射频通信电路第六章 混频器 6-1-1
- 格式:ppt
- 大小:1.18 MB
- 文档页数:3
·171·6-1 为什么调幅,检波和混频都必须利用电子器件的非线性特性才能实现?它们之间各有何异同之处?分析 非线性器件可以产生新的频率分量,而调幅,检波和混频都为了产生新的频率分量。
调幅、检波和混频不同点是输入的信号不同,输出的滤波器不同。
解 由于调幅、检波和混频均属于频率变换,即输出信号中产生了新的频率分量,而线性器件不可能产生新的频率分量,只有利用非线性器件才能完成频率变换的功能。
调幅、检波和混频三者相同之处是都属于线性频率变换,即实现频谱搬移,它们实现的原理框图都可用下图表示。
非线性器件都可采用乘法器。
调幅、检波和混频不同点是输入的信号不同,输出的滤波器不同。
调幅输入的是调制信号()v t Ω和载波()o v t ,即1v =()v t Ω,2v =()o v t ,滤波器是中心频率为载波频率ω0的带通滤波器。
检波输入的是已调制的中频信号()i v t 和本地振荡信号()o v t ,即1v = ()i v t ,2v =()o v t ,滤波器是RC 低通滤波器。
混频输入的是已调制信号vs(t)和本地振荡信号()o v t ,即1v =()s v t ,2v =()o v t ,滤波器是中心频率为中频频率ωi 的带通滤波器。
·172·6-2 为什么调幅系数m a 不能大于1? 分析 调幅系数大于1,会产生过量调制。
解 若调幅系数ma>1,调幅波产生过量调制。
如下图所示,该信号传送到接收端经包络检波后使解调出的调制信号产生严重的失真。
6-3 试画下列调幅信号的频谱图,确定信号带宽,并计算在单位电阻上产生的信号功率。
(1) )V )(t (102cos )t 32002cos 1.0t 4002cos 2.01(20)t (6⨯π⨯π+⨯π+=v (2) )V (t 102cos t 6280cos 4)t (6⨯π=v分析 根据信号带宽公式和信号功率即可求得。
第六章混频器作业6-5、6-6 6.1 概述混频器的作用:①发射机---上变频器---将已调制中频信号搬移到射频②接收机---下变频器---将接收到的射频信号搬移到中频混频方法:①乘法器电路二极管--不需偏置,功耗低{②非线性器件场效应管—平方率,组合频率少双极晶体管混频原理(下变频为例):工作状态--线性时变()=cosω本LO振信号:v t V tLO LO()=cosω射频RF信号:v t V tRF RF1[()t()t] LO =cosω−ω+cosω+ωRF LO RF RF LO RF LOv v V V二者相乘:2中频信号调幅接收机混频器---结构框图、端口波形与频谱特征v(t) RFv(t)IF vRFvIFv v(t)LOLO混频实质---线性频谱搬移①时域特性---输出、输入波形包络相同,载波频率不同②频域特性---输出、输入频谱结构与带宽相同,载频不同混频器结构:三个端口---射频口、本振口、中频口混频器主要指标1. 增益变频增益---输出中频信号大小与输入射频信号大小之比表示形式:电压增益A V=V IF/V in功率增益G p=P IF/P in两者关系:2P V/R RG A===2===2IF IF L SP V2P V/R Rin RF S L 端口匹配:{R射频口源阻抗sR中频口负载阻抗L(1)射频口---①与低噪声放大器直连②前接滤波器(50Ω)(2)中频口---接中频滤波器(声表/介质/晶体---阻抗不同)混频器种类(按增益划分):①有源混频器---增益大于1②无源混频器---增益小于1---变频损耗---动态范围大2. 噪声混频器位于接收机前端,其噪声性能对系统影响大F1F1−−F F=++2 31G G G112噪声系数的计算:混频器是线性网络(对射频信号),可用线性网络公式计算(增益---变频增益)混频器噪声来源:(1)电路内部元器件噪声---由实际电路进行具体分析(2)输入信号伴随的噪声---①射频信号带内噪声②镜像带内噪声两种噪声系数定义:SSB 信号位于本振一侧,混频DSB信号位于本振两边,无镜像将信号带内噪声和镜像带内噪频率,混频只将信号带内噪声声都搬到中频,实测噪声系数搬移到中频,实测的噪声系数---单边(SSB)噪声系数---双边(DSB)噪声系数若两热噪声相同,混频器无噪若混频器无噪,信噪比不变输出信噪比降低3dB混频前频谱混频后频谱3. 