岩土力学土的工程性质及分类
- 格式:pptx
- 大小:490.27 KB
- 文档页数:29
(一) 岩土工程地质分类按照GB 50007—2002《建筑地基基础设计规范》,作为建筑地基的岩土, 可分为岩石、碎石、砂土、粉土、黏性土和人工填土等。
1.岩石的分类岩石应为颗粒间牢固联结, 呈整体或具有节理裂隙的岩体。
岩石的分类有地质分类和工程分类。
地质分类主要根据岩石的成因, 矿物成分、结构构造和风化程度, 可用地质名称加风化程度表达, 如强风化花岗岩、微风化砂岩等。
岩石按成因的类型, 可分为岩浆岩(火成岩)、沉积岩(水成岩) 和变质岩三大类。
工程分类主要根据岩体的工程性状加以分类。
地质分类是一种基本分类, 工程分类是在岩石分类的基础上进行的。
(1)根据岩石的成因, 岩石可分为岩浆岩(火成岩)、沉积岩 (水成岩) 和变质岩三大类。
岩浆在向地表上升过程中, 由于热量散失逐渐经过分异等作用冷凝而成岩浆岩。
岩浆岩的分类见表Ⅰ-1。
表Ⅰ -1 岩浆岩的分类沉积岩是由岩石、矿物在内外力的作用下破碎成碎屑物质后,再经水流、风吹和冰川等的搬运、堆积在大陆低洼地带或海洋,再经胶结、压密等成岩作用而成的岩石。
沉积岩的分类见表Ⅰ-2。
表Ⅰ -2 沉积岩的分类变质岩是岩浆岩或沉积岩在高温、高压或其他因素作用下,经变质所形成的岩石。
变质岩的分类见表Ⅰ-3。
表Ⅰ -3 变质岩的分类(2)根据岩石的坚硬程度,岩石的分类见表Ⅰ-4。
表Ⅰ-4 岩石坚硬程度的划分(3)根据岩体完整程度的分类见表Ⅰ-5。
表Ⅰ -5 岩体完整程度划分注完整性指数为岩体纵波波速与岩块纵波波速之比的平方。
(4)根据岩体基本质量等级的分类见表Ⅰ-6。
表Ⅰ-6 岩体基本质量等级分类(5)根据风化程度,岩石的分类见表Ⅰ-7和表Ⅰ-8。
表Ⅰ -7 岩体风化带表Ⅰ-8 岩石按风化程度分类注 1.波速比Kv为风化岩石与新鲜岩石压缩波速度之比。
2.风化系数Kf为风化岩石与新鲜岩石饱和单轴抗压强度之比。
3.花岗岩类岩石,可采用标准贯入试验划分,N≥50为强风化;50>N≥30为全风化; N<30为残积土。
一、岩土体工程地质类型及特征岩土体工程地质类型的划分根据岩土体形成条件、结构、岩性、力学特性及工程地质特征的差别,可分为松散松软堆积层岩类、碳酸盐岩类及碎屑岩类3个岩体类型6个工程地质岩组。
(一)土体工程地质类型及物理力学特征此岩类的划分根据其结构特征、力学性质及工程特性分为中偏高压缩粘性土类岩组和低压缩碎石土类岩组2个工程地质岩组。
1、中偏高压缩粘性土类岩组(1)残坡积土(Q el+dl)残坡积层主要分布于沿线丘陵沟谷坡脚一带,多为紫红色、棕红色粉砂质粘土或浅黄色、灰黄色砂土、亚粘土、粉土夹(含)碎石,沿线厚度不一。
残坡积亚粘土天然含水量W18.8~24.00%,天然孔隙比e0.600~0.697,塑性指数Ip 8.4~12.6,液性指数I L 0.46~0.60为软塑状,凝聚力C26.6~45.1Kpa,内摩擦角φ10.1~18.7度,压缩系数a0.25~0.40为中~偏高压缩土类。
残坡积层的主要工程地质问题是湿陷变形、压缩沉降变形、蠕滑变形。
(2)冲洪积土(Q4al+pl)冲洪积层主要分布于河床、河滩上,为灰色、浅灰色亚粘土、粘土及褐灰色细、粉砂土及砂砾卵石层,厚度不一。
亚粘土天然含水量W21.7~26.50%,天然孔隙比e0.619~0.838,塑性指数Ip 8.4~14.6,液性指数I L 0.46~0.87为可塑状,凝聚力C12.9~32.2Kpa,内摩擦角φ7.0~10.3度,压缩系数a0.31~0.47为中~偏高压缩土类。
