2019-2020学年新教材高中数学 模块综合检测 新人教A版必修第二册
- 格式:doc
- 大小:320.50 KB
- 文档页数:10
人教版高中数学必修精品教学资料模块综合试题时间:120分钟 分值:150分 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列命题正确的是( )A .四条线段顺次首尾连接,所得的图形一定是平面图形B .一条直线和两条平行直线都相交,则三条直线共面C .两两平行的三条直线一定确定三个平面D .和两条异面直线都相交的直线一定是异面直线解析:此题主要考查三个公理及推论的应用,两条平行线确定一个平面,第三条直线与其相交,由公理1可知,这三条直线共面,故B 正确.答案:B2.已知直线(a -2)x +ay -1=0与直线2x +3y +5=0平行,则a 的值为( )A .-6B .6C .-45D.45解析:由题意可知两直线的斜率存在,且-a -2a =-23,解得a =6. 答案:B3.圆台侧面的母线长为2a,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍.求两底面的面积之和是( )A .3πa 2B .4πa 2C .5πa 2D .6πa 2解析:设圆台上底面半径为r,则下底面半径为2r,如图所示,∠ASO =30°,在Rt △SA ′O ′中,r SA ′=sin30°,∴SA ′=2r.在Rt △SAO 中,2rSA =sin30°, ∴SA =4r.∴SA -SA ′=AA ′, 即4r -2r =2a,r =a.∴S =S 1+S 2=πr 2+π(2r)2=5πr 2=5πa 2. 答案:C4.若直线l 过点A(3,4),且点B(-3,2)到直线l 的距离最远,则直线l 的方程为( )A.3x-y-5=0 B.3x-y+5=0 C.3x+y+13=0 D.3x+y-13=0 解析:当l⊥AB时,符合要求.∵k AB=4-23+3=13,∴l的斜率为-3,∴直线l的方程为y-4=-3(x-3),即3x+y-13=0.答案:D5.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为()A. 3 B.2C. 6 D.2 3解析:直线方程为y=3x,圆的标准方程为x2+(y-2)2=4,圆心(0,2)到直线y=3x的距离d=|3×0-2|(3)2+(-1)2=1.故所求弦长l=222-12=2 3.答案:D6.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交B.平行C.异面D.以上都有可能题图答图解析:连接SG1,SG2并延长分别交AB于点M,交AC于点N.∵SG1G1M=SG2G2N,∴G1G2∥MN.∵M,N分别为AB,AC的中点,∴MN∥BC.故G1G2∥BC.答案:B7.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S1,S2,S3,则() A.S1<S2<S3B.S3<S2<S1C.S2<S1<S3D.S1<S3<S2解析:设棱锥的底面面积为S.由截面的性质,可知SS1=⎝⎛⎭⎪⎫2121=14S;SS2=212=12S;⎝⎛⎭⎪⎫SS33=213=134S,故S1<S2<S3.答案:A8.在圆的方程x2+y2+Dx+Ey+F=0中,若D2=E2>4F,则圆的位置满足()A.截两坐标轴所得弦的长度相等B.与两坐标轴都相切C.与两坐标轴相离D.上述情况都有可能解析:在圆的方程中令y=0得x2+Dx+F=0.∴圆被x轴截得的弦长为|x1-x2|=D2-4F.同理得圆被y轴截得的弦长为E2-4F=D2-4F.故选A.答案:A9.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②解析:由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一直角顶点与另一直角边中点的连线),故正视图是④;俯视图在底面射影是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.答案:D10.在正方体ABCD-A1B1C1D1中,E,F分别是正方形ADD1A1和正方形ABCD的中心,G是CC1的中点,设GF,C1E与AB所成的角分别为α,β,则α+β等于( )A .120°B .90°C .75°D .60°解析:根据异面直线所成角的定义知α+β=90°. 答案:B11.已知点P(x ,y)是直线kx +y +4=0(k>0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点.若四边形PACB 的最小面积是2,则k 的值为( )A. 2B.212 C .2 2 D .2 解析:圆心C(0,1)到l 的距离d =5k 2+1. ∴四边形面积的最小值为2(12×1×d 2-1)=2,∴k 2=4,即k =±2.又k>0,∴k =2. 