失真与干扰非线性器件实现混频---利用非线性特性的平方项产生中频信号非线性器件高次方项---产生组合频率落在带内----干扰、失真(1)干扰哨声f混频器输入:射频信号RFf本振信号LO有用中频:f=−LOIF f fRFRF±=±Δ组合中频:pf qf f FLO IF单音频若组合中频落在有用中频带内:有用中频组合中频}ΔF送入解调器---输出音频信号含有---干扰哨声(2)寄生通道干扰f前提条件:输入射频有用信号, 伴有干扰信号RF f m有用中频:f IF=f RF−f LO--有用射频与本振产生--主通道中频qf±=LO pf fm IF组合中频:--干扰与本振产生--寄生通道中频--寄生通道干扰主要的寄生通道干扰:①中频干扰:f m=f IF(q=0,p=1)不经混频直通到输出端被混频器直接放大,增益比主通道变频增益大f=−q,1=1p= mf fLO IF②镜像频率干扰:()镜频干扰通过混频器,变频增益与主信号一样(3)互调失真条件:输入信号伴有多个干扰以两个干扰信号为例:有用射频信号:fRF射频干扰信号:f m、f1m2RF---互调干扰如出现组合频率()rf−≈m sf f1m2()IF---互调失真rf−−=m sf f f1m2LOn1=s+r+ 由非线性器件次方项产生当r+s=3影响最严重---三阶互调---次方项产生n4=三阶互调干扰信号与射频信号的关系:2m f f或f−≈1m2RF 2f−≈m f f2m1RF4. 线性指标非线性器件构成混频器---工作在线性时变状态---对小信号线性非线性器件小信号输入---混频器是线性网络输出中频信号幅度}成正比输入射频信号幅度较大信号输入---出现非线性失真衡量指标:(1)1dB 压缩点变频增益下降1dB时所对应的输入射频(或输出中频)信号功率(2)三阶互调截点条件:输入有用射频信号f RFf射频干扰信号和RF1fRF2fRF1fRF2假设输入射频及干扰信号幅度均相同有用信号中频:f IF=f RF−f LO三阶互调产生的中频信号:(2)f−f−f=fRF1RF2LO IF或()2RF f f ff−−=2FR1LO IF三阶互调中频功率=有用中频功率的点----三阶互调截点----IIP3、OIP3(3)线性动态范围定义:1dB 压缩点与混频器的基底噪声之比,用dB表示混频器位于低噪放后---线性范围要求比低噪放高5. 口间隔离①本振口射频口9影响LNA工作性能9影响本振工作性能②本振口中频口使中放过载甚至强信号阻塞③射频口中频口f>>RF fIF一般,可被滤除6. 阻抗匹配非线性器件对混频器三个口的阻抗要求:①匹配----最佳功率传输RF口/IF口必须与所接的滤波器匹配不同滤波器输入输出阻抗不同,如:声表面波滤波器:200欧陶瓷滤波器:330欧晶体滤波器:1000欧②每个口对另外两个口的信号力求短路----减少口间干扰6.2 有源混频器电路{单管跨导型混频器单平衡混频器双平衡混频器特征: 由双极型晶体管或场效应管构成实现原理基本相同,分析方法通用混频增益> 16.2.1 单管跨导型混频器1. 电路构成直流偏置原理电路2. 工作原理‰器件工作状态---线性时变v t VRF ()=cosω射频:RF RFt小信号v t VLO ()=cosω本振:LOV>>LO VRF线性时变的两要点:tLO大信号①时变---时变偏置控制时变跨导---称为跨导型混频器GSQ=−+GG LO GS=−++GG LO RFV(t)V v(t)时变偏置:v(t)V v(t)v(t)时变跨导:g m(t)--- ωLO的周期函数---傅氏展开:m0+ω+ω+=g g t g tm m1LO m2LOg(t)cos cos2......ππ110∫mgmi()cos=∫g tgm()=ωi td t ωωLO LOg t d tmπ2πLO−π−π②线性----漏极电流与小信号成线性iD射频小信号输入时,漏极输出电流:ωIF i I()()()D=+⋅0t g t v t Dm RF混频的实现:滤波ωRF±ω() g t⋅v t()1()()IFωωω=−中频LOm RFRF LO 11i t=g⋅Vω−ωt=g⋅Vωt()cos()cosIF m1RF RF LO m1RF IF221v t=g R⋅Vωt()cos输出中频电压:1IF m L RF IF2输出回路谐振阻抗V1A=IF=/=v g R V V g R1变频增益:m L RF RF fc LV2RFI1g==fc gIFm定义:1---变频跨导---射频电压变中频电流能力V2RF---时变跨导基频分量的一半‰变频跨导的求法①由器件的伏安特性曲线iD~v GS---平方律特征及跨导的定义di g=D m dvGS求出器件的g m~v GS关系曲线---线性特性g(t)m当v GS增大,受限为最大gm gm max②代入混频器的时变偏置GS=−+GG LOv(t)V v(t)直流偏置和本振幅度不同---变频跨导不同③通过曲线g m~v GS画出时变跨导的波形g(t)④由傅氏级数m gm(t)g(t)m求出基频分量幅度得到变频跨导:1g=gfc m12g m1变频跨导最大值:当V=GG VGG(off)LOm g m max Vg(t)且使达到最大值时m g m(t)=g m max⋅S1(ωLO t) g(t)变为方波,g=πm12g mmaxg(t)的基频分量最大mg=πfc gm max 最大变频跨导:3. 设计考虑(1)RF口和LO口的设计考虑问题----匹配RF和LO信号均由栅极输入,二者同时匹配很难----主要考虑RF口的匹配即混频器RF口与前级低噪放的匹配---保证小信号最佳传输匹配措施:①保证LO口耦合电容C很小,以使本振源不影响RF口参数G1②栅极输入电容并入低噪声放大器输出谐振回路FET混频器、放大器等效电路的差异?