2m -6=1表示焦点在y 轴上的椭圆;命题q :方程x 2m +1+y 2m -1=1表示双曲线.(1)若命题p 为真命题,求m 的取值范围; (2)若命题q 为假命题,求m 的取值范围. 解:(1)根据题意,得⎩⎪⎨⎪⎧m -6<0,2m >0,-(m -6)>2m ,解得0<m <2,故命题p 为真命题时,m 的取值范围为(0,2).(2)若命题q 为真命题,则(m +1)(m -1)<0,解得-1<m <1,故命题q 为假命题时,m 的取值范围为(-∞,-1]∪[1,+∞).18.(本小题满分12分)已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点P ⎝⎛⎭⎫32,6,求抛物线的方程和双曲线的方程. 解:依题意,设抛物线的方程为y 2=2px (p >0), ∵点P ⎝⎛⎭⎫32,6在抛物线上,∴6=2p ×32.∴p =2, ∴所求抛物线的方程为y 2=4x .∵双曲线的左焦点在抛物线的准线x =-1上, ∴c =1,即a 2+b 2=1,又点P ⎝⎛⎭⎫32,6在双曲线上,∴94a 2-6b2=1, 解方程组⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b 2=1,得⎩⎨⎧a 2=14,b 2=34或⎩⎪⎨⎪⎧a 2=9,b 2=-8(舍去).∴所求双曲线的方程为4x 2-43y 2=1.19.(本小题满分12分)已知抛物线y 2=2px (p >0)上点T (3,t )到焦点F 的距离为4. (1)求t ,p 的值;(2)如图所示,设A ,B 是抛物线上分别位于x 轴两侧的两个动点,且OA ―→·OB ―→=5(其中O 为坐标原点).求证直线AB 必过定点,并求出该定点的坐标.解:(1)由已知得3+p2=4,∴p =2,∴抛物线的方程为y 2=4x ,代入可解得t =±2 3.(2)设直线AB 的方程为x =my +n ,A ⎝⎛⎭⎫y 214,y 1,B ⎝⎛⎭⎫y 224,y 2.由⎩⎪⎨⎪⎧x =my +n ,y 2=4x得y 2-4my -4n =0,则y 1+y 2=4m ,y 1y 2=-4n .由OA ―→·OB ―→=5,得(y 1y 2)216+y 1y 2=5,∴y 1y 2=-20或y 1y 2=4(舍去).即-4n =-20,∴n =5,∴直线AB 过定点(5,0).20.(本小题满分12分)已知抛物线C :y 2=2px (p >0)的焦点为F (1,0),抛物线E :x 2=2py 的焦点为M .(1)若过点M 的直线l 与抛物线C 有且只有一个交点,求直线l 的方程; (2)若直线MF 与抛物线C 交于A ,B 两点,求△OAB 的面积.解:(1)因为抛物线C :y 2=2px (p >0)的焦点为F (1,0),抛物线E :x 2=2py 的焦点为M ,所以p =2,M (0,1).①当直线l 的斜率不存在时,其方程为x =0,满足题意.②当直线l 的斜率存在时,设方程为y =kx +1,代入y 2=4x ,得k 2x 2+(2k -4)x +1=0.当k =0时,x =14,满足题意,直线l 的方程为y =1;当k ≠0时,令Δ=(2k -4)2-4k 2=0,解得k =1,所以直线l 的方程为y =x +1.综上,直线l 的方程为x =0或y =1或y =x +1.(2)结合(1)知抛物线C 的方程为y 2=4x , 直线MF 的方程为y =-x +1.联立⎩⎪⎨⎪⎧y 2=4x ,y =-x +1得y 2+4y -4=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-4,y 1y 2=-4,所以|y 1-y 2|=42, 所以S △OAB =12|OF |·|y 1-y 2|=2 2.21.(本小题满分12分)给定椭圆C :x 2a 2+y 2b 2=1(a >b >0),称圆心在原点O ,半径为a 2+b 2的圆是椭圆C 的“准圆”.已知椭圆的离心率e =63,其“准圆”的方程为x 2+y 2=4. (1)求椭圆C 的方程;(2)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线l 1,l 2,交“准圆”于点M ,N .当点P 为“准圆”与y 轴正半轴的交点时,求直线l 1,l 2的方程,并证明l 1⊥l 2.解:(1)由准圆方程为x 2+y 2=4,得a 2+b 2=4, 椭圆的离心率e =ca =1-b 2a 2=63,解得a =3,b =1, ∴椭圆的标准方程:x 23+y 2=1.(2)∵准圆x 2+y 2=4与y 轴正半轴的交点为P (0,2), 设过点P (0,2)且与椭圆相切的直线为y =kx +2,联立,得⎩⎪⎨⎪⎧y =kx +2,x 23+y 2=1,整理,得(1+3k 2)x 2+12kx +9=0. ∵直线y =kx +2与椭圆相切,∴Δ=144k 2-4×9(1+3k 2)=0,解得k =±1, ∴l 1,l 2的方程为y =x +2,y =-x +2. ∵k l 1=1,k l 2=-1,∴k l 1·k l 2=-1,则l 1⊥l 2.22.(本小题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,过点A (0,-b )和B (a,0)的直线与原点的距离为32. (1)求椭圆的方程;(2)已知定点E (-1,0),若直线y =kx +2(k ≠0)与椭圆交于C ,D 两点,问:是否存在k 的值,使以CD 为直径的圆过E 点,请说明理由.解:(1)直线AB 的方程为:bx -ay -ab =0. 依题意⎩⎪⎨⎪⎧c a =63,aba 2+b 2=32,解得⎩⎪⎨⎪⎧a =3,b =1.∴椭圆方程为x 23+y 2=1.(2)假设存在这样的k 值,由⎩⎪⎨⎪⎧y =kx +2,x 2+3y 2-3=0,得(1+3k 2)x 2+12kx +9=0.∴Δ=(12k )2-36(1+3k 2)>0.解得k >1或k <-1.① 设C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-12k1+3k 2,x 1x 2=91+3k 2.②而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4.要使以CD 为直径的圆过点E (-1,0), 当且仅当CE ⊥DE 时成立,则y 1x 1+1·y 2x 2+1=-1.即y 1y 2+(x 1+1)(x 2+1)=0.∴(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=0.③将②式代入③整理解得k =76.经验证k =76使①成立.综上可知,存在k =76,使得以CD 为直径的圆过点E .B 卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点M (-2,m ),N (m,4)的直线的斜率为1,则m 的值为( ) A .1 B .4 C .1或3D .1或4解析:选A 因为过点M (-2,m ),N (m,4)的直线的斜率为1,所以4-m m +2=1,解得m=1.故选A.2.中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为2,则双曲线方程为( )A .x 2-y 2=1B .x 2-y 2=2C .x 2-y 2= 2D .x 2-y 2=12解析:选B 设双曲线方程为x 2a 2-y 2a 2=1(a >0),则c =2a ,渐近线方程为y =±x ,∴|2a |2=2,∴a 2=2.∴双曲线方程为x 2-y 2=2.3.如图,在三棱锥O -ABC 中,点D 是棱AC 的中点,若OA ―→=a ,OB ―→=b ,OC ―→=c ,则BD ―→等于( )A .a +b -cB .a -b +c C.12a -b +12c D .-12a +b -12c解析:选C 连接OD (图略),由题意可知BD ―→=BO ―→+OD ―→,BO ―→=-b ,OD ―→=12OA ―→+12OC ―→=12a +12c ,故BD ―→=12a -b +12c . 4.若抛物线y 2=2px (p >0)上的点A (x 0,2)到其焦点的距离是点A 到y 轴距离的3倍,则p =( )A.12 B .1 C.32D .2解析:选D 由题意得3x 0=x 0+p 2,即x 0=p 4,∴A 点坐标为⎝⎛⎭⎫p 4,2,将其代入抛物线方程得p 22=2.∵p >0,∴p =2.故选D.5.在△ABC 中,|AB |=2|BC |,以A ,B 为焦点,经过点C 的椭圆与双曲线的离心率分别为e 1,e 2,则( )A.1e 1-1e 2=1B.1e 1-1e 2=2C.1e 21-1e 22=1 D.1e 21-1e 22=2 解析:选A 如图,分别设椭圆与双曲线的标准方程为x 2a 2+y 2b 2=1(a >b >0),x 2a ′2-y 2b ′2=1(a ′>0,b ′>0),焦距为2c ,则|AB |=2c ,|BC |=c .∵点C 在椭圆上,∴|AC |+|BC |=2a ,即|AC |=2a -c .又∵点C 在双曲线上,∴|AC |-|BC |=2a ′,即2a -c -c =2a ′,得a c -a ′c =1,则1e 1-1e 2=1.6.直线l 是圆x 2+y 2=4在点(-3,1)处的切线,P 是圆x 2-4x +y 2=0上的动点,则点P 到直线l 的距离的最小值为( )A .1 B. 2 C. 3D .2解析:选C 圆x 2+y 2=4在点(-3,1)处的切线的斜率为--31=3,所以切线方程为y -1=3(x +3),即y =3x +4.因为圆x 2-4x +y 2=0的圆心(2,0)到直线l 的距离d =|2×3+4|3+1=3+2,半径为2,所以点P 到直线l 的距离最小值为d -2= 3.故选C.7.在椭圆x 24+y 2=1上有两个动点P ,Q ,E (1,0)为定点,EP ⊥EQ ,则EP ―→·QP ―→的最小值为( )A .4B .3- 3 C.23D .1解析:选C 由题意得EP ―→·QP ―→=EP ―→·(EP ―→-EQ ―→)=EP ―→2-EP ―→·EQ ―→=EP ―→2.设椭圆上一点P (x ,y ),则EP ―→=(x -1,y ),∴EP ―→2=(x -1)2+y 2=(x -1)2+⎝⎛⎭⎫1-x 24=34⎝⎛⎭⎫x -432+23,又-2≤x ≤2,∴当x =43时,EP ―→2取得最小值23.8.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是线段BB 1,B 1C 1的中点,则直线MN 和平面ACD 1的距离是( )A.12 B.22 C.13D.32解析:选D 如图,建立空间直角坐标系,则A (1,0,0),D 1(0,0,1),M ⎝⎛⎭⎫1,1,12,N ⎝⎛⎭⎫12,1,1,C (0,1,0).所以AD 1―→=(-1,0,1),MN ―→=⎝⎛⎭⎫-12,0,12,所以MN ―→=12AD 1―→. 又直线AD 1与MN 不重合, 所以MN ―→∥AD 1―→. 又MN ⊄平面ACD 1, AD 1⊂平面ACD 1, 所以MN ∥平面ACD 1.易得AD 1―→=(-1,0,1),D 1C ―→=(0,1,-1). 设平面ACD 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AD 1―→=0,n ·D 1C ―→=0,所以⎩⎪⎨⎪⎧-x +z =0,y -z =0,所以x =y =z .令x =1,则n =(1,1,1). 又因为AM ―→=⎝⎛⎭⎫0,1,12, 所以点M 到平面ACD 1的距离即为直线MN 到平面ACD 1的距离,为|AM ―→·n ||n |=323=32.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.若直线l :ax +y +2a =0被圆C :x 2+(y -4)2=4截得的弦长为22,则a 的值为( ) A .-7 B .-1 C .7D .1解析:选AB 圆心为C (0,4),半径R =2,因为直线l :ax +y +2a =0被圆C :x 2+(y -4)2=4截得的弦长为22,所以圆心到直线的距离d 满足d 2=R 2-(2)2=4-2=2,即d =2=|4+2a |a 2+1,平方整理得a 2+8a +7=0,解得a =-1或a =-7.10.已知中心在原点,焦点在坐标轴上的双曲线C 与椭圆x 29+y 24=1有相同的焦距,且一条渐近线方程为x -2y =0,则双曲线C 的方程可能为( )A.x 24-y 2=1 B .x 2-y 24=1 C.y 24-x 2=1 D .y 2-x 24=1解析:选AD 在椭圆x 29+y 24=1中,c =9-4= 5.因为双曲线C 与椭圆x 29+y 24=1有相同的焦距,且一条渐近线方程为x -2y =0,所以可设双曲线方程为x 24-y 2=λ(λ≠0),化为标准方程为x 24λ-y 2λ=1.当λ>0时,c =λ+4λ=5,解得λ=1,则双曲线C 的方程为x 24-y 2=1;当λ<0时,c =-λ-4λ=5,解得λ=-1,则双曲线C 的方程为y 2-x 24=1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论,正确的是( )A .A 1M ∥D 1PB .A 1M ∥B 1QC .A 1M ∥平面DCC 1D 1 D .A 1M ∥平面D 1PQB 1解析:选ACD ∵A 1M ―→=A 1A ―→+AM ―→=A 1A ―→+12AB ―→,D 1P ―→=D 1D ―→+DP ―→=A 1A ―→+12AB ―→,∴A 1M ―→∥D 1P ―→,从而A 1M ∥D 1P ,可得A 、C 、D 正确. 又B 1Q 与D 1P 不平行.12.如图,抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则下列结论正确的是( )A .若点A 的坐标为(2,0),则|FM |∶|MN |等于1∶ 5B .若点A 的坐标为(2,0),则|FM |∶|MN |等于1∶3C .若|FM |=|MA |,则|AN |=3D .若|FM |=|MA |,则|AN |=2解析:选AC 如图,由抛物线定义知M 到F 的距离等于M 到准线l 的距离MH .即|FM |∶|MN |=|MH |∶|MN |=|FO |∶|AF |=1∶5,故A 正确,B 错误. 对于C ,如图,过点A 作AQ ⊥l ,垂足为Q ,设直线l 与y 轴交于点D ,因为|FM |=|MA |,所以MH 为直角梯形AQDF 的中位线, 所以|MH |=32,所以|MF |=|MA |=|MH |=32,∴FA =3.又因为OA 是直角三角形FDN 的中位线,所以|AN |=|FA |=3,故C 正确,D 错误.故选A 、C.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知抛物线顶点在原点,对称轴是x 轴,点P (-5,25)到焦点的距离是6,则其标准方程为________.