第10章 结构动力学
- 格式:doc
- 大小:3.83 MB
- 文档页数:21
在线测试题试题库及解答第十章结构动力学基础一、单项选择题1、结构的主振型与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A2、结构的自振频率与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A3、单自由度体系在简谐荷载作用下,下列哪种情况内力与位移的动力系数相同?A、均布荷载作用B、荷载作用在质点上与质点运动方向垂直C、荷载不作用在质点上D、惯性力与运动方向共线标准答案 D4、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D5、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D6、当简谐荷载作用于有阻尼的单自由度体系质点上时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、重力C、阻尼力D、惯性力标准答案 D7、设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是A、ω越大β也越大B、θ/ω越大β也越大C、θ越大β也越大D、θ/ω越接近1,β绝对值越大标准答案 D8、如果体系的阻尼增大,下列论述错误的是A、自由振动的振幅衰减速度加快B、自振周期减小C、动力系数减小D、位移和简谐荷载的相位差变大标准答案 B9、无阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力C、惯性力与弹性力的合力D、没有力标准答案 D10、有阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力与弹性力的合力C、惯性力D、阻尼力标准答案 D11、当简谐荷载作用于无阻尼的单自由度体系质点上时,若荷载频率远远小于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、阻尼力C、惯性力D、重力标准答案 A12、一单自由度振动体系,其阻尼比为ξ,动力系数β,共振时下列结果正确的是A、ξ=0.05,β=10B、ξ=0.1,β=15C、ξ=0.15,β=20D、ξ=0.2,β=25标准答案 A13、一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为A、ξ=0.05B、ξ=0.10C、ξ=0.15D、ξ=0.20标准答案 A14、在低阻尼体系中不能忽略阻尼对什么的影响?A、频率B、主振型C、周期D、振幅标准答案 D15、单自由度体系受简谐荷载作用,ω为体系自振频率,θ为荷载频率,动位移 y(t)与荷载 P(t) 的关系是A、当θ/ω>1时,y(t)与P(t)同向,当θ/ω<1时,y(t)与P(t)反向。
第10章动力学分析介绍在实际工程结构的设计工作中,动力学设计和分析是必不可少的一部分。
几乎现代的所有工程结构都面临着动力问题。
在航空航天、船舶、汽车等行业,动力学问题更加突出,在这些行业中将会接触大量的旋转结构例如:轴、轮盘等等结构。
这些结构一般来说在整个机械中佔有及其重要的地位,它们的损坏大部分都是由于共振引起较大振动应力而引起的。
同时由于处于旋转状态,它们所受外界激振力比较複杂,更要求对这些关键部件进行完整的动力设计和分析。
通常动力分析的工作主要有系统的动力特性分析(即求解结构的固有频率和振型),和系统在受到一定载荷时的动力响应分析两部分构成。
根据系统的特性可分为线性动力分析和非线性动力分析两类。
根据载荷随时间变化的关係可以分为稳态动力分析和瞬态动力分析。
谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。
可以用瞬态动力学分析确定结构在静载荷,瞬态载荷,和简谐载荷的随意组合作用下的随时间变化的位移,应变,应力及力。
而谱分析主要用于确定结构对随机载荷或随时间变化载荷的动力响应情况。
提供了强大的动力分析工具,可以很方便地进行各类动力分析问题:模态分析、谐响应分析、瞬态动力分析和谱分析。
动力学分析根据载荷形式的不同和所有求解的内容的不同我们可以将其分为:模态分析、谐响应分析、瞬态动力分析和谱分析。
下面将逐个给予介绍。
模态分析在动力学分析过程中是必不可少的一个步骤。
在谐响应分析、瞬态动力分析动分析过程中均要求先进行模态分析才能进行其他步骤。
模态分析用于确定设计机构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要引数。