粘土天然含水量W28.8~34.30%,天然孔隙比e0.838~0.978,塑性指数Ip 20.0~21.3,液性指数I L 0.54~0.77为软塑状,凝聚力C22.6~54.7Kpa,内摩擦角φ10.0~10.3度,压缩系数a0.24~0.605为中~高压缩土类。
冲洪积层的主要工程地质问题是湿陷变形、压缩沉降变形、蠕滑变形。
2、低压缩碎石土类岩组崩坡积土(Q4col+dl)崩坡积层主要分布于斜坡边缘、高陡斜坡的坡脚处,碎块石成份与地层岩性有关,为黄灰、红褐色亚粘土夹块石、碎石。
岩土工程类别划分一、岩土工程的定义和作用岩土工程是土木工程的一个重要分支,主要研究地球岩石体与土壤体的性质、行为和相互作用,并运用这些知识解决岩土工程问题。
岩土工程在土木工程领域中起着重要的作用,涉及基础工程、地下工程、地质灾害防治等方面。
二、岩土工程的类别划分1. 岩土勘察工程岩土勘察工程是岩土工程的基础工作,它主要通过野外调查、室内试验和现场观测等手段,获取岩土体的地质、物理、力学等相关信息。
岩土勘察工程的主要内容包括地质勘察、岩土试验、地下水勘察等。
2. 岩土力学与岩土试验工程岩土力学是研究岩土体的力学性质和力学行为的学科,它是岩土工程的理论基础。
岩土试验工程则是通过实验手段,对岩土体的力学性质进行研究。
岩土力学与岩土试验工程的研究内容包括固结与压缩特性、强度与变形特性、渗流与渗透特性等。
3. 岩土结构工程岩土结构工程是指利用岩土体的特性进行工程建设的一门学科。
岩土结构工程的应用范围非常广泛,包括地基处理、边坡与挡土墙、基坑与支护、地下工程等。
岩土结构工程要求合理选择岩土材料和结构形式,保证工程的安全可靠。
4. 岩土地质工程岩土地质工程是指研究岩土体与地质环境相互作用,以及岩土体在地质环境中的行为和变形规律的学科。
岩土地质工程的研究内容包括地质灾害、地下水与地下水文、岩土体变形与破坏机理等。
岩土地质工程的目的是为了预测和防治地质灾害,保护人民生命财产安全。
5. 岩土工程材料与施工岩土工程材料与施工是指在岩土工程中使用的材料和施工方法的研究与应用。
岩土工程材料包括土壤、岩石、土工合成材料等,它们的性质和使用对工程的安全和可靠性具有重要影响。
岩土工程施工则是将岩土工程设计方案转化为实际工程的过程,包括土方开挖、地下连续墙施工、边坡加固等。
三、岩土工程的应用领域1. 岩土工程在基础工程中的应用岩土工程在基础工程中的应用非常广泛,包括地基处理、基础设计与施工、地基加固等。
合理的基础设计和施工可以保证建筑物的稳定性和安全性。
岩土工程类别划分岩土工程是土木工程的一个重要分支,主要研究地下土体和岩石的力学性质以及地下工程的设计与施工。
这个领域的研究涉及到多个专业知识,可以划分为以下几个类别:1. 岩土力学岩土力学是岩土工程的基础,它研究岩土体的物理性质、力学性质和变形特性,以及岩土体在外力作用下的力学行为。
岩土力学的研究内容包括岩土体的物理力学性质、强度特性、变形特性、渗流特性等。
在工程实践中,岩土力学的研究成果被广泛应用于地下工程的设计与施工,如基础工程、地铁隧道、水利工程等。
2. 地质勘探地质勘探是岩土工程中必不可少的环节,它主要通过野外地质勘探和室内地质试验,获取有关地下土体和岩石的物理性质、力学性质和工程地质特征的信息。
常用的地质勘探方法包括地质勘探钻探、地质雷达探测、地震勘探等。