解析:设焦点F (a,0),|PF |=(a +5)2+20=6,即a 2+10a +9=0,解得a =-1或a=-9.当焦点为F (-1,0)时,抛物线开口方向向左,其方程为y 2=-4x ;当焦点为F (-9,0)时,抛物线开口方向向左,其方程为y 2=-36x .答案:y 2=-4x 或y 2=-36x14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为________.解析:由题意可得e =ca =2,则c =2a ,其中一个焦点为F (c,0),渐近线方程为bx ±ay =0,所以bcb 2+a 2=bcc =b =1, 又c 2=4a 2=a 2+b 2, 所以a 2=13,所以所求的双曲线方程为3x 2-y 2=1. 答案:3x 2-y 2=115.已知直线l 1:ax +y +3a -4=0和l 2:2x +(a -1)y +a =0,则原点到l 1的距离的最大值是________;若l 1∥l 2,则a =________.解析:直线l 1:ax +y +3a -4=0等价于a (x +3)+y -4=0,则直线过定点A (-3,4),当原点到l 1的距离最大时,满足OA ⊥l 1,此时原点到l 1的距离的最大值为|OA |=(-3)2+42=5.若l 1∥l 2,则a (a -1)-2=0,∴a =2(舍),a =-1.答案:5 -116.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =1,BC =3,点M 在棱CC 1上,且MD 1⊥MA ,则当△MAD 1的面积最小时,棱CC 1的长为________.解析:建立如图所示的空间直角坐标系, 则D (0,0,0),A (3,0,0).设M (0,1,t ),D 1(0,0,z ),0≤t ≤z ,则MD 1―→=(0,-1,z -t ),AM ―→=(-3,1,t ). ∵MD 1⊥MA ,∴MD 1―→·AM ―→=-1+t (z -t )=0, 即z -t =1t ,则S △MAD 1=12|AM ||MD 1|=12×4+t 2×1+(z -t )2=12(4+t 2)⎝⎛⎭⎫1+1t 2 =125+t 2+4t 2≥125+4=32,当且仅当t 2=4t 2,即t =2,z =322时等号成立,故CC 1的长为322.答案:322四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知双曲线的渐近线方程是y =±23x ,焦距为226,求双曲线的标准方程.解:若双曲线的焦点在x 轴上,则⎩⎪⎨⎪⎧b a =23,c 2=a 2+b 2=26,解得a 2=18,b 2=8,所以所求双曲线的方程为x 218-y 28=1.若双曲线的焦点在y 轴上,则⎩⎪⎨⎪⎧a b =23,c 2=a 2+b 2=26,解得a 2=8,b 2=18,所以所求双曲线的方程为y 28-x 218=1.综上,所求双曲线的方程为x 218-y 28=1或y 28-x 218=1.18.(本小题满分12分)已知圆C 的圆心C 在直线y =x 上,且与x 轴正半轴相切,点C 与坐标原点O 的距离为 2.(1)求圆C 的标准方程;(2)斜率存在的直线l 过点M ⎝⎛⎭⎫1,12且与圆C 相交于A ,B 两点,求弦长|AB |的最小值. 解:(1)由题意可设C (a ,a ),半径为r . ∵|CO |=2=a 2+a 2,∴a =±1.又圆C 与x 轴正半轴相切,∴a =1,r =1, ∴圆C 的标准方程为(x -1)2+(y -1)2=1. (2)设直线l 的方程为y -12=k (x -1),点C 到直线l 的距离d =121+k 2,弦长|AB |=21-14(1+k 2), ∴当k =0时,弦长|AB |的最小值|AB |= 3.19.(本小题满分12分)设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3.(1)求椭圆C 的焦距;(2)如果AF 2―→=2F 2B ―→,求椭圆C 的方程.解:(1)设焦距为2c ,由已知可得F 1到直线l 的距离3c =23,故c =2.所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2).由题意知y 1<0,y 2>0,直线l 的方程为y =3(x -2)联立⎩⎪⎨⎪⎧y =3(x -2),x 2a 2+y 2b 2=1得(3a 2+b 2)y 2+43b 2y -3b 4=0.解得y 1=-3b 2(2+2a )3a 2+b 2,y 2=-3b 2(2-2a )3a 2+b 2. 因为AF 2―→=2F 2B ―→,所以-y 1=2y 2, 即3b 2(2+2a )3a 2+b 2=2·-3b 2(2-2a )3a 2+b 2,得a =3,而a 2-b 2=4,所以b =5, 故椭圆C 的方程为x 29+y 25=1.20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,它的一个顶点在抛物线x 2=42y 的准线上.(1)求椭圆C 的方程;(2)设A (x 1,y 1),B (x 2,y 2)是椭圆C 上两点,已知m =⎝⎛⎭⎫x 1a ,y 1b ,n =⎝⎛⎭⎫x 2a ,y 2b ,且m ·n =0.求OA ―→·OB ―→的取值范围.解:(1)∵抛物线x 2=42y 的准线为直线y =-2,∴b = 2. ∵e =63,∴a 2-b 2a 2=23,∴a = 6.∴椭圆的方程为x 26+y 22=1.(2)由m ·n =0,得x 1x 2=-3y 1y 2.设点A (x 1,y 1),B (x 2,y 2)所在的直线为l . 当l 的斜率不存在时,A (x 1,y 1),B (x 1,-y 1),∴x 21=3y 21.又∵x 216+y 212=1,∴y 21=1.∴OA ―→·OB ―→=x 1x 2+y 1y 2=2y 21=2.当l 的斜率存在时,设直线l 的方程为y =kx +m .联立得方程组⎩⎪⎨⎪⎧y =kx +m ,x 2+3y 2=6,消去y 并整理,得(3k 2+1)x 2+6kmx +3m 2-6=0,∴Δ=36k 2m 2-12(3k 2+1)(m 2-2)=12(6k 2-m 2+2)>0, 且x 1+x 2=-6km3k 2+1,x 1x 2=3m 2-63k 2+1.由x 1x 2=-3y 1y 2=-3(kx 1+m )(kx 2+m ), 得(3k 2+1)x 1x 2+3km (x 1+x 2)+3m 2=0, 整理,得1+3k 2=m 2.(*)∴OA ―→·OB ―→=x 1x 2+y 1y 2=23x 1x 2=2m 2-41+3k 2=2m 2-4m 2=2-4m 2. 由(*)得m 2=1+3k 2≥1,∴0<4m 2≤4,∴-2≤OA ―→·OB ―→<2.综上可得,-2≤OA ―→·OB ―→≤2.21.(本小题满分12分)如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD=2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长. 解:以{AB ―→,AD ―→,AP ―→}为正交基底建立如图所示的空间直角坐标系,则B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面PAB ,所以AD ―→是平面PAB 的一个法向量,AD ―→=(0,2,0).易知PC ―→=(1,1,-2),PD ―→=(0,2,-2),设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC ―→=0,m ·PD ―→=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD ―→,m 〉=AD ―→·m |AD ―→||m |=33,易知平面PAB 与平面PCD 所成的二面角为锐二面角,所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)易知BP ―→=(-1,0,2),设BQ ―→=λBP ―→=(-λ,0,2λ)(0≤λ≤1), 又CB ―→=(0,-1,0),所以CQ ―→=CB ―→+BQ ―→=(-λ,-1,2λ), 又DP ―→=(0,-2,2),从而cos 〈CQ ―→,DP ―→〉=CQ ―→·DP ―→|CQ ―→||DP ―→|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3], 则cos 2〈CQ ―→,DP ―→〉=2t 25t 2-10t +9=29⎝⎛⎭⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ ―→,DP ―→〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎫0,π2上是减函数,所以当λ=25时,直线CQ 与DP 所成角取得最小值.又因为BP =12+22=5,所以BQ =25BP =255.22.(本小题满分12分)设椭圆C :x 2a 2+y 2b 2=1(a >b >0),定义椭圆C 的“相关圆”方程为x 2+y 2=a 2b 2a 2+b 2,若抛物线y 2=4x 的焦点与椭圆C 的一个焦点重合,且椭圆C 的短轴的一个端点和其两个焦点构成直角三角形.(1)求椭圆C 的方程和“相关圆”E 的方程;(2)过“相关圆”E 上任意一点P 作“相关圆”E 的切线l ,与椭圆C 交于A ,B 两点,O 为坐标原点.证明:∠AOB 为定值.解:(1)因为抛物线y 2=4x 的焦点为(1,0),与椭圆C 的一个焦点重合,所以c =1.又因为椭圆C 的短轴的一个端点和其两个焦点构成直角三角形,所以b =c =1,a 2=b 2+c 2=2.故椭圆C 的方程为x 22+y 2=1,“相关圆”E 的方程为x 2+y 2=23.(2)证明:当直线l 的斜率不存在时,不妨设直线AB 的方程为x =63,则A ⎝⎛⎭⎫63,63,B⎝⎛⎭⎫63,-63,所以∠AOB =π2.当直线l 的斜率存在时,设其方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立,得方程组⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,消去y ,得x 2+2(kx +m )2=2,即(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=8(2k 2-m 2+1)>0, 即2k 2-m 2+1>0,⎩⎪⎨⎪⎧x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2.因为直线l 与“相关圆”E 相切, 所以d =|m |1+k 2=m 21+k 2=23, 所以3m 2=2+2k 2, 所以x 1x 2+y 1y 2=(1+k 2)x1x 2+km (x 1+x 2)+m 2=(1+k 2)(2m 2-2)1+2k 2-4k 2m 21+2k 2+m2=3m 2-2k 2-21+2k 2=0.所以OA ―→⊥OB ―→,所以∠AOB =π2.综上,∠AOB 为定值.。
2020-2021杭州市采荷实验学校高三数学上期末第一次模拟试题(含答案)一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形3.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-4.在ABC ∆中,2AC =,BC =135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) ABCD5.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,若2b c =,a =7cos 8A =,则ABC ∆的面积为( ) AB .3CD.26.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .327.已知变量x , y 满足约束条件13230x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最小值为( )A .1B .2C .3D .68.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( )A .63B .61C .62D .579.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .6010.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .311.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( ) A .113⎡⎤-⎢⎥⎣⎦,B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦, D .3153⎡⎤-⎢⎥⎣⎦,12.在直角梯形ABCD 中,//AB CD ,90ABC ∠=o ,22AB BC CD ==,则cos DAC ∠=( )A .25B .5 C .310D .10 二、填空题13.数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩,当100a =时,则数列{}n a 的前100项的和100S 为________.14.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 升;15.已知数列{}n a 中,其中199199a =,11()an n a a -=,那么99100log a =________16.已知数列{}n a 的前n 项和n s =23n -2n+1,则通项公式.n a =_________17.已知变量,x y 满足约束条件2{41y x y x y ≤+≥-≤,则3z x y =+的最大值为____________.18.设,,若,则的最小值为_____________.19.设无穷等比数列{}n a 的公比为q ,若1345a a a a =+++…,则q =__________________.20.在等比数列中,,则__________.三、解答题21.已知数列{}n a 的前n 项和为n S ,满足()*2N n n S a n n =-∈.(Ⅰ)证明:{}1n a +是等比数列; (Ⅱ)求13521n a a a a -+++⋯+的值.22.在等比数列{}n a 中,125a a +=,且2320a a +=. (1)求{}n a 的通项公式;(2)求数列{}3n n a a +的前n 项和n S .23.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且acos C +3asin C -b -c =0.(1)求A ;(2)若AD 为BC 边上的中线,cos B =17,AD 129,求△ABC 的面积. 24.已知各项均为正数的等比数列{}n a 的首项为12,且()3122123a a a -=+。