同时,也可以作为其他动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析。
其中模态分析也是进行谱分析或模态叠加法谱响应分析或瞬态动力学分析所必需的前期分析过程。
ansys的模态分析可以对有预应力的结构进行模态分析和迴圈对称结构模态分析。
在线测试题试题库及解答第十章结构动力学基础一、单项选择题1、结构的主振型与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A2、结构的自振频率与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A3、单自由度体系在简谐荷载作用下,下列哪种情况内力与位移的动力系数相同?A、均布荷载作用B、荷载作用在质点上与质点运动方向垂直C、荷载不作用在质点上D、惯性力与运动方向共线标准答案 D4、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D5、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D6、当简谐荷载作用于有阻尼的单自由度体系质点上时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、重力C、阻尼力D、惯性力标准答案 D7、设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是A、ω越大β也越大B、θ/ω越大β也越大C、θ越大β也越大D、θ/ω越接近1,β绝对值越大标准答案 D8、如果体系的阻尼增大,下列论述错误的是A、自由振动的振幅衰减速度加快B、自振周期减小C、动力系数减小D、位移和简谐荷载的相位差变大标准答案 B9、无阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力C、惯性力与弹性力的合力D、没有力标准答案 D10、有阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力与弹性力的合力C、惯性力D、阻尼力标准答案 D11、当简谐荷载作用于无阻尼的单自由度体系质点上时,若荷载频率远远小于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、阻尼力C、惯性力D、重力标准答案 A12、一单自由度振动体系,其阻尼比为ξ,动力系数β,共振时下列结果正确的是A、ξ=0.05,β=10B、ξ=0.1,β=15C、ξ=0.15,β=20D、ξ=0.2,β=25标准答案 A13、一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为A、ξ=0.05B、ξ=0.10C、ξ=0.15D、ξ=0.20标准答案 A14、在低阻尼体系中不能忽略阻尼对什么的影响?A、频率B、主振型C、周期D、振幅标准答案 D15、单自由度体系受简谐荷载作用,ω为体系自振频率,θ为荷载频率,动位移 y(t)与荷载 P(t) 的关系是A、当θ/ω>1时,y(t)与P(t)同向,当θ/ω<1时,y(t)与P(t)反向。
第10章 结构动力学习 题10-5 试确定图示各体系的动力自由度,忽略弹性杆自身的质量。
(a) (b)EI 1=∞EImyϕ分布质量的刚度为无穷大,由广义坐标法可知,体系仅有两个振动自由度y ,ϕ。
(c)(d)在集中质量处施加刚性链杆以限制质量运动体系。
有四个自由度。
10-8 图示结构横梁具有无限刚性和均布质量m ,B 处有一弹性支座(刚度系数为k ),C 处有一阻尼器(阻尼系数为c ),梁上受三角形分布动力荷载作用,试用不同的方法建立体系的运动方程。
解:1)刚度法该体系仅有一个自由度。
可设A 截面转角a 为坐标顺时针为正,此时作用于分布质量m 上的惯性力呈三角形分布。
其端部集度为..ml a 。
取A 点隔离体,A 结点力矩为: (3)121233I M ml a l l mal =⨯⨯⨯=由动力荷载引起的力矩为:()()2121233t t q l l q l ⋅⋅= 由弹性恢复力所引起的弯矩为:.2133la k l c al ⋅⋅+ 根据A 结点力矩平衡条件0I p s M M M ++=可得:()3 (322)1393t q l ka m al l c al ++=整理得:()...33t q ka c a m a l l l++= 2)力法.cα解:取AC 杆转角为坐标,设在平衡位置附近发生虚位移α。
