北师大版九年级数学上册教案《反比例函数的应用》
- 格式:docx
- 大小:234.56 KB
- 文档页数:6
北师大版数学九年级上册5.3《反比例函数的应用》教学设计一. 教材分析北师大版数学九年级上册5.3《反比例函数的应用》是本册教材中的一个重要内容。
本节课主要让学生掌握反比例函数的图象和性质,以及如何运用反比例函数解决实际问题。
教材通过实例引导学生认识反比例函数的应用,培养学生的数学应用能力。
二. 学情分析九年级的学生已经掌握了函数的基本概念和一次、二次函数的图象及性质,具备了一定的函数知识基础。
但是,对于反比例函数的理解和应用,学生可能还存在一定的困难。
因此,在教学过程中,教师需要注重引导学生通过观察、操作、思考、交流等方式,深入理解反比例函数的图象和性质,提高学生的数学思维能力。
三. 教学目标1.理解反比例函数的图象和性质;2.学会如何运用反比例函数解决实际问题;3.培养学生的数学应用能力和团队协作能力。
四. 教学重难点1.反比例函数的图象和性质;2.反比例函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过实例引入反比例函数,激发学生的学习兴趣;2.引导发现法:引导学生观察、操作、思考,自主发现反比例函数的图象和性质;3.实践操作法:让学生通过实际问题,运用反比例函数解决问题;4.小组讨论法:培养学生的团队协作能力,提高学生的数学思维能力。
六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件;2.实例:准备一些实际问题,让学生运用反比例函数解决;3.练习题:准备一些练习题,巩固学生对反比例函数的理解。
七. 教学过程1.导入(5分钟)利用实例引入反比例函数,激发学生的学习兴趣。
例如,讲解一段路程不变,速度与时间的关系。
2.呈现(10分钟)展示反比例函数的图象和性质,引导学生观察、操作、思考,自主发现反比例函数的特点。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用反比例函数解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,巩固对反比例函数的理解。
第六章 反比例函数3反比例函数的应用一、 教学目标1. 能用反比例函数解决简单实际问题.2. 经历分析实际问题中两个变量之间的关系、建立反比例函数模型,进而解决问题的过程.3. 经历运用反比例函数解决实际问题的过程,进一步体会数学建模思想,培养学生数学应用意识.4. 渗透数形结合的思想方法,提高学生用函数观点解决问题的能力.二、 教学重难点重点:能用反比例函数解决简单实际问题.难点:经历分析实际问题中两个变量之间的关系、建立反比例函数模型,进而解决问题的过程.三、教学用具 多媒体等. 四、教学过程设计 【复习回顾】 教师活动:先提出问题,学生思考后回答问. 问题:还记得反比例函数的图象吗? 预设:反比例函数()0ky k x=≠ 的图象是双曲线. 提问1:反比例函数的图象的位置与k 有怎样的关系?预设:当k >0时,两支曲线分别位于第一、三象限内;当k <0时,两支曲线分别位于第二、四象限内. 提问2:反比例函数()0ky k x=≠图象的性质是怎样的呢?预设:反比例函数()0ky k x=≠ 的图象,当k >0时,在每一个象限内,y 的值随x 值的增大而减少;当k <0时,在每一个象限内,y 的值随x 值的增大而增大.【合作探究】 教师活动:将实际问题转化为数学问题,建立反比例函数模型,再根据反比例函数的相关知识解决问题.问题1:某科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积 S (m 2)的变化,人和木板对地面的压强 p (Pa)将如何变化?如果人和木板对湿地地面的压力合计600N ,那么(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板面积至少要多大?(4)在平面直角坐标系中,作出相应的函数图象.(5)请利用图象对(2)和(3)作出直观解释,并与同伴交流.预设:(1)600pS=,满足kyx=且k≠0的条件,所以p是S的反比例函数.(2)当S=0.2时,6006003000(p)0.2p a s===(3)当p≤6000时,6006000.16000Ss≥==所以木板面积至少要0.1m2.(4)函数图象:(5)问题(2)是已知图象上的某点的横坐标为0.2,求该点的纵坐标;问题(3)是已知图象上点的纵坐标不大于6000,求这些点所处位置及它们横坐标的取值范围.实际上这些点都在直线p=6000下方的图象上.【做一做】1.蓄电池的电压为定值,使用此电源时,电流I (A)与电阻R (Ω)之间的函数关系如图所示.(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?(2)如果以此蓄电池为电源的用电器电流不得超过10A ,那么用电器的可变电阻应控制在什么范围内?