数学模拟试卷03第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河北高二学业考试)已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ).A .{}1,2B .{}0C .{}0,1,2D .{}0,1【答案】C 【解析】由并集定义可得:{}0,1,2M N =.故选:C.2.(2019·浙江高二学业考试)已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若a b >,则a b b >≥,即a b >,故22a b >. 取1,2a b ==-,此时22a b >,但a b <, 故22a b >推不出a b >, 故选:A.3.(2019·伊宁市第八中学高一期中)若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭【答案】D 【解析】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D.4.(2020·黑龙江哈尔滨市第六中学校高三开学考试(理))设2313a ⎛⎫= ⎪⎝⎭,532b =,21log 3c =,则( )A .b a c <<B .a b c <<C .c a b <<D .b c a <<【答案】C 【解析】23110133⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,503221>=,221log log 103<=, ∴c a b <<. 故选:C5.(2020·江苏南通市·高三期中)已知角α的终边经过点()3,4P ,则πcos 24α⎛⎫+= ⎪⎝⎭( )A .50-B .50C .50-D .50【答案】A 【解析】角α的终边经过点()3,4P ,5OP ∴==,由三角函数的定义知:3cos 5α=,4sin 5α, 2237cos 22cos 121525αα⎛⎫∴=-=⨯-=- ⎪⎝⎭,4324sin 22sin cos 25525ααα==⨯⨯=,()()π724cos 2cos2cos sin 2sin 4442525ππααα∴+=-=-=.故选:A.6.(2020·甘肃兰州市·西北师大附中高三期中)函数()f x 在[)0,+∞单调递增,且()3f x +关于3x =-对称,若()21f -=,则()21f x -≤的x 的取值范围( )A .[]22-,B .(][),22,-∞-+∞C .()[),04,-∞+∞D .[]0,4【答案】D 【解析】因为()3f x +关于3x =-对称,所以()f x 关于y 轴对称,所以()()221f f -==, 又()f x 在[)0,+∞单调递增,由()21f x -≤可得222x -≤-≤,解得:04x ≤≤, 故选:D7.(2020·浙江高一期末)对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1 B .2C .3D .4【答案】A 【解析】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确;当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即2523,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④错误. 故选:A8.(2020·山西吕梁市·高三期中(文))函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6C .4D .2【答案】A 【解析】由函数图象的平移可知, 函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=.故选:A9.(2020·山西吕梁市·高三期中(文))已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)-C .(1,0)-D .[1,0)-【答案】B 【解析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可.解:因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202x xa e a e +==-即有一个根即可,因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-,故选:B.10.(2020·河北高二学业考试)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2log 1f x x =+,则不等式()2f x ≤的解集是( ). A .[]3,3- B .[]4,4-C .(][),33,-∞-+∞D .(][),44,-∞-⋃+∞【答案】A 【解析】0x ≥时,()()2log 1f x x =+,()f x ∴在[)0,+∞上单调递增,又()f x 是定义在R 上的奇函数,()f x ∴在R 上单调递增,易知()()223log 31log 42f =+==,()()332f f -=-=-, 由()2f x ≤, 解得:()22f x -≤≤, 由()f x 在R 上单调递增, 解得:33x -≤≤,()2f x ∴≤的解集是[]3,3-.故选:A.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π; 【解析】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.12.(2020·浙江宁波市·高三期中)设2log 3a =,则4a =______(用数值表示),lg 36lg 4=______.(用a 表示)【答案】9 1a + 【解析】2log 3a =,22394429log log a ∴===,4222236log 36log 6log (23)log 2log 314lg a lg ===⨯=+=+, 故答案为:9,1a +.13.(2020·深圳科学高中高一期中)某移动公司规定,使用甲种卡,须付“基本月租费”(每月需交的固定费用)30元,在国内通话时每分钟另收话费0.10元;使用乙种卡,不收“基本月租费”,但在国内通话时每分钟话费为0.2元.若某用户每月手机费预算为50元,则使用__________种卡才合算;若要使用甲种卡合算,则该用户每月手机费预算(元)的区间为__________. 【答案】乙 (60,)+∞ 【解析】由题意,设月通话时间为t 分钟,有甲费用为300.1t +,乙费用为0.2t , ∴每月手机费预算为50元,则:由300.150t +=知,甲的通话时间为200分钟, 由0.250t =知,乙的通话时间为250分钟, ∴用户每月手机费预算为50元,用乙种卡合算;要使用甲种卡合算,即月通话时间相同的情况下甲费用更低,即300.10.2t t +<, 解得300t >时,费用在(60,)+∞. 故答案为:乙,(60,)+∞14.(2020·商丘市第一高级中学高一期中)设函数()112,1,1x e x f x x x -⎧<⎪=⎨⎪≥⎩则()3f x ≤成立的x 的取值范围为______. 【答案】(],9-∞ 【解析】当1x <时,由13x e -≤得1ln3x ≤+,所以1x <; 当1≥x 时,由213x ≤得9x ≤,所以19x ≤≤. 综上,符合题意的x 的取值范围是(,9]-∞. 故答案为:(,9]-∞.15.(2020·辽宁本溪市·高二月考)摩天轮是一种大型转轮状的机械建筑设施,稳坐于永乐桥之上的“天津之眼”作为世界上唯一一座建在桥上的摩天轮,其巧夺天工和奇思妙想确是当之无愧的“世界第一”.如图,永乐桥摩天轮的直径为110m ,到达最高点时,距离地面的高度为120m ,能看到方圆40km 以内的景致,是名副其实的“天津之眼”.实际上,单从高度角度来看,天津之眼超越了曾大名鼎鼎的伦敦之眼而跃居世界第一.永乐桥摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .游客甲坐上摩天轮的座舱,开始转到min t 后距离地面的高度为m H ,则转到10min 后距离地面的高度为______m ,在转动一周的过程中,H 关于t 的函数解析式为______.【答案】1852 π55cos 6515H t =-+,030t ≤≤. 【解析】如图,设座舱距离地面最近的位置为点P ,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系.设0min t =时,游客甲位于点()0,55P -,以OP 为终边的角为π2-; 根据摩天轮转一周大约需要30min , 可知座舱转动的角速度约为πmin 15rad , 由题意可得πππ55sin 6555cos 6515215H t t ⎛⎫=-+=-+⎪⎝⎭,030t ≤≤.当10t =时,π18555cos 1065152H ⎛⎫=-⨯+= ⎪⎝⎭. 故答案为:1852;π55cos 6515H t =-+,030t ≤≤ 16.(2020·浙江建人专修学院高三三模)已知2,0()(),0x x f x f x x ⎧≥=⎨--<⎩,若4log 3a =,则()f a =___________;()1f a -=___________.3 233-因为4log 3a =,所以43a =,即2a =01a <<,所以()2a f a ==1(1)(1)2a f a f a --=--=-==3-17.(2020·上海虹口区·高三一模)已知(0,)απ∈,且有12sin2cos2αα-=,则cos α=___________.【解析】2212sin 2cos214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,)απ∈,所以sin 0α≠,因此由2sin 2sin cos sin 2cos tan 2(0,)2πααααααα=⇒=⇒=⇒∈,而22sin cos 1(1)αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=(0,)2πα∈,因此cos α=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·黑龙江工农�鹤岗一中高二期末(文))函数()22xxaf x =-是奇函数. ()1求()f x 的解析式;()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,求m 的取值范围.【答案】(1)()122xxf x =-;(2)5m <-.() 1函数()22x x af x =-是奇函数, ()()1222222x x x x x x a af x a f x --∴-=-=-+=-+=-,故1a =, 故()122xx f x =-; ()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,即21(2)42x xm +<-⋅在()0,x ∈+∞恒成立,令()2(2)42x xh x =-⋅,(0)x >,显然()h x 在()0,+∞的最小值是()24h =-, 故14m +<-,解得:5m <-.19.(2020·宁夏长庆高级中学高三月考(理))已知函数()22sin cos 22222x x x f x ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的最小值及单调减区间.【答案】(1)最小正周期为2π;(2)()min f x =()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)1cos ()2sin cos 222x x xf x +=+sin x x =+12sin cos 2sin 223x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以()f x 的最小正周期为2π. (2)因为[]0,x π∈,所以4,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以当433x ππ+=,即x π=时,函数()f x 取得最小值由4233x πππ≤+≤,得6x ππ≤≤,所以函数()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 20.(2019·河北师范大学附属中学高一期中)已知二次函数()f x 的图象经过点()4,4-,方程()0f x =的解集为{}0,2.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出m ,n 的值;若不存在,说明理由.【答案】(1)21()2f x x x =-+;(2)存在;2m =-,0n =. 【解析】(1)由已知,设()()2f x ax x =-.因为()f x 的图象经过点()4,4-,所以()4442a -=-,解得12a =-, 即()f x 的解析式为21()2f x x x =-+; (2)假设满足条件实数m ,n 的存在, 由于221111()(1)2222f x x x x =-+=--+≤,因此122n ≤,即14n ≤. 又()f x 的图象是开口向下的抛物线,且对称轴方程1x =,可知()f x 在区间[],m n 上递增,故有()2()2f m m f n n=⎧⎨=⎩,并注意到14m n <≤,解得2m =-,0n =. 综上可知,假设成立,即当2m =-,0n =时,()f x 的定义域和值域分别为[],m n 和[]2,2m n .21.(2020·山西吕梁市·高三期中(文))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min 7x x π-=,求ϕ的值. 【答案】(1)37π;(2)14π. 【解析】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤. 又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min 314x x πϕ-+=. 即314714πππϕ=-=.22.(2020·安徽省蚌埠第三中学高一月考)设函数()()21x x a t f x a--=(0a >,且1a ≠)是定义域为R 的奇函数.(1)求t 的值;(2)若函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,是否存在正数()1m m ≠,使函数()()22log x x m g x a a mf x -⎡⎤=+-⎣⎦在[]21,log 3上的最大值为0,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)2t =;(2)不存在,理由见解析.【解析】(1)∵()f x 是定义域为R 的奇函数,∴()00f =,∴2t =;经检验知符合题意.(2)函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,所以2132a a -=, ∴2a =(12a =-舍去), 假设存在正数m ,且1m ≠符合题意,由2a =得()()22log 2222x x x x m g x m --⎡⎤=+--⎣⎦, 设22x x t -=-,则()()22222222x x x x m t mt -----+=-+,∵[]21,log 3x ∈,2[2,3]x ∈,∴38,23t ⎡⎤∈⎢⎥⎣⎦,记()22h t t mt =-+, ∵函数()g x 在[]21,log 3上的最大值为0,∴(i )若01m <<时,则函数()22h t t mt =-+在38,23⎡⎤⎢⎥⎣⎦有最小值为1, 由于对称轴122m t =<,∴()min 31731312426h t h m m ⎛⎫==-=⇒= ⎪⎝⎭,不合题意. (ii )若1m 时,则函数()220h t t mt =-+>在38,23⎡⎤⎢⎥⎣⎦上恒成立,且最大值为1,最小值大于0, ①()max 1252512212736873241324m m m h t h m ⎧⎧<≤<≤⎪⎪⎪⎪⇒⇒=⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩, 而此时7338,24823m ⎡⎤=∈⎢⎥⎣⎦,又()min 73048h t h ⎛⎫=< ⎪⎝⎭, 故()g x 在[]21,log 3无意义, 所以7324m =应舍去; ②()max 25252126313126m m h t h m ⎧⎧>>⎪⎪⎪⎪⇒⇒⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩m 无解, 综上所述:故不存在正数m ,使函数()g x 在[]21,log 3上的最大值为0.。