根据几何关系,虚功方程为:() (20111)0333l t q l l k l l l c m x xdx ααααααα-⋅-⋅-⋅=⎰则同样有:()...33t q ka c a m a ll l++=。
10-9 图示结构AD 和DF 杆具有无限刚性和均布质量m ,A 处转动弹簧铰的刚度系数为k θ,C 、E 处弹簧的刚度系数为k ,B 处阻尼器的阻尼系数为c ,试建立体系自由振动时的运动方程。
解:取DF 隔离体,0FM=∑:..2220.2322324a R a mx dx ka R ma ka αααα⋅=+⇒=+⎰取AE 隔离体:0A M =∑...32220430ak mx dx ca ka Ra θαααα++++=⎰将R 代入,整理得: ..32251504R ma ka k θααα=++= 10-10 试建立图示各体系的运动方程。
(a)解:(1)以支座B 处转角作为坐标,绘出梁的位移和受力图如下所示。
图中惯性力为三角形分布,方向与运动方向相反。
(t )..α(2)画出p M 和1M 图(在B 点处作用一附加约束)()324t l M α-()t pM3EI l1M(3)列出刚度法方程113EIk l=,()..3124p t m R l M α=-,1110p k R α+=代入1p R 、11k 的值,整理得:()..432472t M EIm l l αα+=(b) 解:11=21P =2l1M 图 2M 图试用柔度法解题此体系自由度为1 。
设质量集中处的竖向位移y 为坐标。
y 是由动力荷载()p t F 和惯性力矩I M 共同引起的。
11112()p t y M F δα=+ll 2m (t )l 2 l2由图乘法:321112233l l l EI EIδ=⋅=,312/252622248l l l l l l EI EI δ⎛⎫=⨯⋅+⋅=⎪⎝⎭ 惯性力矩为..m y l -,()33..5348p t l l y m yl F EI EI⎛⎫=⋅-+ ⎪⎝⎭经整理得,体系运动方程为:()..33516p t EI m y y F l +=。
10-11 试求图示各结构的自振频率,忽略杆件自身的质量。
(a)解:21M 图图乘得:31111225222223236a a a f a a a a EI EI⎛⎫=⨯⨯⨯⨯⨯+⨯⨯⨯=⎪⎝⎭ ω==(b)解:此体系为静定结构,内力容易求得。
在集中质量处施加垂直力P ,使质量发生竖向单位位移,可得弹簧处位移为23。
由此根据弯矩平衡可求得49Pk =。
ω== (c)解:可以将两个简支梁视为两个并联的弹簧。
上简支梁柔度系数为()332486l l EI EI =下简支梁柔度系数为396l EI于是两者并联的柔度系数为331696102l EI EI EI lδ==+并,ω==(d)解:在原结构上质量运动方向加上一根水平支杆后,施加单位水平位移后画得弯矩图如下。
水平支杆中力为33013EI l,即1133013EIk l=。
,ω=(e)忽略水平位移l 2 l 2 l2l 22aaa解:1M图22112455272213362a a af aEA EA EA⎛⎫⎛⎫=⨯⨯+⨯⨯+⨯=⎪ ⎪⎝⎭⎝⎭ω==(f)解:3323321M图2M图M图31312331323162130.0149743223323221933219364ll l l l l l lEI EIδ⎛⎫=⨯⨯⨯+⋅⋅⨯⨯+⨯⨯=⎪⎝⎭ω=10-15 设已测得某单自由度结构在振动10周后振幅由1.188mm减小至0.060mm,试求该结构的阻尼比ξ。
解:0475.006.0188.1ln201ln21==≈+ππξnkkyyn10-16 设有阻尼比ξ=0.2的单自由度结构受简谐荷载F P(t)=F tθsin作用,且有ωθ75.0=。
若阻尼比降低至ξ=0.02,试问要使动位移幅值不变,简谐荷载的幅值应调整到多大?解:2222222411ωθξωθω+⎪⎪⎭⎫⎝⎛-⋅=mFA已知ξ从0.2降低至0.02. ωθ75.0=,tFFθsin1=,A不变。
12222221827.016902.0416911692.041691FFFF=⇒⋅⋅+⎪⎭⎫⎝⎛-⋅⋅+⎪⎭⎫⎝⎛-=F简谐荷载的幅值应调整到0.827F。
10-19 试求图示梁在简谐荷载作用下作无阻尼强迫振动时质量处以及动力荷载作用点的动位移幅值,并绘制最大动力弯矩图。
设36mlEI=θ。
(a)解:由力法可知,单位荷载作用在B点引起33lEI位移。
tθsinll2l2ω==θ=()32221sin sin 31t F Fl y t t EI m θθθωω=⋅=--即幅值为33Fl EI当幅值最大时,弯矩也最大。