预设:(1)因为IR=U (U 为定值),把图象上的点A 的坐标(9,4)代入,得U =36.则这一函数的表达式为:36I R; (2)当I ≤10A 时,解得R ≥3.6 (Ω).所以可变电阻应不小于3.6Ω.2.如图,正比例函数y =k 1x 的图象与反比例函数 2k y =x的图象相交于A ,B 两点,其中点A 的坐标为(3 ,23).(1)分别写出这两个函数的表达式;(2)你能求出点B 的坐标吗?你是怎样求的? 预设:(1)把A 点坐标(3 ,23 )分别 代入y =k 1x 和2k y =x,解得k 1=2,k 2=6. 所以所求的函数表达式为:y =2x 和6y =x.【随堂练习】教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.某蓄水池的排水管每时排水8m3/h,6h可将满池水全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t与Q之间的函数关系式;(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m3/h,那么最少多长时间可将满池水全部排空?2.一个用电器的电阻是可调节的,其范围为110~220 Ω.已知电压为220 V.2 ()U PR(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围是多少?答案:1.解:(1)蓄水池容积为:8×6=48(m3)(2)由(1)可知Q·t=48 ,Q与t成反比例关系,所以Q增大时,t将减少.以思维导图的形式呈现本节课所讲解的内容.。
6.1反比例函数教学目标【知识与能力】1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力. 【过程与方法】通过对反比例函数的应用,培养学生解决问题的能力.【情感态度价值观】经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。
理解问题,并能综合运用所学的知识和技能解决问题.发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用.教学重难点【教学重点】用反比例函数的知识解决实际问题.【教学难点】如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题.教学方法教师引导学生探究法课前准备课件.教学过程Ⅰ.创设问题情境,引入新课[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?[生]是为了应用.[师]很好.学习的目的是为了用学到的知识解决实际问题.究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学.Ⅱ. 新课讲解某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?(2)当木板画积为0.2 m2时.压强是多少?(3)如果要求压强不超过6000 Pa,木板面积至少要多大?(4)在直角坐标系中,作出相应的函数图象.(5)请利用图象对(2)和(3)作出直观解释,并与同伴进 行交流.[师]分析:首先要根据题意分析实际问题中的两个 变量,然后看这两个变量之间存在的关系,从而去 分析它们之间的关系是否为反比例函数关系,若是 则可用反比例函数的有关知识去解决问题. 请大家互相交流后回答. [生](1)由p=S F 得p=S600 p 是S 的反比例函数,因为给定一个S 的值.对应的就有唯一的一个p 值和它对应,根据函数定义,则p 是S 的反比例函数. (2)当S=0.2 m 2时, p=2.0600=3000(Pa). 当木板面积为0.2m 2时,压强是3000Pa. (3)当p=6000 Pa 时, S=6000600=0.1(m 2). 如果要求压强不超过6000 Pa ,木板面积至少要0.1 m 2. (4)图象如下:(5)(2)是已知图象上某点的横坐标为0.2,求该点的纵坐标;(3)是已知图象上点的纵坐标不大于6000,求这些点所处的位置及它们横坐标的取值范围.[师]这位同学回答的很好,下面我要提一个问题,大家知道 反比例函数的图象是两支双曲线、它们要么位于第一、三象限,要么位于第二、四象限,从(1)中已知p =S600>0,所以图象应位于第一、三象限,为什么这位同学只画出了一支曲线,是不是另一支曲线丢掉了呢?还是因为题中只给出了第一象限呢?[生]第三象限的曲线不存在,因为这是实际问题,S 不可能取负数,所以第三象限的曲线不存在.[师]很好,那么在(1)中是不是应该有条件限制呢?[生]是,应为p =S600(S>0). 做一做1. 蓄电池的电压为定值.使用此电源时,电流I(A)与电阻 R(Ω)之间的函数关系如下图所示;(1)蓄电池的电压是多少?你能写出这一函数的表达式吗? (2)完成下表,并回答问题:如果以此蓄电池为电源的用电[师]从图形上来看,I 和R 之间可能是反比例函数关系.