2020-2021深圳市桂园中学高中必修一数学上期末第一次模拟试卷带答案一、选择题1.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<2.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦3.函数()2sin f x x x =的图象大致为( )A .B .C .D .4.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]5.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦6.下列函数中,值域是()0,+∞的是( )A .2y x =B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>7.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:x1 2 1.5 1.625 1.75 1.875 1.8125 ()f x-63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.98.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4} D .{1,4,16,64}9.函数21y x x =-++的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)10.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .411.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .12.已知函数f (x )=x (e x +ae ﹣x )(x ∈R ),若函数f (x )是偶函数,记a=m ,若函数f (x )为奇函数,记a=n ,则m+2n 的值为( ) A .0B .1C .2D .﹣1二、填空题13.若155325a b c ===,则111a b c+-=__________. 14.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________.15.若函数()()()()22,0,0x x x f x g x x ⎧+≥⎪=⎨<⎪⎩为奇函数,则()()1f g -=________.16.对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________17.已知函数()211x x xf -=-的图象与直线2y kx =+恰有两个交点,则实数k 的取值范围是________.18.已知函数2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩则关于x 的方程4()0xf x k -=的所有根的和的最大值是_______. 19.已知函数1,0()ln 1,0x x f x x x ⎧+≤=⎨->⎩,若方程()()f x m m R =∈恰有三个不同的实数解()a b c a b c <<、、,则()a b c +的取值范围为______;20.已知函数222y x x -=+,[]1,x m ∈-.若该函数的值域为[]1,10,则m =________.三、解答题21.已知二次函数满足2()(0)f x ax bx c a =++≠,(1)()2,f x f x x +-= 且(0) 1.f =(1)求函数()f x 的解析式(2)求函数()f x 在区间[1,1]-上的值域; 22.已知函数()(2lg 1x f x x =+.(1)判断函数()f x 的奇偶性;(2)若()()1210f m f m -++≤,求实数m 的取值范围.23.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常.排气4min 后,测得车库内的一氧化碳浓度为64L /L μ,继续排气4min ,又测得浓度为32L /L μ,经检测知该地下车库一氧化碳浓度(L /L)y μ与排气时间(min)t 存在函数关系:12mty c ⎛⎫= ⎪⎝⎭(c ,m 为常数)。
2020-2021学年山东师大附中高三(上)第一次模拟数学试卷试题数:22,总分:1501.(单选题,5分)已知复数z满足(2-i)z=i+i2,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(单选题,5分)已知集合A={x|y=2x-1},集合B={y|y=x2},则集合A∩B=()A.(1,1)B.{(1,1)}C.{1}D.[0,+∞)3.(单选题,5分)已知x,y∈(0,+∞),2x-4=(1)y,则xy的最大值为()4A.2B. 98C. 32D. 944.(单选题,5分)若不等式ax2+bx+c>0的解集为{x|-1<x<2},则不等式a(x2+1)+b (x-1)+c<2ax的解集为()A.{x|-2<x<1}B.{x|x<-2或x>1}C.{x|x<0或x>3}D.{x|0<x<3}5.(单选题,5分)设f0(x)=sinx,f1(x)=f0'(x),f2(x)=f1'(x),…,f n+1(x)=f n'(x),n∈N,则f2020(x)等于()A.sinxB.-sinxC.cosxD.-cosx6.(单选题,5分)某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有()A.72B.36C.24D.187.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)8.(单选题,5分)设函数f(x)=mx2-mx-1,若对于x∈[1,3],f(x)>-m+2恒成立,则实数m的取值范围是()A.(3,+∞)B. (−∞,37)C.(-∞,3)D. (37,+∞)9.(多选题,5分)若复数z= 21+i,其中i为虚数单位,则下列结论正确的是()A.z的虚部为-1B.|z|= √2C.z2为纯虚数D.z的共轭复数为-1-i10.(多选题,5分)下列命题正确的是()A.“a>1”是“ 1a<1”的必要不充分条件B.命题“∃x0∈(0,+∞),lnx0=x0-1”的否定是“∀x∈(0,+∞),lnx≠x-1”C.若a,b∈R,则ba +ab≥2√ba•ab=2D.设a∈R,“a=1”,是“函数f(x)=a−e x1+ae x在定义域上是奇函数”的充分不必要条件11.(多选题,5分)关于(a-b)11的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小AB=2,E为AB中12.(多选题,5分)如图直角梯形ABCD,AB || CD,AB⊥BC,BC=CD= 12点,以DE为折痕把△ADE折起,使点A到达点P的位置,且PC=2 √3.则()A.平面PED⊥平面EBCDB.PC⊥EDC.二面角P-DC-B的大小为π4D.PC与平面PED所成角的正切值为√213.(填空题,5分)从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望E(ξ)=___ .14.(填空题,5分)如图,在正方体ABCD-A'B'C'D'中,BB'的中点为M,CD的中点为N,异面直线AM与D'N所成的角是___ .15.(填空题,5分)在(1-2x)5(2+x)展开式中,x4的系数为___ .−1=0在(0,e]上有两个不相等的实根,则实16.(填空题,5分)关于x的方程kx−lnxx数k的取值范围为 ___ .17.(问答题,10分)据某市地产数据研究显示,2016年该市新建住宅销售均价走势如图所示,3月至7月房价上涨过快,为抑制房价过快上涨,政府从8月开始采用宏观调控措施,10月份开始房价得到很好的抑制.(1)地产数据研究院发现,3月至7月的各月均价y (万元/平方米)与月份x 之间具有较强的线性相关关系,试建立y 关于x 的回归方程;(2)若政府不调控,依此相关关系预测第12月份该市新建住宅销售均价.参考数据: ∑5i=1 x i =25, ∑5i=1 y i =5.36, ∑5i=1 (x i - x )(y i - y )=0.64;回归方程 y ̂ = b ̂ x+ a ̂ 中斜率和截距的最小二乘估计公式分别为:b ̂ = ∑(x i −x )ni=1(y i −y )∑(x i −x )2n i=1 , a ̂ = y - b ̂ x .18.(问答题,12分)如图,在多面体ABCDEF 中,四边形ABCD 是矩形,四边形ABEF 为等腰梯形,且AB || EF ,AF=2,EF=2AB=4AD=4 √2 ,平面ABCD⊥平面ABEF .(1)求证:BE⊥DF ;(2)求三棱锥C-AEF 的体积V .19.(问答题,12分)某新建公司规定,招聘的职工须参加不小于80小时的某种技能培训才能上班.公司人事部门在招聘的职工中随机抽取200名参加这种技能培训的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200名职工中,参加这种技能培训服务时间不少于90小时的人数,并估计从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率;(Ⅱ)从招聘职工(人数很多)中任意选取3人,记X为这3名职工中参加这种技能培训时间不少于90小时的人数.试求X的分布列和数学期望E(X)和方差D(X).20.(问答题,12分)设f(x)=ax3+xlnx.的单调区间;(1)求函数g(x)=f(x)x<1,求实数a的取值范围.(2)若∀x1,x2∈(0,+∞),且x1>x2,f(x1)−f(x2)x1−x221.(问答题,12分)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC⊥BC,AC=BC=2,CC1=3,点D,E分别在棱AA1和棱CC1上,且AD=1,CE=2,M为棱A1B1的中点.(Ⅰ)求证:C1M⊥B1D;(Ⅱ)求二面角B-B1E-D的正弦值;(Ⅲ)求直线AB与平面DB1E所成角的正弦值.22.(问答题,12分)已知函数f(x)=e x(lnx-ax+a+b)(e为自然对数的底数),a,b∈R,x是曲线y=f(x)在x=1处的切线.直线y= e2(Ⅰ)求a,b的值;(Ⅱ)是否存在k∈Z,使得y=f(x)在(k,k+1)上有唯一零点?若存在,求出k的值;若不存在,请说明理由.2020-2021学年山东师大附中高三(上)第一次模拟数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知复数z满足(2-i)z=i+i2,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【正确答案】:C【解析】:把已知等式变形,利用复数代数形式的乘除运算化简,进一步求出z的坐标得答案.【解答】:解:由(2-i)z=i+i2,得z=i+i22−i =(−1+i)(2+i)(2−i)(2+i)=−35+15i,∴ z=−35−15i,∴ z在复平面内对应的点的坐标为(−35,−15),位于第三象限角.故选:C.【点评】:本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.(单选题,5分)已知集合A={x|y=2x-1},集合B={y|y=x2},则集合A∩B=()A.(1,1)B.{(1,1)}C.{1}D.[0,+∞)【正确答案】:D【解析】:先分别求出集合A,集合B,由此能求出集合A∩B.【解答】:解:∵集合A={x|y=2x-1}=R,集合B={y|y=x2}={y|y≥0},∴集合A∩B={y|y≥0}=[0,+∞).故选:D.【点评】:本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3.(单选题,5分)已知x,y∈(0,+∞),2x-4=(14)y,则xy的最大值为()A.2B. 98C. 32D. 94【正确答案】:A【解析】:由已知结合指数的运算性质可得x+2y=4,然后结合基本不等式即可求解.【解答】:解:因为x,y∈(0,+∞),2x−4=(14)y=(12)2y,所以x-4=-2y即x+2y=4,由基本不等式可得,4=x+2y ≥2√2xy,当且仅当x=2y时取等号,解可得xy≤2,故选:A.【点评】:本题主要考查了利用基本不等式求解最值,属于基础试题.4.(单选题,5分)若不等式ax2+bx+c>0的解集为{x|-1<x<2},则不等式a(x2+1)+b (x-1)+c<2ax的解集为()A.{x|-2<x<1}B.{x|x<-2或x>1}C.{x|x<0或x>3}D.{x|0<x<3}【正确答案】:C【解析】:由已知结合二次方程与不等式的关系可得a,b,c的关系,然后结合二次不等式的求法即可求解.