地质勘探的结果对于地下工程的设计和施工具有重要的指导作用。
3. 岩土工程设计岩土工程设计是指根据地下土体和岩石的力学性质和工程地质条件,结合工程需求和安全要求,进行地下工程的设计。
岩土工程设计的内容包括地基与基础设计、地下结构设计、边坡设计等。
在设计过程中,需要综合考虑地下土体和岩石的承载力、变形性、渗流性以及与地下结构之间的相互作用等因素。
4. 地下工程施工地下工程施工是将岩土工程的设计方案转化为实际工程的过程。
地下工程施工包括地下开挖、支护、地下结构施工等。
在地下工程施工中,需要合理选择施工方法和施工工艺,以确保地下工程的安全性和稳定性。
此外,地下工程施工还需要根据实际情况进行现场监测和控制,及时调整施工方案。
5. 岩土工程灾害与防治岩土工程灾害与防治是岩土工程中的一个重要方向,主要研究岩土工程中可能出现的灾害形式和机理,以及相应的防治措施。
岩土工程灾害包括地质灾害(如滑坡、地面塌陷等)和工程灾害(如边坡失稳、基础沉降等)。
岩土工程灾害的发生会对工程造成严重的损失,因此需要在设计和施工中采取相应的防治措施,以减小灾害风险。
岩土工程作为土木工程的一个重要分支,对于保障工程的安全和稳定起着至关重要的作用。
第一章 土的物理性质和工程分类一、主要内容本章主要介绍土、土的描述以及土的基本物理参数指标,这些参数是本门课程及将来从事岩土工程实践必可少的。
作为岩土工程师,其主要的任务之一就是采集、分类和调查研究土的物理性质。
因此,本章的重点就是解决如何描述土,如何通过试验来确定其物性参数以及对土进行分类。
二、学习要求通过本章的学习,学生应该具备如下的基本技能:1.对土进行描述和分类;2.确定土体的粒径级配;3.确定土中的主要成分比例(三相组成);4.确定土的特性(粗粒土和细粒土)指标;5.确定最大干密度和最优含水量。
§1.1土的形成“土”一词在不同的学科领域有其不同的含义。
就土木工程而言,土是指覆盖在地表的没有胶结和弱胶结的颗粒堆积物,是在自然界漫长的地质年代内所形成的性质复杂、不均匀、各向异性且随时间在不断变化的地质体。
即使在同一场地,相距几厘米的土样之间也肯定不会具有相同的性质。
土与岩石的区分仅在于颗粒间胶结的强弱,所以,有时也会遇到难以区分的情况。
地球表面的 形状不同、大整体岩石 小不一的颗粒反过来土 岩石(沉积岩、变质岩) 工程上遇到的大多数土都是第四纪地质历史时期内所形成的。
一、风化作用及土的主要特点岩石的物理风化和化学风化形成了土。
风化过程包括物理风化和化学风化。
它们是同时进行而且是互相加剧发展的进程。
物理风化:由于物理作用(温度的变化、季节的变化、水的冻胀以及波浪的冲击、碰撞、摩擦等)使岩石块崩解为碎块和岩屑的过程。
物理风化作用只会引起岩石的机械破坏,大块岩体变成细小的颗粒,但其矿物成分仍与母岩相同,称为原生矿物。
这些颗粒之间存在着大量的孔隙,可以透水和透气,这是土的主要特征碎散性。
风化作用 破碎后受自然力作用在 不同环境沉积下来土 在很长的地质年代里,发生复杂物理化学变化、压密、岩化化学风化:母岩表面和碎散颗粒在与水、氧气、二氧化碳等的作用下受到的破坏作用。
化学作用:水解作用、水化作用、氧化作用、碳酸化以及溶解作用。
精华版土木工程地质知识点
1. 岩石分类:岩石可以分为三类:火成岩、沉积岩和变质岩。
火成岩是由熔岩或火山碎屑形成的,沉积岩是由沉积物(如泥、砂、碎屑)在地表形成的,变质岩是经过高温、高压和化学反应形成的。
2. 地层划分:地层是指用一定的标志将地壳分为一系列层,如亚古生代、古生代、中生代、新生代等。