电压U 就相当于反比例函数中的k.要写出函数的表达式,实际上就是确定k(U),只需要一个条件即可,而图中已给出了一个点的坐标,所以这个问题就解决了,填表实际上是已知自变量求函数值. [生]解:(1)由题意设函数表达式为I =RU ∵A(9,4)在图象上, ∴U =IR =36. ∴表达式为I=R36. 蓄电池的电压是36伏.(2)表格中从左到右依次是:12,9,7.2,6736,4.5,3.6. 电源不超过10 A ,即I 最大为10 A ,代入关系式中得R =3.6,为最小电阻,所以用电器的可变电阻应控制在R ≥3.6这个范围内. 2.如下图,正比例函数y =k 1x 的图象与反比例函数y=xk 2的图象相交于A ,B 两点,其中点A 的坐标为(3,23).(1)分别写出这两个函数的表达式:(2)你能求出点B 的坐标吗?你是怎样求的?与同伴进行交流.[师]要求这两个函数的表达式,只要把A 点的坐标代入即可求出k 1,k 2,求点B 的 坐标即求y =k 1x 与y=xk 2的交点. [生]解:(1)∵A(3,23)既在y =k 1x 图象上,又在y =xk 2的图象上. ∴3k 1=23,23=32k . ∴k 1=2, k 2=6∴表达式分别为y =2x,y =x6. y=2x,(2)由 得2x=x6, y=x6 ∴x 2=3 ∴x=±3.当x=-3时,y=-23. ∴B(-3,-23).Ⅲ.课堂练习1.某蓄水池的排水管每时排水8 m 3,6 h 可将满池水全部排空. (1)蓄水池的容积是多少?(2)如果增加排水管,使每时的排水量达到Q(m 3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t 与Q 之间的关系式;(4)如果准备在5 h 内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?解:(1)8×6=48(m 3).所以蓄水池的容积是48 m 3.(2)因为增加排水管,使每时的排水量达到Q(m 3),所以将满池水排空所需的时间t(h)将减少.(3)t 与Q 之间的关系式为 t=Q48. (4)如果准备在5 h 内将满池水排空,那么每时的排水量至少为548=9.6(m 3). (5)已知排水管的最大排水量为每时12m 3,那么最少要1248=4小时可将满池水全部排空.Ⅳ.课时小结节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题. Ⅴ课后作业 习题6.4.补充题:为了预防“非典”,某学校对教室采用药熏消毒,已知药物燃烧时, 室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y 与x 成反比例 (如右图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为 ,自变量x 的取值范围为 ;药物燃烧后,y 关于x 的函数关系式为 .(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么? 答案:(1)y =43x , 0<x ≤8 y=x 48(2)30(3)此次消毒有效,因把y=3分别代入y=43x ,y=x 48,求得x =4和x =16,而16-4=12>10,即空气中的含药量不低于3毫克/m 3的持续时间为12分钟,大于10分钟的有效消毒时间.。
北师大版数学九年级上册5.3《反比例函数的应用》教学设计一. 教材分析北师大版数学九年级上册5.3《反比例函数的应用》是本册教材中的一个重要内容,主要让学生掌握反比例函数的图象和性质,以及如何利用反比例函数解决实际问题。
本节内容是在学生已经掌握了反比例函数的定义和基本性质的基础上进行学习的,通过本节课的学习,使学生能够进一步理解和掌握反比例函数,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对反比例函数也有了一定的了解。
但在实际应用反比例函数解决生活中的问题时,往往会因为对函数思想的理解不够深入而感到困惑。
因此,在教学过程中,需要教师引导学生将反比例函数与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解反比例函数的图象和性质。
2.学会如何利用反比例函数解决实际问题。
3.提高学生的数学应用能力。
四. 教学重难点1.反比例函数的图象和性质。
2.如何将反比例函数应用于实际问题中。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题,引导学生探索反比例函数的图象和性质;通过案例教学,使学生了解如何将反比例函数应用于实际问题中;通过小组合作,培养学生团队合作精神,提高学生的解决问题能力。