【解答】:解:由ax 2+bx+c >0的解集为{x|-1<x <2}可得x=-1,x=2是ax 2+bx+c=0的解,由方程的根与系数关系可得, { −1+2=−b a −1×2=c a a <0, ∴b=-a ,c=-2a ,a <0,则不等式a (x 2+1)+b (x-1)+c <2ax 可得ax 2+a-ax+a-2a <2ax ,整理可得,x 2-3x >0,解可得x >3或x <0.故选:C .【点评】:本题主要考查了一元二次不等式与二次方程的关系的相互转化,还考查了二次不等式的求解,体现了转化思想的应用.5.(单选题,5分)设f 0(x )=sinx ,f 1(x )=f 0'(x ),f 2(x )=f 1'(x ),…,f n+1(x )=f n '(x ),n∈N ,则f 2020(x )等于( )A.sinxB.-sinxC.cosxD.-cosx【正确答案】:A【解析】:由题意知f 0(x )=sinx ,f 1(x )=f 0'(x ),f 2(x )=f 1'(x ),…,f n+1(x )=f n '(x ),n∈N ,所以列举出各项发现周期为4,即可得到答案.【解答】:解:由题意知f 0(x )=sinx ,f 1(x )=f 0'(x ),f 2(x )=f 1'(x ),…,f n+1(x )=f n '(x ),n∈N ,所以由题意知f 0(x )=sinx ,f 1(x )=cosx ,f 2(x )=-sinx ,f 3(x )=-cosx ,f 4(x )=sinx ,所以发现f n (x )周期为4,所以2021÷4=505••1,所以f 2020(x )=f 0(x )=sinx ,故选:A.【点评】:本题考查了导数公式以及函数的周期性,属于简单题.6.(单选题,5分)某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有()A.72B.36C.24D.18【正确答案】:B【解析】:根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【解答】:解:2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,若甲村分1名外科,2名护士,则由C31C32 =3×3=9若甲村分2名外科医生和1名护士,C32C31 =3×3=9,则分组方法有2×(9+9)=36,故选:B.【点评】:本题主要考查排列组合的应用,根据条件进行分类讨论是解决本题的关键.7.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)【正确答案】:A【解析】:先求幂函数f(x),再利用导数判定函数g(x)的单调递增区间.【解答】:解:设幂函数f(x)=xα,它的图象过点(√22,12),∴(√22)α= 12,∴α=2;∴f(x)=x2;∴g(x)= x2e x ,g′(x)= x(2−x)e x,令g′(x)>0,即2-x>0,解得:0<x<2,故g(x)在(0,2)递增,故选:A.【点评】:本题考查了幂函数的定义以及利用导数判定函数的单调区间问题,是中档题.8.(单选题,5分)设函数f(x)=mx2-mx-1,若对于x∈[1,3],f(x)>-m+2恒成立,则实数m的取值范围是()A.(3,+∞)B. (−∞,37)C.(-∞,3)D. (37,+∞)【正确答案】:A【解析】:由题意可得m>3x2−x+1在x∈[1,3]恒成立,即m>(3x2−x+1)max,运用y=3x2−x+1在[1,3]递减,即可得到所求范围.【解答】:解:函数f(x)=mx2-mx-1,若对于x∈[1,3],f(x)>-m+2恒成立,则mx2-mx-1>-m+2恒成立,即m>3x2−x+1恒成立,由y= 3x2−x+1在[1,3]递减,可得x=1时,y取得最大值3,可得m>3,即m的取值范围是(3,+∞).故选:A.【点评】:本题考查不等式恒成立问题解法,注意运用参数分离和函数的单调性,考查转化思想和运算能力,属于中档题.9.(多选题,5分)若复数z= 21+i,其中i为虚数单位,则下列结论正确的是()A.z的虚部为-1B.|z|= √2C.z2为纯虚数D.z的共轭复数为-1-i【正确答案】:ABC【解析】:利用复数代数形式的乘除运算化简,然后逐一核对四个选项得答案.【解答】:解:∵z= 21+i = 2(1−i)(1+i)(1−i)=1-i,∴z的虚部为-1,|z|= √2,z2=(1-i)2=-2i为纯虚数,z的共轭复数为1+i.∴正确的选项为:ABC.故选:ABC.【点评】:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.10.(多选题,5分)下列命题正确的是()A.“a>1”是“ 1a<1”的必要不充分条件B.命题“∃x0∈(0,+∞),lnx0=x0-1”的否定是“∀x∈(0,+∞),lnx≠x-1”C.若a,b∈R,则ba +ab≥2√ba•ab=2D.设a∈R,“a=1”,是“函数f(x)=a−e x1+ae x在定义域上是奇函数”的充分不必要条件【正确答案】:BD【解析】:对于A:直接利用不等式的解法求出解集,进一步利用充分条件和必要条件的应用求出结果.对于B:直接利用命题的否定的应用判定结果;对于C:直接利用基本不等式的应用和不等式的成立的条件的应用判定结果;对于D:直接利用奇函数的性质的应用判定结果.【解答】:解:对于选项A:1a <1,整理得1−aa<0,即a(a-1)>0,解得a>1或a<0,所以“a>1”是“ 1a<1”的充分不必要条件,故A错误;对于B:命题“∃x0∈(0,+∞),lnx0=x0-1”的否定是“∀x∈(0,+∞),lnx≠x-1”故B正确;对于C:当ab>0时,ba +ab≥2√ba•ab=2,故C错误.对于D:设a∈R,“a=1”时“函数f(x)=a−e x1+ae x =1−e x1+e x在定义域上是奇函数”,当函数f(x)=a−e x1+ae x在定义域上是奇函数,利用f(-x)=-f(x),则a=±1,故“a=1”,是“函数f(x)=a−e x1+ae x在定义域上是奇函数”的充分不必要条件,故D正确.故选:BD.【点评】:本题考查的知识要点:不等式的解法和应用,命题的否定,基本不等式,函数的奇偶性,主要考查学生的运算能力和转换能力及思维能力,属于基础题.11.(多选题,5分)关于(a-b)11的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小【正确答案】:ACD【解析】:对于A,B,C选项,分别利用赋值法,二项式系数的性质即可解决;对于选项D,先根据通项写出其系数的表达式,构造不等式即可.【解答】:解:对于A:二项式系数之和为211=2048,故A正确;对于B、C:展开式共12项,中间第6、7项的二项式系数最大,故B错误,C正确;对于D:展开式中各项的系数为C k+1=(−1)k C11k,k=0,1,……,11,(注:用C k+1表示展开式中第k+1项的系数.)易知当k=5时,该项的系数最小.故D正确.故选:ACD.【点评】:本题考查了二项式展开式二项式系数的性质、以及系数与二项式系数的关系,需要熟记公式才能解决问题.同时考查了学生的计算能力和逻辑推理能力.12.(多选题,5分)如图直角梯形ABCD,AB || CD,AB⊥BC,BC=CD= 12AB=2,E为AB中点,以DE为折痕把△ADE折起,使点A到达点P的位置,且PC=2 √3.则()A.平面PED⊥平面EBCDB.PC⊥EDC.二面角P-DC-B的大小为π4D.PC与平面PED所成角的正切值为√2【正确答案】:AC【解析】:在A中,四边形EBCD是边长为2的正方形,PE=2,推导出PE⊥DE,PE⊥CE,从而PE⊥平面EBCD,进而平面PED⊥平面EBCD;在B中,由DE || BC,BC⊥PB,得BC与PC 不垂直,从而PC与ED不垂直;在C中,推导出BE⊥平面PDE,BE || CD,从而CD⊥平面PDE,进而∠PDE是二面角P-DC-B的平面角,进而求出二面角P-DC-B的大小为π4;在D中,PC与平面PED所成角的正切值为tan∠CPD= CDPD =2√2=√22.【解答】:解:直角梯形ABCD,AB || CD,AB⊥BC,BC=CD= 12AB=2,E为AB中点,以DE为折痕把△ADE折起,使点A到达点P的位置,且PC=2 √3.在A中,四边形EBCD是边长为2的正方形,PE=2,∴PE⊥DE,CE= √22+22 =2 √2,∴PE2+CE2=PC2,∴PE⊥CE,∵DE∩CE=E,∴PE⊥平面EBCD,∵PE⊂平面PED,∴平面PED⊥平面EBCD,故A正确;在B中,∵DE || BC,BC⊥PB,∴BC与PC不垂直,∴PC与ED不垂直,故B错误;在C中,∵BE⊥PE,BE⊥DE,PE∩DE=E,∴BE⊥平面PDE,∵BE || CD,∴CD⊥平面PDE,∴∠PDE是二面角P-DC-B的平面角,∵PE⊥平面BCD,PE=DE,∴∠PDE= π4,∴二面角P-DC-B的大小为π4,故C正确;在D中,∵CD⊥平面PDE,∴∠CPD是PC与平面PED所成角,PD= √PC2−CD2 = √(2√3)2−22 =2 √2,∴PC与平面PED所成角的正切值为tan∠CPD= CDPD =2√2=√22,故D错误.故选:AC.【点评】:本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力以及化归与转化思想,是中档题.13.(填空题,5分)从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望E(ξ)=___ .【正确答案】:[1]2【解析】:随机变量随机ξ的所有可能的取值为1,2,3.分别求出其对应的概率,列出分布列,求期望即可.【解答】:解:随机变量ξ的所有可能的取值为1,2,3.P(ξ=1)= C41C22C63 = 15.P(ξ=2)= C42C21C63 = 35.P(ξ=3)= C43C63 = 15.所有随机变量ξ的分布列为:ξ 1 2 3P 153515所以ξ的期望E(ξ)=1× 15 +2× 35+3× 15=2.故答案为:2.【点评】:本题考查离散型随机变量的数学期望的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.14.(填空题,5分)如图,在正方体ABCD-A'B'C'D'中,BB'的中点为M,CD的中点为N,异面直线AM与D'N所成的角是___ .【正确答案】:[1]90°【解析】:取CC′中点M′,连接DM′,利用三角形全等证明DM′⊥D′N即可得出答案.【解答】:解:取CC′中点M′,连接DM′,则AM || DM′,由△DCM′≌△D′DC可知∠CDM′=∠DD′N,∴∠CDM′+∠D′ND=∠DD′N+∠D′ND=90°,∴DM′⊥D′N,∴AM⊥D'N,∴异面直线AM与D'N所成的角为90°.故答案为:90°.【点评】:本题考查了异面直线所成角的计算,属于基础题.15.(填空题,5分)在(1-2x)5(2+x)展开式中,x4的系数为___ .【正确答案】:[1]80【解析】:从展开式中求出含有x4的项,找出对应的系数,即可求解.【解答】:解:由已知可得:含有x4的项为C 54(−2x)4×2+C53(−2x)3×x =160x4-80x4=80x4,所以x4的系数为80,故答案为:80.【点评】:本题考查了二项式定理的展开式的系数问题,属于基础题.16.(填空题,5分)关于x的方程kx−lnxx−1=0在(0,e]上有两个不相等的实根,则实数k的取值范围为 ___ .【正确答案】:[1] [e+1e2,1)【解析】:把kx−lnxx −1=0变形为k= lnxx2+1x,先利用导数研究函数f(x)=f(x)= lnxx2+1x,x∈(0,e]的单调性与极值,结合题意得答案.【解答】:解:kx−lnxx −1=0可变形为:k= lnxx2+1x,设f(x)= lnxx2+1x,x∈(0,e]f′(x)= 1−2lnx−xx3,设g(x)=1-2lnx-x,x∈(0,e]g′(x)= −2x−1<0,即y=g(x)为减函数,又g(1)=0,即0<x<1时,g(x)>0,即f′(x)>0,1<x <e 时,g (x )<0,f′(x )<0,即y=f (x )在(0,1)为增函数,在(1,e )为减函数, 又x→0+时,f (x )→-∞, f (1)=1,f (e )= e+1e 2 . 关于x 的方程 kx −lnx x −1=0 在区间(0,e]上有两个不相等的实根,等价于y=f (x )的图象与直线y=k 的交点个数有两个,由上可知,当 e+1e 2 ≤k <1时,关于x 的方程 kx −lnx x−1=0 在区间(0,e]上有两个不相等的实根,故答案为: [e+1e 2,1) .【点评】:本题考查了导数的综合应用,利用导数研究函数的大致图象,属中档题. 17.(问答题,10分)据某市地产数据研究显示,2016年该市新建住宅销售均价走势如图所示,3月至7月房价上涨过快,为抑制房价过快上涨,政府从8月开始采用宏观调控措施,10月份开始房价得到很好的抑制.(1)地产数据研究院发现,3月至7月的各月均价y (万元/平方米)与月份x 之间具有较强的线性相关关系,试建立y 关于x 的回归方程;(2)若政府不调控,依此相关关系预测第12月份该市新建住宅销售均价.参考数据: ∑5i=1 x i =25, ∑5i=1 y i =5.36, ∑5i=1 (x i - x )(y i - y )=0.64;回归方程 y ̂ = b ̂ x+ a ̂ 中斜率和截距的最小二乘估计公式分别为:b ̂ = i −x )ni=1i −y )∑(x −x)2n , a ̂ = y - b ̂ x .【正确答案】:【解析】:(1)由题意,计算 x 、 y ,求出回归系数 b ̂ 、 a ̂ ,即可写出回归方程; (2)利用(1)中回归方程,计算x=12时 y ̂ 的值即可.【解答】:解:(1)由题意,得出下表;月份x 3 4 5 6 7 均价y0.950.981.111.121.20计算 x = 15 × ∑5i=1 x i =5, y = 15 × ∑5i=1 y i =1.072, ∑5i=1 (x i - x )(y i - y )=0.64, ∴ b ̂ = ∑(x i −x )ni=1(y i −y )∑(x i−x )2n i=1= 0.64(3−5)2+(4−5)2+(5−5)2+(6−5)2+(7−5)2 =0.064, a ̂ = y - b̂ x =1.072-0.064×5=0.752, ∴从3月到6月,y 关于x 的回归方程为 y ̂ =0.064x+0.752;(2)利用(1)中回归方程,计算x=12时, y ̂ =0.064×12+0.752=1.52; 即可预测第12月份该市新建住宅销售均价为1.52万元/平方米.【点评】:本题考查了回归直线方程的求法与应用问题,正确计算是解题的关键.18.(问答题,12分)如图,在多面体ABCDEF 中,四边形ABCD 是矩形,四边形ABEF 为等腰梯形,且AB || EF ,AF=2,EF=2AB=4AD=4 √2 ,平面ABCD⊥平面ABEF . (1)求证:BE⊥DF ;(2)求三棱锥C-AEF 的体积V .