第2章+单晶电子衍射图的分析及标定
- 格式:ppt
- 大小:3.66 MB
- 文档页数:38
钢铁研究总院特殊钢研究所不锈钢研究室单晶电子衍射谱标定入门编写:朱玉亮前言作为材料分析的重要手段,透射电镜电子显微分析具有能够将材料的晶体结构分析与其微观形貌观察相结合的优点,因而在材料的研究中得到了广泛的应用。
但也正是因为涉及到材料结构问题,使得电子衍射分析不同于常规的扫描电镜等材料微观形貌分析手段,研究者必须具备一定的理论基础知识。
电子衍射分析涉及到的基础理论涵盖晶体学、衍射学等内容,其中包括倒易点阵、结构因子等诸多概念。
对于初次接触电子衍射的研究者而言,这些理论往往难以在短时间内掌握。
但运用电子衍射的目的主要是为了确定某些物相,而确定物相的过程主要是对单晶电子衍射谱进行标定,相对而言这是较为容易掌握的。
并且掌握这一技能也有助于进一步理解电子衍射的基本理论。
电子衍射标定物相的依据在于,对于某种物相,其特定指数晶面具有特定的晶面间距;而不同的物相其同一晶面指数的晶面间距是不同的。
在标定单晶电子衍射谱之前,需要明确两点:1、衍射谱中每一个衍射斑代表晶体中的一个衍射晶面,衍射谱的中央最亮斑点为透射斑,其余斑点为衍射斑;2、衍射谱中由透射斑指向任一衍射斑构成一个向量,该向量的方向与其所对应的一组平行晶面的方向相同,其长度与该晶面组中相邻晶面的间距成反比。
本文适于作为初学电子衍射标定的基础参考资料。
对于电子衍射具体理论的学习,有大量可供参考的文献专著,本文在最后也列出了部分可供参考的相关文献及著作。
由于编者知识水平有限,对于文中出现的错误,敬请谅解。
图2 扫描仪扫描出来的透射照片 a 原始扫描照片;b 反相处理后图1 电子衍射花样形成原理 1. 电子衍射基本公式电子衍射花样形成原理图如1所示,图中OO*为电子入射方向,O 点为透射试样所在位置。
球O 是半径为1/λ的反射球(也叫爱瓦尔德球,Ewald Sphere )。
O*G*为满足布拉格方程的衍射面所对应的倒易矢量。
O’为照相底片中的透射斑,G’为OG*衍射线投影在底片上的衍射斑。
第二章 电子衍射谱的标定2. 1透射电镜中的电子衍射透射电镜中的电子衍射基本公式为:λL Rd =R 为透射斑到衍射斑的距离(或衍射环半径),d 为晶面间距,λ为电子波长,L 为有效相机长度。
p i M M f L 0=0f 为物镜的焦距,i M 中间镜放大倍数,p M 投影镜的放大倍数,在透射电镜 的工作中,有效的相机长度L ,一般在照相底板中直接标出,各种类型的透射电镜标注方法不同,λ为电子波长,由工作电压决定,工作电压一般可由底板标注确定,对没有标注的早期透射电镜在拍摄电子衍射花样时,记录工作时的加速电压,由电压与波长对应表中查出λ。
K L =λK 为有效机相常数,单位A mm ,如加速电压U =200仟伏,则A 21051.2-⨯=λ,若有效相机长度mm L 800=,则A mm K 08.201051.28002=⨯⨯=-透射电镜的电子衍射有效相机常数确定方法: 电子衍射有效相机常数确定方法,一般有三种方法 ①按照相底片直接标注计算:H -800透射电镜的电子衍射底片下方有一列数字,如: 0.80 91543 4A 90.5.21; 0.80表示有效相机长度mm M L 8008.0==,91543为片号,4A 其A 表示工作电压200千伏查表知电子波长A 21051.2-⨯=λ则有效相机常数K 为:A mm L K 08.201051.28002=⨯⨯==-λH -800透射电镜中,电子衍射底片第一个数字为相机长度如:0.80,0.40,……第三个数字为工作电压U ,分别为4A ,4b ,4c ,4d ,相对应的工作电压分别为200,175,150,100千伏,对应的电子波长分别为:22221070.3,1095.2,1071.2,1051.2----⨯⨯⨯⨯埃。
由电镜有关参数确定的相机常数是不精确的,常因电镜中电气参数变化而改变,产生一些误差,电镜工作者常要根据经验作些修正。