地层可以根据动物化石和植物化石来划分。
3. 岩土工程性质:土体的性质包括密度、含水量、孔隙度、压缩性、剪切性等。
岩石的性质包括密度、硬度、强度、韧性等。
4. 断层和岩体结构:断层是地壳中的断裂带,经常伴随着地震。
岩体结构是指岩石的结构和构造,如节理、褶皱、岩脉等。
5. 地下水:地下水是地下岩层中的水,是地表径流和降水的一部分。
地下水对土木工程有很大影响,如渗透、涌泉、地基沉降等。
6. 岩土力学:岩土力学是研究岩土工程中各种力学问题的学科,包括土体的力学性质、岩石强度学、地质力学、地震工程等。
7. 岩土工程设计:岩土工程设计是指根据地质条件和建筑要求设计出合适的岩土工程方案,包括基础工程、地下工程、坡防护、挡土墙等。
8. 土壤改良和加固:土壤改良和加固是指对土体进行物理、化学或生物的改良,以改善土体性质或提高土体的承载能力。
常见的方法包括土壤稳定剂、灌浆加固、土钉墙等。
9. 矿产资源开采:矿产资源开采是指对地下矿物资源进行开采,包括金属矿、化学矿、煤炭等。
矿产资源开采对环境和生态造成的影响非常大。
10. 地质灾害:地质灾害是由地质因素引起的自然灾害,包括地震、滑坡、泥石流、崩塌等。
土木工程师需要考虑地质灾害对工程的影响,并采取相应的防护措施。
岩土工程分类岩土工程是工程建设领域中的一门重要学科,主要研究土壤和岩石的性质、工程应力、变形特性以及与工程结构的相互作用关系。
根据不同的分类标准,岩土工程可以分为多个不同的类别。
一、按工程性质分类1. 土木工程岩土工程土木工程岩土工程主要涉及土地基及其地下工程,如土地平整、路基建设、桥梁基础、隧道地基、水利工程的地基处理等。
在土木工程中,岩土工程师负责对地下土壤进行勘察、测试和分析,以确定合适的土壤改良方法以及地基处理方案。
2. 矿山岩土工程矿山岩土工程关注的是在矿山勘探、开采和处理过程中的地质灾害防治和矿山地下工程的设计与施工。
矿山岩土工程师需要研究矿山的地质特征、地下水的演变规律,以及地质灾害引起的矿山崩塌、岩爆、水灾等问题,提供相应的防治措施。
3. 市政岩土工程市政岩土工程主要包括城市道路、桥梁、地铁等基础设施的设计与施工。
岩土工程师需要对城市地下土壤的物理力学特性有深入的了解,以确保基础设施的安全可靠。
二、按岩石和土壤性质分类1. 土工岩土工程土工岩土工程主要研究土壤力学和土工材料科学,涉及土壤的力学性质、流体特性、渗透性等。
岩土工程师将利用这些知识,设计和施工土壤的加固、防护、排水等工程措施,以提高土壤的工程性能。
2. 岩石岩土工程岩石岩土工程关注的是岩石力学和岩石的工程应用。
岩石工程师需要研究岩石的物理力学特性、力学行为以及岩石中的断裂、变形和破裂等问题,为岩石工程的设计和施工提供科学依据。
三、按地质环境分类1. 深海岩土工程深海岩土工程是研究海底土壤和岩石的行为和特性,以及海底地质灾害的预防和控制措施。
深海岩土工程师需要开展深海地质勘察和测试,以确保海底基础设施的安全可靠性。
2. 冻土岩土工程冻土岩土工程主要研究寒冷地区的土壤和岩石在冻结和融化过程中的力学行为和变形特性。
岩土工程师需要考虑冻土层对工程结构的影响,设计和施工相应的措施,防止冻融作用对工程带来的不利影响。
3. 高原岩土工程高原岩土工程是在高原地区进行的岩土工程研究和设计,考虑高原地区的特殊地质环境和气候条件。
一建高频考点:岩土的分类和性能2019一级建造师正在备考中,考生要关注各科目的知识点,然后逐个击破。