【正确答案】:【解析】:(1)取EF 的中点G ,连结AG ,推导出四边形ABEG 为平行四边形,AG || BE ,且AG=BE=AF=2,再求出AG⊥AF ,AD⊥AB ,从而AD⊥平面ABEF ,AD⊥AG ,进而AG⊥平面ADF ,再由AG || BE ,得BE⊥平面ADF ,由此能证明BE⊥DF ;(2)首先证明CD || 平面ABEF ,可得V C-AEF =V D-AEF ,由(1)得DA⊥平面ABEF ,再求出三角形AEF的面积,代入棱锥体积公式得答案.【解答】:(1)证明:取EF的中点G,连结AG,∵EF=2AB,∴AB=EG,又AB || EG,∴四边形ABEG为平行四边形,∴AG || BE,且AG=BE=AF=2,在△AGF中,GF= 12EF=2 √2,AG=AF=2,∴AG2+AF2=GF2,∴AG⊥AF,∵四边形ABCD是矩形,∴AD⊥AB,又平面ABCD⊥平面ABEF,且平面ABCD∩平面ABEF=AB,∴AD⊥平面ABEF,又AG⊂平面ABEF,∴AD⊥AG,∵AD∩AF=A,∴AG⊥平面ADF,∵AG || BE,∴BE⊥平面ADF,∵DF⊂平面ADF,∴BE⊥DF;(2)解:∵CD || AB且CD⊄平面ABEF,BA⊂平面ABEF,∴CD || 平面ABEF,∴V C-AEF=V D-AEF,由(1)得,DA⊥平面ABEF,∵ S△AEF=12×4√2×√2=4,∴V C-AEF=V D-AEF= 13×4×√2=4√23.【点评】:本题考查线线垂直的证明,考查空间想象能力与思维能力,训练了利用等积法求多面体的体积,是中档题.19.(问答题,12分)某新建公司规定,招聘的职工须参加不小于80小时的某种技能培训才能上班.公司人事部门在招聘的职工中随机抽取200名参加这种技能培训的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200名职工中,参加这种技能培训服务时间不少于90小时的人数,并估计从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率;(Ⅱ)从招聘职工(人数很多)中任意选取3人,记X 为这3名职工中参加这种技能培训时间不少于90小时的人数.试求X 的分布列和数学期望E (X )和方差D (X ).【正确答案】:【解析】:(Ⅰ)依题意,参加这种技能培训时间在时间段[90,95)小时的职工人数为60,在时间段[95,100)小时的职工人数为20,由此能求出从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率.(Ⅱ)依题意,随机变量X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X 的分布列、数学期望与方差.【解答】:解:(Ⅰ)依题意,参加这种技能培训时间在时间段[90,95)小时的职工人数为:200×0.04×5=40,在时间段[95,100)小时的职工人数为200×0.02×5=20,∴抽取的200位职工中,参加这种技能培训时间不少于90小时的职工人数为60, ∴从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率估计为: p= 60200 = 310 .(Ⅱ)依题意,随机变量X 的可能取值为0,1,2,3,P (X=0)= C 30(35)3 = 27125 , P (X=1)= C 31(25)(35)2 = 54125 ,P(X=2)= C32(25)2(35) = 36125,P(X=3)= C33(25)3=8125,∴随机变量X的分布列为:∵X~B(3,5),EX= 3×5=5,DX=3×5×5=25.【点评】:本题考查概率的求法,考查离散型随机变量的分布列、数学期望、方差的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.20.(问答题,12分)设f(x)=ax3+xlnx.(1)求函数g(x)=f(x)x的单调区间;(2)若∀x1,x2∈(0,+∞),且x1>x2,f(x1)−f(x2)x1−x2<1,求实数a的取值范围.【正确答案】:【解析】:(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)问题转化为a≤−lnx3x2,设ℎ(x)=−lnx3x2,根据函数的单调性求出a的范围即可.【解答】:解:(1)g(x)=ax2+lnx(x>0),g′(x)=2ax+1x =2ax2+1x(x>0),① 当a≥0时,g'(x)>0,g(x)在(0,+∞)上单调递增;② 当a<0时,若x∈(0,√−12a ),则g'(x)>0,若x∈(√−12a,+∞),则g'(x)<0,所以g(x)在(0,√−12a )上单调递增,在(√−12a,+∞)上单调递减.综上,当a≥0时,函数g(x)在(0,+∞)上单调递增;当a<0时,函数g(x)在(0,√−12a )上单调递增,在(√−12a,+∞)上单调递减.(2)因为x1>x2>0,所以f(x1)-f(x2)<x1-x2,即f(x1)-x1<f(x2)-x2恒成立,设F(x)=f(x)-x在(0,+∞)上为减函数,即F'(x)≤0恒成立.所以F'(x )=3ax 2+lnx≤0,即 a ≤−lnx3x 2,设 ℎ(x )=−lnx3x 2, ℎ′(x )=−3+6lnx9x 3(x >0) , 当 x ∈(0,√e) ,h'(x )<0,h (x )单减,当 x ∈(√e ,+∞) ,h'(x )>0,h (x )单增, ℎ(x )≥ℎ(√e)=−16e ,所以 a ≤−16e .【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.21.(问答题,12分)如图,在三棱柱ABC-A 1B 1C 1中,CC 1⊥平面ABC ,AC⊥BC ,AC=BC=2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD=1,CE=2,M 为棱A 1B 1的中点. (Ⅰ)求证:C 1M⊥B 1D ;(Ⅱ)求二面角B-B 1E-D 的正弦值;(Ⅲ)求直线AB 与平面DB 1E 所成角的正弦值.【正确答案】:【解析】:(Ⅰ)方法一:根据线面垂直的性质定理和判定定理即可证明; 方法二:建立空间坐标系,根据向量的数量积等于0,即可证明;(Ⅱ)先平面DB 1E 的法向量 n ⃗ ,再根据向量的夹角公式,求出二面角B-B 1E-D 的正弦值; (Ⅱ)求出cos < AB ⃗⃗⃗⃗⃗ , n ⃗ >值,即可求出直线AB 与平面DB 1E 所成角的正弦值.【解答】:解:(Ⅰ)在三棱柱ABC-A 1B 1C 1中,CC 1⊥平面ABC , 则该三棱柱是个直三棱柱(各侧棱均垂直底面,各侧面均与底面垂直) ∵C 1A 1=C 1B 1=2,M 为 M 为棱A 1B 1的中点, ∴C 1M⊥A 1B 1,又平面C 1A 1B 1⊥平面A 1B 1BA , ∴C 1M⊥平面A 1B 1BA , ∵B 1D⊂A 1B 1BA , ∴C 1M⊥B 1D ; 方法二:(Ⅰ)以C 为原点, CA ⃗⃗⃗⃗⃗ , CB ⃗⃗⃗⃗⃗ , CC 1⃗⃗⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图所示,则C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3), ∴C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,0), B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(2,-2,-2), ∴ C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ • B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =2-2+0=0,∴C 1M⊥B 1D ;(Ⅱ)依题意, CA⃗⃗⃗⃗⃗ =(2,0,0)是平面BB 1E 的一个法向量, EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,1), ED ⃗⃗⃗⃗⃗ =(2,0,-1), 设 n ⃗ =(x ,y ,z )为平面DB 1E 的法向量, 则 {n ⃗ •EB 1⃗⃗⃗⃗⃗⃗⃗ =0n ⃗ •ED ⃗⃗⃗⃗⃗ =0,即 {2y +z =02x −z =0 ,不妨设x=1,则 n ⃗ =(1,-1,2), ∴cos < CA ⃗⃗⃗⃗⃗ , n ⃗ >= CA ⃗⃗⃗⃗⃗ •n ⃗ |CA ⃗⃗⃗⃗⃗|•|n⃗ | = √66 , ∴sin < CA ⃗⃗⃗⃗⃗ , n ⃗ >= √1−16 = √306 ,∴二面角B-B 1E-D 的正弦值√306; (Ⅲ)依题意, AB ⃗⃗⃗⃗⃗ =(-2,2,0),由(Ⅱ)知, n ⃗ =(1,-1,2)为平面DB 1E 的一个法向量,∴cos < AB ⃗⃗⃗⃗⃗ , n ⃗ >= AB ⃗⃗⃗⃗⃗•n ⃗ |AB ⃗⃗⃗⃗⃗ |•|n ⃗ | =- √33,∴直线AB与平面DB1E所成角的正弦值为√33.【点评】:本题考查了空间向量在几何中的应用,线线平行和二面角和线面角的求法,考查了运算求解能力,转化与化归能力,逻辑推理能力,属于中档题.22.(问答题,12分)已知函数f(x)=e x(lnx-ax+a+b)(e为自然对数的底数),a,b∈R,直线y= e2x是曲线y=f(x)在x=1处的切线.(Ⅰ)求a,b的值;(Ⅱ)是否存在k∈Z,使得y=f(x)在(k,k+1)上有唯一零点?若存在,求出k的值;若不存在,请说明理由.【正确答案】:【解析】:(Ⅰ)求得f(x)的导数,可得切线的斜率和切点,解方程可得所求值;(Ⅱ)求得f(x)的导数,设g(x)=lnx-x+ 1x + 12,求得导数,判断单调性,求得g(1),g(2)的符号,判断g(x)的零点范围,可得f(x)的零点范围,即可得到所求k的值.【解答】:解:(Ⅰ)f(x)=e x(lnx-ax+a+b)的导数为f′(x)=e x(lnx-ax+ 1x+b),由已知,有f(1)=eb= e2,f′(1)=e(b-a+1)= e2,解得a=1,b= 12;(Ⅱ)由(Ⅰ)知,f(x)=e x(lnx-x+ 32),则f′(x)=e x(lnx-x+ 1x + 12),令g(x)=lnx-x+ 1x + 12,则g′(x)=- x2−x+1x2<0恒成立,所以g(x)在(0,+∞)上单调递减,又因为g(1)= 12>0,g(2)=ln2-1<0,所以存在唯一的x0∈(1,2),使得g(x0)=0,且当x∈(0,x0)时,g(x)>0,即f′(x)>0,当x∈(x0,+∞)时,g(x)<0,即f′(x)<0,所以f(x)在(0,x0)上单调递增,在(x0,+∞)上单调递减.又因为当x→0时,f(x)<0,f(1)= e2>0,f(2)=e2(ln2- 12)>0,f(e)=e e(52-e)<0,所以存在k=0或2,使得y=f(x)在(k,k+1)上有唯一零点.【点评】:本题考查导数的运用:求切线的斜率和单调性,考查函数零点存在定理和构造函数法,考查化简运算能力,属于中档题.。
2020-2021高中三年级数学下期中第一次模拟试题附答案(2)一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.设数列{}n a 的前n 项和为n S ,若2,n S ,3n a 成等差数列,则5S 的值是( ) A .243-B .242-C .162-D .2433.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .94.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( ) A .140B .280C .168D .565.设,x y 满足约束条件0,20,240,x y x y x y -≥⎧⎪+-≥⎨⎪--≤⎩则2z x y =+的最大值为( )A .2B .3C .12D .136.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A =7.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为1f ,第七个音的频率为2f ,则21f f = A.BCD8.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=LA .0B .100C .100-D .102009.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23D .1610.已知数列{}n a 的通项公式为()*21log N 2n n a n n +=∈+,设其前n 项和为n S ,则使5n S <-成立的自然数n ( )A .有最小值63B .有最大值63C .有最小值31D .有最大值3111.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-112.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12B .12-C .14D .14-二、填空题13.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N ,那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为______.14.要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则a 的取值范围是__________.15.数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩,当100a =时,则数列{}n a 的前100项的和100S 为________.16.在数列{}n a 中,“()n 12n a n N*n 1n 1n 1=++⋯+∈+++,又n n n 11b a a +=,则数列{}n b 的前n 项和n S 为______.17.已知对满足4454x y xy ++=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为______.18.若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则z =2x +y 的最大值是_____.19.已知120,0,2a b a b>>+=,2+a b 的最小值为_______________. 20.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______. 三、解答题21.