②用金Au 多晶环状花样校正相机常数例如喷金Au 多晶样品在H -800透射电镜下拍摄多晶环状花样,如照片上标注为0.40 92298 4A 90.11.21知有效相机长度L =0.4M =400mm工作电压为200仟伏 电子波长为:A 21051.2-⨯=λ由仪器确定的相机常数A mm L K 04.10==λ测量底片上4个以上环半径K d R i =计算出相应的i d查面心立方Au 的d 值表,找出与上述i d 相近的d 及其晶面指数d i 2.231 1.912 1.385 1.181 d hkl 2.335 2.039 1.442 1.230 hkl1110020221.13按公式R i d hkl =K i 求相应的K iR i 4.5 5.25 7.25 8.5 d hkl 2.335 2.039 1.442 1.230 hkl10.6010.7010.5010.50精确的相机常数K 为K i 的平均值44321k k k k K +++==450.1050.1070.1060.10+++=A mm 58.10③已知晶体标准电子衍射谱确定相机常数铝单晶典型电子衍射花样,铝为面心立方,与标准电子衍射谱比较,对电子衍射班点标定分别为:h i k i l i 111 111 220R i 即中心斑点到最邻近衍射斑点距离分别为: R i 9.6 9.6 9.6 16 利用A 1的d 值表查出d hkl)(mm R i 4.55.25 7.25 8.5 )(A d i2.2311.9121.3851.181hkl 111 111 220d hkl 2.338 2.338 1.432按公式hkl i i d R K =求K i R i (mm ) 9.6 9.6 16)(A d hkl 2.238 2.238 1.432K i 22.8 22.8 22.9求K i 平均值 3321k k k K ++=39.228.228.22++=K=A mm 8.222.2多晶环状花样电子衍射分析多晶电子衍射环状花样的R 2比值规律: 立方晶系:K Rd = ∴dKR =K 为相机常数,d 为晶面间距,R 为环半径。
TEM分析中电子衍射花样的标定原理第一节 电子衍射的原理1.1 电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2 电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。
TEM分析中电子衍射花样的标定原理第一节 电子衍射的原理1.1 电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2 电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。
钢铁研究总院特殊钢研究所不锈钢研究室单晶电子衍射谱标定入门编写:朱玉亮前言作为材料分析的重要手段,透射电镜电子显微分析具有能够将材料的晶体结构分析与其微观形貌观察相结合的优点,因而在材料的研究中得到了广泛的应用。
但也正是因为涉及到材料结构问题,使得电子衍射分析不同于常规的扫描电镜等材料微观形貌分析手段,研究者必须具备一定的理论基础知识。
电子衍射分析涉及到的基础理论涵盖晶体学、衍射学等内容,其中包括倒易点阵、结构因子等诸多概念。
对于初次接触电子衍射的研究者而言,这些理论往往难以在短时间内掌握。
但运用电子衍射的目的主要是为了确定某些物相,而确定物相的过程主要是对单晶电子衍射谱进行标定,相对而言这是较为容易掌握的。
并且掌握这一技能也有助于进一步理解电子衍射的基本理论。
电子衍射标定物相的依据在于,对于某种物相,其特定指数晶面具有特定的晶面间距;而不同的物相其同一晶面指数的晶面间距是不同的。
在标定单晶电子衍射谱之前,需要明确两点:1、衍射谱中每一个衍射斑代表晶体中的一个衍射晶面,衍射谱的中央最亮斑点为透射斑,其余斑点为衍射斑;2、衍射谱中由透射斑指向任一衍射斑构成一个向量,该向量的方向与其所对应的一组平行晶面的方向相同,其长度与该晶面组中相邻晶面的间距成反比。
本文适于作为初学电子衍射标定的基础参考资料。
对于电子衍射具体理论的学习,有大量可供参考的文献专著,本文在最后也列出了部分可供参考的相关文献及著作。
由于编者知识水平有限,对于文中出现的错误,敬请谅解。
图2 扫描仪扫描出来的透射照片 a 原始扫描照片;b 反相处理后图1 电子衍射花样形成原理 1. 电子衍射基本公式电子衍射花样形成原理图如1所示,图中OO*为电子入射方向,O 点为透射试样所在位置。
球O 是半径为1/λ的反射球(也叫爱瓦尔德球,Ewald Sphere )。
O*G*为满足布拉格方程的衍射面所对应的倒易矢量。
O’为照相底片中的透射斑,G’为OG*衍射线投影在底片上的衍射斑。