六. 教学准备1.准备相关的案例材料和实际问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾反比例函数的定义和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体展示反比例函数的图象,让学生观察和分析反比例函数的性质。
同时,教师给出一些实际问题,让学生尝试用反比例函数解决。
3.操练(10分钟)教师引导学生分组讨论,如何将实际问题转化为反比例函数问题。
学生在讨论过程中,教师给予指导和点拨。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成。
在学生解题过程中,教师巡回指导,帮助学生巩固反比例函数的应用。
北师大版数学九年级上册5.3《反比例函数的应用》说课稿一. 教材分析《反比例函数的应用》这一节内容是北师大版数学九年级上册第五章第三节的内容。
本节课的主要任务是让学生掌握反比例函数的应用,包括反比例函数的定义、性质以及如何解决实际问题。
通过本节课的学习,学生能够更好地理解反比例函数,并能够将其应用于解决生活中的实际问题。
二. 学情分析九年级的学生已经学习了函数的基本概念和性质,对函数有一定的认识和理解。
但是,对于反比例函数的理解可能还存在一些困难,特别是反比例函数的应用。
因此,在教学过程中,需要引导学生通过观察、分析和解决实际问题,来深入理解反比例函数的应用。
三. 说教学目标1.知识与技能:学生能够理解反比例函数的定义和性质,掌握反比例函数的应用方法。
2.过程与方法:学生能够通过观察、分析和解决实际问题,培养解决问题的能力。
3.情感态度与价值观:学生能够体验数学与生活的紧密联系,提高学习数学的兴趣。
四. 说教学重难点1.教学重点:反比例函数的定义和性质,反比例函数的应用。
2.教学难点:反比例函数的应用,如何将实际问题转化为反比例函数问题。
五.说教学方法与手段在本节课的教学过程中,我将采用问题驱动的教学方法,引导学生通过观察、分析和解决实际问题,来理解反比例函数的应用。
同时,利用多媒体教学手段,展示反比例函数的图像和实际问题的情境,帮助学生更好地理解和掌握反比例函数的应用。
六.说教学过程1.导入:通过展示一些实际问题,如广告费用与广告效果的关系,引导学生思考如何用数学模型来描述这种关系。
2.新课导入:介绍反比例函数的定义和性质,引导学生通过观察反比例函数的图像,理解反比例函数的特点。
3.实例讲解:通过解决实际问题,引导学生将实际问题转化为反比例函数问题,并运用反比例函数解决实际问题。
4.练习与讨论:学生分组讨论,尝试解决其他实际问题,教师进行指导和解答。
5.总结与拓展:总结本节课的学习内容,布置一些拓展性的练习,激发学生深入学习反比例函数的兴趣。
北京版数学九年级上册《19.6 反比例函数的图象、性质、应用》教学设计4一. 教材分析《19.6 反比例函数的图象、性质、应用》是北京版数学九年级上册的一章内容。
本章主要介绍了反比例函数的图象和性质,以及反比例函数在实际应用中的重要性。
通过本章的学习,学生能够理解反比例函数的概念,掌握反比例函数的图象和性质,并能运用反比例函数解决实际问题。
二. 学情分析学生在学习本章之前,已经掌握了函数的基本概念和图象,具备了一定的函数知识基础。
然而,对于反比例函数的理解和应用,学生可能存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对学生的困难进行针对性的教学。
三. 教学目标1.知识与技能:学生能够理解反比例函数的概念,掌握反比例函数的图象和性质,并能运用反比例函数解决实际问题。
2.过程与方法:学生能够通过观察、分析和操作,探索反比例函数的图象和性质,培养学生的观察能力和分析能力。
3.情感态度与价值观:学生能够体验数学与实际生活的联系,增强对数学的兴趣和信心。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数图象的特点和绘制方法。
3.反比例函数在实际应用中的解决方法。
五. 教学方法1.情境教学法:通过生活实例和实际问题,引发学生的兴趣和思考,引导学生主动探究反比例函数的图象和性质。
2.直观教学法:利用图形和动画等直观教具,帮助学生形象地理解反比例函数的概念和性质。
3.实践操作法:让学生通过实际操作和绘制反比例函数图象,加深对反比例函数的理解和应用。
六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件,包括图形、动画和实际问题等。
2.练习题:准备一些关于反比例函数的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔、直尺、圆规等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例或实际问题,引发学生的兴趣和思考,引导学生主动探究反比例函数的图象和性质。
例如,讲解反比例函数在物理学中的应用,如电流与电压的关系。