设数列{}n a 满足()*164n n n a a n a +-=∈-N ,其中11a =. (Ⅰ)证明:32n n a a ⎧⎫-⎨⎬-⎩⎭是等比数列; (Ⅱ)令112n n b a =--,设数列{}(21)n n b -⋅的前n 项和为n S ,求使2019n S <成立的最大自然数n 的值.22.记等差数列{}n a 的前n 项和为n S ,已知2446,10a a S +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2n n n b a =⋅*()n N ∈,求数列{}n b 的前n 项和n T .23.设递增等比数列{a n }的前n 项和为S n ,且a 2=3,S 3=13,数列{b n }满足b 1=a 1,点P (b n ,b n +1)在直线x ﹣y +2=0上,n ∈N *. (1)求数列{a n },{b n }的通项公式; (2)设c n nnb a =,求数列{c n }的前n 项和T n . 24.已知函数()3sin cos f x x x =-. (1)求函数()f x 在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域; (2)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,求a b 的取值范围. 25.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且3cos cos (tan tan 1)1A C A C -=.(Ⅰ)求sin B 的值; (Ⅱ)若33a c +=,3b =,求的面积.26.已知向量113,sin 222x x a ⎛⎫+ ⎝=⎪ ⎪⎭v 与()1,b y =v 共线,设函数()y f x =. (1)求函数()f x 的最小正周期及最大值.(2)已知锐角ABC ∆的三个内角分别为,,A B C ,若有33f A π⎛⎫-= ⎪⎝⎭,边217,sin 7BC B ==,求ABC ∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a ab --==. 本题选择A 选项.2.B解析:B 【解析】 【分析】 【详解】因为2,,3n n S a 成等差数列,所以223n n S a =+,当1n =时,111223,2S a a =+∴=-;当2n ≥时,1113333112222n n n n n n n a S S a a a a ---=-=+--=-,即11322n n a a -=,即()132nn a n a -=≥,∴数列{}n a 是首项12a =-,公比3q =的等比数列,()()55151213242113a q S q---∴===---,故选B.3.D解析:D 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.A解析:A 【解析】由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 5.C解析:C 【解析】 【分析】由约束条件可得可行域,将问题变成1122y x z =-+在y 轴截距最大问题的求解;通过平移直线可确定最大值取得的点,代入可得结果. 【详解】由约束条件可得可行域如下图所示:当2z x y =+取最大值时,1122y x z =-+在y 轴截距最大 平移直线12y x =-,可知当直线1122y x z =-+过图中A 点时,在y 轴截距最大由240y xx y =⎧⎨--=⎩得:()4,4A max 42412z ∴=+⨯=故选:C 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在y 轴截距最值问题的求解,属于常考题型.6.A解析:A 【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视. 7.D解析:D 【解析】 【分析】:先设第一个音的频率为a ,设相邻两个音之间的频率之比为q ,得出通项公式, 根据最后一个音是最初那个音的频率的2倍,得出公比,最后计算第三个音的频率与第七个音的频率的比值。
2020-2021初一数学上期末第一次模拟试题(附答案) (4)一、选择题1.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在()A.16号B.18号C.20号D.22号2.下面的说法正确的是()A.有理数的绝对值一定比0大B.有理数的相反数一定比0小C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等3.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x元,则根据题意列出方程正确的是()A.0.8×(1+40%)x=15B.0.8×(1+40%)x﹣x=15C.0.8×40%x=15D.0.8×40%x﹣x=154.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( )A.350元B.400元C.450元D.500元5.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC 的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm6.用一个平面去截一个正方体,截面不可能是()A.梯形B.五边形C.六边形D.七边形7.中国海洋面积是2897000平方公里,2897000用科学记数法表示为()A.2.897×106B.28.94×105C.2.897×108D.0.2897×1078.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.63B.70C.96D.1059.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2B.2或2.25C.2.5D.2或2.510.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式乘方(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )64的展开式中第三项的系数为( ) A .2016B .2017C .2018D .201911.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( )A .3B .9C .7D .112.下列解方程去分母正确的是( ) A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3yD .由,得3(y+1)=2y+6二、填空题13.对于正数x ,规定()1f x x x =+,例如:()221223f ==+,()333134f ==+,111212312f ⎛⎫== ⎪⎝⎭+,111313413f ⎛⎫== ⎪⎝⎭+……利用以上规律计算: 1111120192018201732f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()122019f f f +++⋅⋅⋅⋅⋅⋅+的值为:______.14.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高 ________. 15.若13a+与273a -互为相反数,则a=________.16.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.17.若当x =1时,多项式12ax 3﹣3bx +4的值是7,则当x =﹣1时,这个多项式的值为_____.18.如图,在∠AOB 的内部有3条射线OC 、OD 、OE ,若∠AOC =60°,∠BOE =1n ∠BOC ,∠BOD =1n∠AOB ,则∠DOE =_____°.(用含n 的代数式表示)19.已知整式32(1)7(3)2m n x x m x ---++-是关于x 的二次二项式,则关于y 的方程(33)5n m y my -=--的解为_____.20.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为_____________.三、解答题21.计算:32112(3)4⎡⎤--⨯--⎣⎦ 22.如图是某涌泉蜜桔长方体包装盒的展开图.具体数据如图所示,且长方体盒子的长是宽的2倍.(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是 与 , 与 , 与 ; (2)若设长方体的宽为xcm ,则长方体的长为 cm ,高为 cm ;(用含x 的(3)求这种长方体包装盒的体积.23.如图,A,B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.(1)请写出A B中点M所对应的数;(2)现有一只电子蚂蚊P从B点出发,以6单位秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数.(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.24.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:站次人数二三四五六下车(人)3610719上车(人)1210940(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?25.已知方程3(x﹣1)=4x﹣5与关于x的方程232x a x a---=x﹣1有相同的解,求a的值.【参考答案】***试卷处理标记,请不要删除1.C解析:C【解析】【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解.【详解】设那一天是x,则左日期=x﹣1,右日期=x+1,上日期=x﹣7,下日期=x+7,依题意得x﹣1+x+1+x﹣7+x+7=80解得:x=20故选:C.【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.2.D解析:D【解析】【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案.【详解】A.有理数的绝对值一定大于等于0,故此选项错误;B.正有理数的相反数一定比0小,故原说法错误;C.如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D.互为相反数的两个数的绝对值相等,正确.故选:D.【点睛】此题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.3.B解析:B【解析】【分析】首先设这种服装每件的成本价是x元,根据题意可得等量关系:进价×(1+40%)×8折-进价=利润15元,根据等量关系列出方程即可.【详解】设这种服装每件的成本价是x元,由题意得:4.B解析:B【解析】设该服装标价为x 元,根据售价﹣进价=利润列出方程,解出即可. 【详解】设该服装标价为x 元,由题意,得0.6x ﹣200=200×20%, 解得:x=400. 故选B . 【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.5.D解析:D 【解析】 【分析】先根据题意画出图形,再利用线段的中点定义求解即可. 【详解】解:根据题意画图如下:∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点, ∴1115222MN MC CN AC BC AB cm =+=+==;∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点, ∴1115222MN MC CN AC BC AB cm =-=-==. 故选:D . 【点睛】本题考查的知识点是与线段中点有关的计算,根据题意画出正确的图形是解此题的关键.6.D解析:D 【解析】 【分析】正方体总共六个面,截面最多为六边形。
广东省佛山市南海区2020-2021学年七年级上学期数学期末试卷(附答案)一、单选题1.﹣2的绝对值等于()A. 2B. ﹣2C.D. ±22.用一个平面截下列几何体,截面可能是三角形的是()①正方体②球体③圆柱④圆锥A. ①B. ①②C. ①④D. ①③④3.下列调查中,不适合采用抽样调查的是()A. 了解全市中小学生每天的零花钱B. 调查某批次汽车的抗撞击能力C. 了解某批灯泡的使用寿命D. 旅客上高铁列车前的安检4.2020年某市固定资产总投资计划为2680亿元,将2680亿用科学记数法表示为()A. 2.68×1011B. 2.68×1012C. 2.68×1013D. 2.68×10145.在墙壁上固定一根横放的木条,至少需要()A. 1枚钉子B. 2枚钉子C. 3枚钉子D. 随便多少枚钉子6.下列各组中的两项是同类项的是()A. ﹣25m和3mnB. 7.2a2b和﹣a2cC. x2y与﹣3yx2D. ﹣x和27.150′=()A. 25°B. 15°C. 2.5°D. 1.5°8.方程3x+4=2x﹣5移项后,正确的是()A. 3x+2x=4﹣5B. 3x﹣2x=4﹣5C. 3x﹣2x=﹣5﹣4D. 3x+2x=﹣5﹣49.在数轴上与表示数4的点距离2个单位长度的点表示的数是()A. ﹣2B. 2C. 6D. 2或610.一组数据排列如下:12 3 43 4 5 6 74 5 6 7 8 9 10…按此规律,某行最后一个数是148,则此行的所有数之和是()A. 9801B. 9603C. 9025D. 8100二、填空题11.已知关于x的方程5x+m=﹣2的解为x=2,则m的值为.12. 8点30分时刻,钟表上时针与分针所组成的角为________度.13.已知一个多项式与3x2﹣4x的和等于3x2+4x+1,则此多项式是.14.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是(填编号).15.如图,在3×3的九个格子中填入9个数字,当每行、每列及每条对角线的3个数字之和都相等时,我们把这个数表称为三阶幻方.若﹣2、﹣1、0、1、2、3、4、5、6这9个数也能构成三阶幻方,则此时每行、每列及每条对角线的3个数字之和都为.16.一台空调标价2000元,若按7折销售仍可获利40%,则这台空调的进价是元.17.若代数式x2+2x的值为3,则代数式1﹣﹣x的值为.三、解答题18.计算:.19.如图,从正面、左面、上面观察此几何体,分别画出你所看到的几何体的形状.20.某校在开展“校园献爱心”活动中,共筹款9000元捐赠给西部山区男、女两种款式书包共70个,已知男款书包的单价为每个120元,女款书包的单价为每个140元.那么捐赠的两种书包各多少个?21.先化简,再求值:2(3a2b+ab2)﹣2(ab2+4a2b﹣1),其中a=﹣.22.