为了帮助大家备考,小编整理了一建《建筑实务》高频考点:岩土的分类和性能,供大家参考!一、岩土的分类1.根据《建筑地基基础设计规范》GB50007-2001的分类方法,作为建筑地基的岩土,可分为岩石、碎石土、砂土、粉土、黏性土和人工填土;2.根据土方开挖难易程度不同,可将土石分为八类,分别为:一类土(松软土),二类土(普通土),三类土(坚土),四类土(砂砾坚土),五类土(软石),六类土(次坚石),七类土(坚石),八类土(特坚石)。
前四类为土,后四类为石。
二、岩土的工程性能岩土的工程性能主要是强度、弹性模量、变形模量、压缩模量、黏聚力、内摩擦角等物理力学性能,各种性能应按标准试验方法经过试验确定。
1.内摩擦角:土体中颗粒间相互移动和胶合作用形成的摩擦特性。
其数值为强度包线与水平线的夹角。
内摩擦角是土的抗剪强度指标,反映了土的摩擦特性。
2.土抗剪强度:是指土体抵抗剪切破坏的极限强度,包括内摩擦力和内聚力。
抗剪强度可通过剪切试验测定。
当土中某点由外力所产生的剪应力达到土的抗剪强度、发生了土体的一部分相对于另一部分的移动时,便认为该点发生了剪切破坏。
工程实践和室内试验都验证了土受剪产生的破坏。
剪切破坏是强度破坏的重要特点,所以强度问题是土力学中最重要的基本内容之一。
3.土的干密度:单位体积内土的固体颗粒质量与总体积的比值,称为土的干密度。
干密度越大,表明土越坚实。
在土方填筑时,常以土的干密度控制土的夯实标准。
4.土的可松性:天然土经开挖后,其体积因松散而增加,虽经振动夯实,仍不能完全恢复到原来的体积,这种性质称为土的可松性。
它是挖填土方时,计算土方机械生产率、回填土方量、运输机具数量、进行场地平整规划竖向设计、土方平衡调配的重要参数。
以上就是小编分享的一建《建筑实务》高频考点:岩土的分类和性能,希望可以帮助到大家!。
一、岩土工程特性摘要:由于形成条件、形成年代、组成成分、应力历史不同,土的工程性质具有明显的区域性。
广阔的中国大陆上分布着各种各样的土,北部的黄土、南部的红土、中部的老粘土以及东南近海的海洋软土(包括沿海的软土)。
本文将以区域性不同土为依据,阐明我国不同区域土的工程性质的特性以及分析其差异性形成的原因。
前言我国大地上分布着各种具有地区特点的区域性土,其中最主有特色的是黄河以北的黄土、长江以南的红土、黄河长江之间的老粘土(胀缩性粘土和非胀缩胀性的下蜀粘土)以及东南沿海的海洋土。
这些“区域性土”有着不同于一般粘性土的比较特殊的工程特性,如黄土的湿陷性、红土的高强度、粘土的胀缩性和海洋土的高压缩性,这是大家所熟知的。
但这些土是怎么形成的,为什么有明显的区域性,则它们与本地区的气候条件、其形成年代、组成成分、应力历史都密切相关。
本文将对各类“区域性土”的分布和工程特性形成以及影响因素加以简单介绍。
1 粘土及其工程特性的介绍土是由固体(矿物、岩石碎屑)、水和气体组成的质地较松散的三相地质集合体。
固体颗粒、水和气体之间的比例关系随着周围条件的变化而变化。
土固体颗粒的大小、成分及三项之间的比例关系,反映出土的不同性质,如干湿、松密、轻重、软硬等等。
土的工程特性主要包括土的物理性质、土的水理性质以及土的力学性质。
其中,土的物理性质是指土体的成分、结构、可塑性和击实性等方面的特征。
而表征这些物理性质的指标多种多样,如:天然重度、干重度、含水量、孔隙度、含水比、相对密度、最大干密度等等。
土的水理性质是指土的渗透性、吸水或失水的胀缩性、浸水时的软化性和在水中的可溶性等方面的特征。