6.3 反比例函数的应用1.会根据实际问题中变量之间的关系,建立反比例函数模型;(重点)2.能利用反比例函数解决实际问题.(难点)一、情景导入我们都知道,气球内可以充满一定质量的气体.如果在温度不变的情况下,气球内气体的气压p (kPa )与气体体积V (m 3)之间有怎样的关系?你想知道气球在什么条件下会爆炸吗?二、合作探究探究点一:实际问题与反比例函数做拉面的过程中,渗透着反比例函数的知识.一定体积的面团做成拉面,面条的总长度y (m )是面条的粗细(横截面积)S (mm 2)的反比例函数,其图象如图所示:(1)写出y 与S 之间的函数表达式;(2)当面条的横截面积为1.6mm 2时,面条的总长度是多少米?(3)要使面条的横截面积不多于1.28mm 2,面条的总长度至少是多少米?解析:由题意可设y 与S 之间的函数表达式为y =kS,而P (32,4)为函数图象上一点,所以把对应的S ,y 的值代入函数表达式即可求出比例系数,从而得出反比例函数的表达式,最后根据反比例函数的图象和性质解题.解:(1)由题意可设y 与S 之间的函数关系式为y =k S .∵点P (4,32)在图象上,∴32=k4,∴k =128.∴y 与S 之间的函数表达式为y =128S (S >0);(2)把S =1.6代入y =128S中,得y =1281.6=80. ∴当面条的横截面积为 1.6mm 2时,面条的总长度是80m ;(3)把S =1.28代入y =128S,得y =100.由图象可知,要使面条的横截面积不多于1.28mm 2,面条的总长度至少应为100m.方法总结:解决实际问题的关键是认真阅读,理解题意,明确基本数量关系(即题中的变量与常量之间的关系),抽象出实际问题中的反比例函数模型,由此建立反比例函数,再利用反比例函数的图象与性质解决问题.探究点二:反比例函数与其他学科知识的综合某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干木块,构筑成一条临时近道.木板对地面的压强p (Pa )是木板面积S (m 2)的反比例函数,其图象如图所示.(1)请直接写出这一函数表达式和自变量的取值范围;(2)当木板面积为0.2m 2时,压强是多少?(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?解析:由于木板对地面的压强p (P a )是木板面积S (m 2)的反比例函数,而图象经过点A ,于是可以利用待定系数法求得反比例函数的关系式,进而可以进一步求解.解:(1)设木板对地面的压强p (Pa )与木板面积S (m 2)的反比例函数关系式为p =kS(S >0). 因为反比例函数的图象经过点A (1.5,400),所以有k =600.所以反比例函数的关系式为p =600S(S >0);(2)当S =0.2时,p =6000.2=3000,即压强是3000Pa ;(3)由题意知600S≤6000,所以S ≥0.1,即木板面积至少要有0.1m 2. 方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p =错误!,当压力F 一定时,p 与S 成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.三、板书设计反比例函数的应用⎩⎨⎧实际问题与反比例函数反比例函数与其他学科知识的综合经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.。
《反比例函数的应用》
本章内容属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域,是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,
并感受现实世界存在各种函数以及如何应用函数解决实际问题。
反比例函数是最基本的函数之一,是学习后续各类函数的基础。
它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。
函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
【知识与能力目标】
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程。
2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力。
【过程与方法目标】
通过对反比例函数的应用,培养学生解决问题的能力。
【情感态度价值观目标】
经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。
理解问题,并能综合运用所学的知识和技能解决问题.发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用。
【教学重点】
用反比例函数的知识解决实际问题。
【教学难点】
如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题。
课件。
内容:
什么是反比例函数?