如图,某学校排球活动月即将开始,其中有一项为垫球比赛,体育组为了了解七年级学生的训练情况,随机抽取了七年级部分学生进行1分钟垫球测试,并将这些学生的测试成绩(即1分钟垫球的个数,且这些测试成绩都在60~180范围内)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为D级,90~120范围内的记为C级,120~150范围内的记为B级,150~180范围内的记为A级,现将数据整理绘制成如图两幅不完整的统计图,其中在扇形统计图中A级对应的圆心角为90°,请根据图中的信息解答下列问题:(1)在这次测试中,一共抽取了多少名学生,并补全频数分布直方图;(2)在扇形统计图中,B级所占百分比为多少;(3)在扇形统计图中,求D级对应的圆心角的度数.23.如图,已知线段a,b.(1)任意画一直线,利用尺规作图在直线上从左至右依次截取AB=a,BC=b;(2)在(1)的条件下,如果AB=8,BC=6,M是线段AB的中点,N是线段BC的中点,求MN的长.24.某学校准备订购一批篮球和跳绳,经查阅发现篮球每个定价100元,跳绳每条定价20元.现有A、B 两家公司提出了各自的优惠方案.A公司:买一个篮球送一条跳绳;B公司:篮球和跳绳都按定价的90%付款.已知要购买篮球30个,跳绳x条(x>30).(1)若分别在A、B公司购买,各需费用多少元(用含x的代数式表示);(2)若在两家公司购买的总费用一样,请求出此时x的值;(3)当x=50,若两家公司可以自由选择,请给出最省钱的购买方案,并计算需要费用多少元.25.如图,A、B两点在一数轴上,其中点O为原点,点A对应的有理数为﹣2,点B对应的有理数为22.点A以每秒2个单位长度的速度沿数轴向右运动,设运动时间为t秒(t>0).(1)当t=2时,点A表示的有理数为,A、B两点的距离为;(2)若点B同时以每秒2个单位长度的速度向左运动,经过多少秒,点A与点B相遇;(3)在(2)的条件下,点M(M点在原点)同时以每秒4个单位长度的速度向右运动,几秒后MA=2MB?答案解析部分一、单选题1.【答案】A2.【答案】C3.【答案】 D4.【答案】 A5.【答案】 B6.【答案】 C7.【答案】 C8.【答案】 C9.【答案】 D10.【答案】 A二、填空题11.【答案】-1212.【答案】7513.【答案】8x+114.【答案】 315.【答案】 616.【答案】100017.【答案】三、解答题18.【答案】解:=﹣16+(﹣4)×(1+ )=﹣16+(﹣4)×=﹣16+(﹣13)=﹣29.19.【答案】解:如图所示:20.【答案】解:设捐赠男款书包x个,则捐赠女款书包(70﹣x)个,依题意有120x+140(70﹣x)=9000,解得x=40,则70﹣x=70﹣40=30.故捐赠男款书包40个,捐赠女款书包30个.21.【答案】解:原式=6a2b+2ab2﹣2ab2﹣8a2b+2=﹣2a2b+2,当a=﹣,b=﹣时,原式=﹣2×(﹣)2×(﹣)+2=2 .22.【答案】(1)解:由统计图可得,25÷ =25÷ =25×4=100(名),即在这次测试中,一共抽取了100名学生,D级的学生有:100﹣20﹣40﹣25=15(人),补全的频数分布直方图如右图所示;(2)解:由统计图可得,×100%=40%,即在扇形统计图中,B级所占百分比为40%;(3)解:由统计图可得,360°× =54°,即在扇形统计图中,D级对应的圆心角的度数是54°.23.【答案】(1)解:如图,线段AB=a,BC=b即为所求;(2)解:∵AB=8,BC=6,M是线段AB的中点,N是线段BC的中点,∴BM=AB=4,BN=BC=3,∴MN=MB+BN=4+3=7.答:MN的长为7.24.【答案】(1)解:由A公司的优惠方案得,买30个篮球,x条跳绳(x>30)的总费用为:100×30+20(x﹣30)=(20x+2400)元;由B公司的优惠方案得,买30个篮球,x条跳绳(x>30)的总费用为:100×90%×30+20×90%x=(18x+2700)元;(2)解:依题意有20x+2400=18x+2700,解得:x=150.故此时x的值为150;(3)解:先到A公司买30个篮球,获赠30条跳绳,再到B公司购买50﹣30=20条跳绳所用的总费用为:100×30+20×90%×(50﹣30)=3000+360=3360(元).故需要费用3360元.25.【答案】(1)2;20(2)解:当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,依题意得:2t﹣2=﹣2t+22,解得:t=6.答:经过6秒,点A与点B相遇.(3)解:当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,点M表示的数为4t.令﹣2t+22=4t,解得:t=.当0<t≤ 时,4t﹣(2t﹣2)=2(﹣2t+22﹣4t),解得:t=3;当t>时,4t﹣(2t﹣2)=2[4t﹣(﹣2t+22)],解得:t=.答:3秒或秒后,MA=2MB.。
2020-2021佛山市高中必修三数学上期末第一次模拟试卷带答案一、选择题1.在如图所示的算法框图中,若()321a x dx =-⎰,程序运行的结果S 为二项式()52x +的展开式中3x 的系数的9倍,那么判断框中应填入的关于k 的判断条件是( )A .3K <B .3K >C .2K <D .2K >2.执行如图的程序框图,若输入1t =-,则输出t 的值等于( )A .3B .5C .7D .153.下面的程序框图表示求式子32×35×311×323×347×395的值, 则判断框内可以填的条件为( )A .90?i ≤B .100?i ≤C .200?i ≤D .300?i ≤4.如果数据121x +、221x +、L 、21n x +的平均值为5,方差为16,则数据:153x -、253x -、L 、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1445.己知某产品的销售额y 与广告费用x 之间的关系如下表:若求得其线性回归方程为 6.5ˆˆyx a =+,其中ˆˆa y bx =-,则预计当广告费用为6万元时的销售额是( ) A .42万元B .45万元C .48万元D .51万元6.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A ,B 两个贫困县各有15名村代表,最终A 县有5人表现突出,B 县有3人表现突出,现分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则B 县选取的人表现不突出的概率是( ) A .13B .47C .23D .567.把化为五进制数是( )A .B .C .D .8.在某地的奥运火炬传递活动中,有编号为1,2,3,L ,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( ). A .151B .168C .1306D .14089.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 10.按照程序框图(如图所示)执行,第3 个输出的数是( )A .6B .5C .4D .311.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为 A .B .C .D .12.如图,边长为2的正方形有一内切圆.向正方形内随机投入1000粒芝麻,假定这些芝麻全部落入该正方形中,发现有795粒芝麻落入圆内,则用随机模拟的方法得到圆周率π的近似值为( )A .3.1B .3.2C .3.3D .3.4二、填空题13.将函数sin 23cos 2y x x =-的图象向左平移6π个单位长度,得到函数()y g x =的图象,则5()6g π__________.14.某篮球运动员在赛场上罚球命中率为23,那么这名运动员在赛场上的2次罚球中,至少有一次命中的概率为______.15.某单位有职工900人,其中青年职工450人,中年职工270人,老年职工180人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为10人,则样本容量为________.16.在[0,1]上随机取两个实数,a b ,则,a b 满足不等式221a b +≤的概率为________. 17.阅读如图所示的程序框图,运行相应的程序,则输出n 的值为___________18.执行如图所示的程序框图,输出的S值为__________.19.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.20.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.三、解答题21.为了减轻家庭困难的高中学生的经济负担,让更多的孩子接受良好的教育,国家施行高中生国家助学金政策,普通高中国家助学金平均资助标准为每生每年1500元,具体标准由各地结合实际在1000元至3000元范围内确定,可以分为两或三档.各学校积极响应政府号召,通过各种形式宣传国家助学金政策.为了解某高中学校对国家助学金政策的宣传情况,拟采用随机抽样的方法抽取部分学生进行采访调查.(1)若该高中学校有2000名在校学生,编号分别为0001,0002,0003,…,2000,请用系统抽样的方法,设计一个从这2000名学生中抽取50名学生的方案.(写出必要的步骤) (2)该校根据助学金政策将助学金分为3档,1档每年3000元,2档每年2000元,3档每年1000元,某班级共评定出3个1档,2个2档,1个3档,若从该班获得助学金的学生中选出2名写感想,求这2名同学不在同一档的概率.22.随着智能手机的发展,各种“APP”(英文单词Application 的缩写,一般指手机软件)应运而生.某机构欲对A 市居民手机内安装的APP 的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP 的个数,整理得到如图所示频率分布直方图.(Ⅰ)求a 的值;(Ⅱ)从被抽取安装APP 的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP 的个数都低于60的概率;(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A 市使用智能手机的居民手机内安装APP 的平均个数在第几组(只需写出结论). 23.随着手机的普及,大学生迷恋手机的现象非常严重.为了调查双休日大学生使用手机的时间,某机构采用不记名方式随机调查了使用手机时间不超过10小时的50名大学生,将50人使用手机的时间分成5组:(]0,2,(]2,4,(]4,6,(]6,8,(]8,10分别加以统计,得到下表,根据数据完成下列问题: 使用时间/时 (]0,2(]2,4(]4,6(]6,8(]8,10大学生/人51015128(1)完成频率分布直方图,并根据频率分布直方图估计大学生使用手机时间的中位数(保留小数点后两位);(2)用分层抽样的方法从使用手机时间在区间(]0,2,(]2,4,(]4,6的大学生中抽取6人,再从这6人中随机抽取2人,求这2人取自不同使用时间区间的概率.24.(1)用秦九韶算法求多项式5432()54323f x x x x x x =++++-当2x =时的值; (2)用辗转相除法或更相减损术求81和135的最大公约数.25.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为n )进行统计,按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出频率分布直方图,已知得分在[)50,60,[]90,100的频数分别为8,2.(1)求样本容量n 和频率分布直方图中的,x y 的值; (2)估计本次竞赛学生成绩的中位数;(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[]90,100内的概率.26.为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高()x cm 和体重()y kg 数据如下表所示: 编号 1 2 3 4 5 6 7 8 身高/x cm164160158172162164174166体重/y kg60 46 43 48 48 50 61 52该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.(1)调查员甲计算得出该组数据的线性回归方程为ˆˆ0.7yx a =+,请你据此预报一名身高为176cm 的女高中生的体重;(2)调查员乙仔细观察散点图发现,这8名同学中,编号为1和4的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为176cm 的女高中生的体重; (3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.附:对于一组数据()()()1122,,,,,,n n x y x y x y L ,其回归方程ˆˆˆybx a =+的斜率和截距的最小二乘法估计分别为:()()()121ˆˆ,niii nii x x y y b ay bx x x ==--==--∑∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据二项式5(2)x +展开式的通项公式,求出3x 的系数,由已知先求a 的值,模拟程序的运行,可得判断框内的条件. 【详解】解:由于32300(21)|6a x dx x x =-=-=⎰,Q 二项式5(2)x -展开式的通项公式是5152r r r r T C x -+=⋅⋅,令3r =,3233152T C x +∴=⋅⋅;3x ∴的系数是32352140C ⋅⋅=.∴程序运行的结果S 为360,模拟程序的运行,可得6k =,1S = 不满足条件,执行循环体,6S =,5k = 不满足条件,执行循环体,30S =,4k = 不满足条件,执行循环体,120S =,3k = 不满足条件,执行循环体,360S =,2k =由题意,此时,应该满足条件,退出循环,输出S 的值为360. 则判断框中应填入的关于k 的判断条件是3k <? 故选A . 【点睛】本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.2.C解析:C 【解析】 【分析】直接根据程序框图依次计算得到答案. 【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<, 不满足条件0t >,1t =,满足条件()()250t t +-<, 满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7. 故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.3.B解析:B 【解析】 【分析】根据题意可知该程序运行过程中,95i =时,判断框成立,191i =时,判断框不成立,即可选出答案。