土的力学性质是指土在力的作用下变形和破坏特性,通常用压缩系数、压缩模量、变形模量、泊松比、固结系数、粘聚力等指标来表示土的力学特性。
2 不同区域土为何具有不同的工程性质无论是什么土,它们颗粒之间都存在着一定的“胶结联系”,所不同的只是“胶结联系”的材料性质和胶结强度有差异而已。
土石工程分类
土石工程是研究土壤和岩石的工程技术,主要包括以下几个分类:
1. 土工工程:主要研究土壤的力学性质和工程行为,包括土壤的物理性质、力学性质、水文性质等。
土工工程的主要任务是研究土壤的稳定性和可控性,以保证土体在工程中的稳定性和安全性。
2. 岩土工程:主要研究岩石和土壤的力学性质和水文性质,以及它们在工程中的行为。
岩土工程主要应用在土地基础工程、地下工程、地质灾害防治等方面,以确保工程的稳定性和安全性。
3. 地基处理工程:主要是指对土壤进行改良和处理的工程。
目的是提高地基的承载力、抗沉降能力、抗渗性和稳定性,以适应工程的需要。
地基处理常常包括填土、压实、加固等方法。
4. 地下工程:主要指在地下进行的工程,例如地下隧道、地下车库、地下水库等。
地下工程涉及到地下土壤和岩石的开挖、支护、加固等工程技术。
5. 地质灾害防治工程:主要是指对地质灾害进行预防和控制的工程。
地质灾害包括山体滑坡、地震、泥石流等,地质灾害防治工程通过采取措施,减轻灾害的影响和风险。
以上是土石工程的一些主要分类,根据实际情况和具体工程需求,还可以进一步细分和分类。
土的工程分类国家标准为统一土的工程分类,便于对土的性状作定性评价,我国制定了土的工程分类标准,下面我们一起来简单了解一下土的工程分类国家标准:1、为工程预算服务的分类:国家计划委于1986年10月1日发布的规定中,将土分为普通土、坚土、砂砾坚土三类。
2、为判定和评估岩土工程性质的分类:(1)根据土的颗粒级配、塑性指标等土的物理性质,可将土分为碎石类土。
粒径大于2毫米的颗粒含量超过全重的50%以上。
根据颗粒级配及形状又可分为漂石土、块石土、卵石土、碎石土、圆砾土和角砾土。
(2)砂土。
粒径大于2毫米的颗粒不超过全重的50%,塑性指数不大于3的土。
根据颗粒级配又可分为砂砾、粗砂、中砂、细砂和粉砂。
(3)粘性土:具有粘性和可塑性,塑性指数大于3的土。
第四纪晚更新及其以前沉积的粘性土为老粘土;第四纪全新世沉积的粘性土为一般黏土;文化期以来新沉积的粘性土称为新近沉积粘性土。
按土的塑性指数Ip有可分为黏土、亚黏土和轻亚黏土三种。
3、按工程性质分:可分为软土、人工回填土、黄土、膨胀土、红黏土及盐渍土等特殊土。
(1)软土。
在静水或缓慢的流水环境中沉积,经生物化学作用形成为饱和粘性土(2)人工回填土:由于人类活动而产生的堆积物,其物质成分一般较为杂乱,均匀性差。
由碎石土、砂土、男性土等一种或数种组成的称为素填土。
经过分层压实统称为压实填土。
大量含有垃圾、工业废料等杂物的称为杂填土。
(3)黄土:是在干燥气候条件下形成的一种具有灰黄色或棕黄色的特殊土,颗粒在0.05--0.005毫米的占总重量50%以上,质地均一,结构疏散,孔隙率很高,有肉眼可见的大孔隙,含碳酸钙10%左右,无沉积层理。
(4)膨胀土:粘粒成分主要由亲水性矿物质赞成,液限大于40%,切膨胀性能较大,自由膨胀率大于40%,是粘性土的特征之一。
在自然状态下,多呈硬塑性或坚硬状态,具有黄、红、灰白等色,(5)红黏土:又石灰岩、白云岩、泥灰岩等碳酸盐类岩石,经过风化过程后,残积,坡积形成褐红、棕红、黄褐等塑性黏土。