反比例函数的图像是什么?
反比例函数的图像有什么性质?
1、反比例函数的定义:
(),,,0k x y y k k x
y x =
≠一般地如果两个变量之间的关系可以表示成为常数的形式那么称是的反比例函数。
2、反比例函数的图象和性质: 形状 反比例函数的图象是由两支曲线组成的。
因此称反比例函数的图象为双曲线;
位置 当k >0时,两支曲线分别位于第一,三象限内;当k <0时,两支曲线分别位于第二,四象限内。
增减性 反比例函数的图象,当k >0时,在每一象限内,y 随x 的增大而减小; 当k <0时,在每一象限内,y 随x 的增大而增大。
图象的发展趋势 反比例函数的图象无限接近于x ,y 轴,但永远达不到x ,y 轴,画图象时,要体现出这个特点。
对称性 反比例函数的图象是关于原点成中心对称的图形。
任意一组变量的乘积是一个定值,即xy =k 。
3、填表分析正比例函数和反比例函数的区别
二、探索新知
例1.已知k<0,则函数y1=kx,y2= -k
x
在同一坐标系中的图象大致是 ( )
答案:D
例2.已知k>0,则函数y1=kx与y2= k
x
在同一坐标系中的图象大致是 ( )
答案:C
例3.设x为一切实数,在下列函数中,当x减小时,y的值总是增大的函数是( ) (A)y = -5x-1
x
(B)y =
2
(C)y= -2x+2;
(D)y=4x。
答案:C
例4.已知y与x2 成反比例, 并且当x=3时,y=4。
解:设x2y=k,
因为x=3时y=4
所以9×4= k
所以k=36
当x=1.5时
y=36÷(1.5×1.5)=16
求x=1.5时y的值。
例5、设∆ABC中BC边的长为x(cm),BC上的高AD为y(cm). ∆ABC的面积为常数,已知y关于x的函数图象过点(3,4)。
(1) 求y关于x的函数解析式和∆ABC的面积?
(2)画出函数的图象。
并利用图象,求当2<x<8时y的取值范围。
解(1):设∆ABC的面积为S , 则1
2
xy=S
所以y= 2S x
因为函数图象过点(3,4)
所以 4= 2 3 S
解得S=6(cm²)
答:所求函数的解析式为y= 12
x
,∆ABC的面积为6cm²。
(2): k=12>0, 又因为x>0,所以图形在第一象限
用描点法画出函数
12
y
x
=的图象
当x=2时,y=6;
当x=8时,y= 3 2
例6、如图,点A在双曲线
1
y
x
=上,点B在双曲线3
y
x
=上,且AB∥x轴,C、D在
x轴上,若四边形ABCD为矩形,则它的面积为_________。
【思路点拨】延长BA与y轴相交于点E,则S矩形ABCD=S矩形BEOC-S矩形AEOD
【自主解答】延长BA交y轴于点E,由题意可得矩形AEOD的面积为1,矩形BEOC的面积为3,所以矩形ABCD的面积为3-1=2。
答案:2
三:课堂小结
活动内容:
(1)学习了反比例函数的应用;
(2)在应用反比例函数解决问题时,一定要注意以下几点:
①要注意自变量取值范围符合实际意义;
②确定反比例函数之前一定要考察两个变量与定值之间的关系;若k未知时应首先由已知条件求出k值;
③求“至少,最多”时可根据函数性质得到。
四:布置作业
略。
略。