Flmax M 图(b)解:1M 图 2M 图(1)求结构运动方程如所示弯矩图,图乘后,333112212215,,24348l l l f f f f EI EI EI====()..11121112..3sin sin 245sin 2I t C y f F f F t f m y f F tEI F y y tm ml θθθ⎛⎫=+=-+ ⎪⎝⎭+=其中2*3245,2EI P F mlω==,稳态解:()*222331sin 1512 =sin 124145 =sin 36t CP y tm Flt EI Fl tEIθωθωθθ=⋅-⋅- 所示结构的运动方程为()35=sin 36t C Fl y t EI θ,C 点最大动位移幅值为3536Fl EI(2)求B 点的动位移反应()()..21222122sin sin I t B t B y f F f P t f m y f P t θθ⎛⎫=+=-+ ⎪⎝⎭()*2221sin 1t BP y t m θωθω=⋅-,()*..22221sin 1t BP y t m θθωθω=-⋅-2l 2l t θ sin()()32*212222232322232222235=sin 361sin 1551 =sin 48231251 =1sin 33217132 =3t C t B Fl y tEI y f P Pf tl lP P t EI EI Pl t EI Pl EI θθθωθωθθωθωθθωθωθ⎡⎤⎛⎫⎢⎥ ⎪⎢⎥ ⎪=⋅⋅+⎢⎥ ⎪- ⎪⎢⎥⎝⎭⎣⎦⎡⎤⎢⎥⋅⋅⋅+⎢⎥⎢⎥-⎢⎥⎣⎦⎛⎫ ⎪ ⎪⋅⋅+ ⎪- ⎪⎝⎭-22233sin 11214 =sin 31283121 =sin 288t Pl tEI Pl tEIωθθωθθ⎛⎫⎪ ⎪ ⎪- ⎪⎝⎭⋅⋅B 点的动位移幅值为3121288Pl EI(3)绘制最大动力弯矩图221M 图 2M 图 ()33max 2212135122812883696A Pl EI Pl EI M Pl EI EI l l =⨯+⨯= ()3max 212131212881922C Pl EI M Pl EI l =⨯=121192Pl 28196Pl最大动力弯矩图10-20 试求图示集中质量体系在均布简谐荷载作用下弹簧支座的最大动反力。
设杆件为无限刚性,弹簧的刚度系数为k 。
解:α若()t q 为静力荷载,弹簧中反力为ql 89。
已知图示体系为静定结构,具有一个自由度。
设为B 点处顺时针方向转角α为坐标。
建立动力方程:⎰=⋅+⋅+l xdx q l l k l m l l m l 230....2332322αααααααq k m l q l k l m 8989..2222..=+⇒=+αααααα2211ωθμ-=则弹簧支座的最大动反力为l 891122⋅-ωθ。
2l 2l l10-21 设图a 所示排架在横梁处受图b 所示水平脉冲荷载作用,试求各柱所受的最大动剪力。
已知EI =6×106N ·m 2,t 1=0.1s ,F P0=8×104N 。
(a)解:求排架自振频率,横梁无限刚性,则各排架水平侧移相同。
可将排架柱视为三个并联的弹簧。
边柱刚度柔数3313h EI k k == 中柱326h EI k =,312h EIk =并 s rad Nm m N m k /645.010800061061223326=⨯⋅⋅⨯⨯==ωs T 73.92==ωπ,3.97173.91.01==T t 数值很小 所以认为当()t P F 作用结束时,结构位移很小,弹性力忽略不计,于是根据动量守恒原理可得:sm v v Ft v m t t t /1051.010821108213141511-⨯=⇒⨯⨯⨯=⨯⇒=⋅再根据势能守恒得:()my y ky mv st stt 0077.0103121105108212121262352max 21=⇒⨯⨯⨯=⨯⨯⨯⨯⇒=- N k y F st Q 128310610077.06=⨯⨯=⋅=中中,N F F Q 中Q 边64221==10-22 设图a 所示排架横梁为无限刚性,并有图b 所示水平短时动力荷载作用,试求横梁的动位移。
(a) 解:在三角形冲击荷载作用下单自由度体系的质点位移反应可分两个阶段考虑。
第一阶段(10t t≤≤): ()()()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-=-=-=⎰⎰11111120100022sin 2sin 21sin 1 sin 1 sin sin 1t t t T t T y t t T t t T y t t t y t t t m F dZZ t t Z m F dZ Z t F m y s s s P t P tZ P t ππππωωωωωωωωω求T 的过程。