①输入阻抗1≈1 R+iωCωCRF GS RF GS r ds呈容性---相同输出阻抗输出阻抗②输出阻抗相同③等效电流源不同放大器----g vm gsg---跨导m混频器----g vfc gsg---变频跨导fc(2)偏置=−+ 时变偏置v GS(t)V GG v LO(t)v(t) 随本振电压变化时,LO应使管子工作在饱和区,i~D V维持平方率特性不变GS本振变化不能影响漏极电压保障措施---漏极对本振短路,即加LC串连回路漏极对本振的交流阻抗为0本振变化不影响漏极电压(3)输出回路中频输出回路功能:①选频滤波从含众多频率分量的漏极电流中选出中频信号同时对RF/LO信号短路②阻抗变换将后级中频电路的输入阻抗变换为漏级所须阻抗,获得适当增益(4)中频陷波若RF信号含中频干扰和噪声---直通---混频器相当中频放大器防止中频干扰和噪声直通的方法:FET的栅极应对中频短路---加中频串联回路---中频陷波器(5)本振注入方式①从栅极注入优点---需要的本振功率小缺点---LO 口与RF口的隔离差②从源极注入栅极直流偏压VGG = 0时变偏置=−=−v(t)V v(t)v(t)GS GG LO LOLO负半周,FET导通,正半周仍截止,跨导随本振时变,实现混频优点---LO 口与RF口的隔离加大缺点--- 对射频负反馈,使混频增益下降,RS本振源提供的功率比从栅极注入要大4. 双栅FET混频器‰电路特点①场效应管有两个栅极②本振信号接在靠近漏极的栅极G上2③射频信号接在靠近源极的栅极G上1④本振口和射频口分别与自己的源阻抗匹配⑤本振信号的栅极G2对中频短路⑥双栅管的漏极对本振和射频短路‰双栅FET混频器工作原理将双栅分解成两个场效应管9FET2工作特征①输入为本振信号v(t)LO②作为跟随器---源极输出跟随输入,即v DS1≈v LO(t) 9FET1工作特征①输入为射频信号v(t)RF1管工作在可变电阻区(条件vDS1足够小)②FETi≈β−D1n(v GS V GS th)v DS i v=v t1()1D1GS RF1()与成线性∂igβn v DS1v(t)===βD1FET1跨导:1∂n LOvGS1g=---时变跨导---重复频率ωLO1g(t)11g(t)9混频的实现i g(t)v g(t)v==D11GS11RF=β=βv v v vn DS1RF n LO RF包含有频率ω−RFωLO---实现了混频功能9中频输出混频电流经FET2到达中频输出端i(t)DFET2相当共栅中频放大器为获得足够增益要求G2对中频短路双栅FET混频器优点:---口间隔离好、易匹配、变频增益大。
第六章 定向耦合器、混合电桥与功率分配器§6.1 定向耦合器的基本概念微波定向耦合器是微波系统中应用最广泛的元件之一,它是个四端口网络。
其原理方框图如图(6.1-1)所示,图(a )是同向定向耦合器,图(b )是反向定向耦合器。
对于正向定向耦合器,它的工作过程是,当电磁波从端口1输入时,除了一部分电磁能量直接从端口4输出外,同时还有一部分电磁能量从端口3输出,而端口2无输出。
我们将端口3称为耦合口,端口2称为隔离口。
对于反向定向耦合器,当电磁波从端口1输入时,除了一部分电磁能量直接从端口4输出外,同时还有一部分电磁能量从端口2输出,而端口3无输出。
此时端口2为耦合口,端口3为隔离口。
图6.1-1 正向和反向定向耦合器显然,定向耦合器是是一个四端口网络,它的特性可用各种网络参数来描述,对于图(6.1-1)所示的定向耦合器,考虑到网络是互易,对称和无耗的,其散射矩阵为[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11121314121114131314111214131211s s s s s s s s s s s s s s s s s (6.1-1) 在理想情况下,定向耦合器的各端口都是匹配的,即044332211====s s s s对于图(6.1-1a )所示的正向定向耦合器,当1口输入时,2口没有输出,因此有012=s 根据无耗网络的[]s 矩阵的么正性,有⎪⎩⎪⎨⎧=+=+01*1314*1413214213s s s s s s (6.1-2) 此式表明,该网络的端口3和端口4的输出功率之和等于输入功率,而两个端口输出相位相差900。
由此可以看出,一个互易,无耗,完全对称的四端口网络,可以构成一个理想的900定向耦合器。
这样,正向定向耦合器的散射矩阵变为[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000001314141313141413s s s s s s s s s (6.1-3)同理,对于图(6.1-1b )的反向定向耦合器,其散射矩阵为[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000001214121414121412s s s s s s s s s (6.1-4) 式中12s 与14s 相位上相差900。