答案:D12.在矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为( )A.125π12B.125π9C.125π6D.125π3 解析:取AC 的中点O.由O 到各顶点距离相等,知O 是球心. 设外接球的半径为R ,则2R =5,R =52.故外接球的体积V 球=43π⎝ ⎛⎭⎪⎫523=125π6.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为________.解析:由方程组⎩⎨⎧3x +4y -2=0,2x +y +2=0,得交点A(-2,2).因为所求直线垂直于直线3x -2y +4=0,故所求直线的斜率k =-23.由点斜式得所求直线方程为y -2=-23(x +2),即2x +3y -2=0.答案:2x +3y -2=014.长方体被一平行于棱的平面截成体积相等的两个几何体,其中一个几何体的三视图如图所示,则长方体的体积为________.解析:由三视图可知这个长方体的长、宽、高分别为3,4,4,所以长方体的体积为3×4×4=48.答案:4815.侧棱长为a的正三棱锥P-ABC的侧面都是直角三角形,且四个顶点都在一个球面上,则该球的表面积为________.解析:侧棱长为a的正三棱锥P-ABC其实就是棱长为a的正方体的一角,所以球的直径就是正方体的对角线,所以球的半径为3a,2该球的表面积为3πa2.答案:3πa216.若⊙O1:x2+y2=5与⊙O2:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是________.解析:由题知O1(0,0),O2(m,0),且5<|m|<35,又O1A⊥AO2,=4. 则有m2=(5)2+(25)2=25,得m=±5.故|AB|=2×5×205答案:4三、解答题(本大题共6小题,共70分)17.(10分)已知直线l平行于直线3x+4y-7=0,并且与两坐标轴围成的三角形的面积为24,求直线l的方程.解:设l:3x+4y+m=0.当y=0时,x=-m;3当x =0时,y =-m4.∵直线l 与两坐标轴围成的三角形面积为24, ∴12·|-m 3|·|-m 4|=24. ∴m =±24.∴直线l 的方程为3x +4y +24=0或3x +4y -24=0.18.(12分)已知一个组合体的三视图如图所示,请根据具体的数据,计算该组合体的体积.解:由三视图可知此组合体的结构为:上部是一个圆锥,中部是一个圆柱,下部也是一个圆柱,由题图中的尺寸可知:上部圆锥的体积V 圆锥=13π×22×2=8π3,中部圆柱的体积V 圆柱=π×22×10=40π,下部圆柱的体积V ′圆柱=π×42×1=16π,故此组合体的体积V =8π3+40π+16π=176π3.19.(12分)求过点A(-2,-4)且与直线l :x +3y -26=0相切于点B(8,6)的圆的方程.解:设所求圆的方程为x 2+y 2+Dx +Ey +F =0, 则圆心C(-D 2,-E2).∴k CB =6+E 28+D 2.∵k CB ·k l =-1,∴6+E 28+D 2·(-13)=-1.①又有(-2)2+(-4)2-2D -4E +F =0,② 82+62+8D +6E +F =0,③所以解①②③可得D =-11,E =3,F =-30. ∴所求圆的方程为x 2+y 2-11x +3y -30=0.20.(12分)如图,四棱锥P -ABCD 中,△PAB 是正三角形,四边形ABCD 是矩形,且平面PAB ⊥平面ABCD ,PA =2,PC =4.(1)若点E 是PC 的中点,求证:PA ∥平面BDE ;(2)若点F 在线段PA 上,且FA =λPA ,当三棱锥B -AFD 的体积为43时,求实数λ的值.解:(1)证明:如图(1),连接AC ,设AC ∩BD =Q ,连接EQ.因为四边形ABCD 是矩形,所以点Q 是AC 的中点.又点E 是PC 的中点,则在△PAC 中,中位线EQ ∥PA , 又平面BDE ,平面BDE ,所以PA ∥平面BDE.(2)依据题意可得:PA =AB =PB =2,取AB 中点O ,连接PO.所以PO ⊥AB ,且PO = 3.又平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,平面PAB ,则PO ⊥平面ABCD(如图(2));作FM ∥PO 交AB 于点M ,则FM ⊥平面ABCD.因为四边形ABCD 是矩形,所以BC ⊥AB.同理,可证BC ⊥平面PAB ,平面PAB ,则△PBC 是直角三角形.所以BC =PC 2-PB 2=2 3.则直角三角形ABD 的面积为S △ABD =12AB·AD =2 3.所以43=V B -AFD =V F -ABD =13S △ABD ·FM =233FM`FM =233.由FM ∥PO ,得FM PO =FA PA =2333==23.21.(12分)如图,在直角梯形ABCD 中,∠A =∠D =90°,AB<CD ,SD ⊥平面ABCD ,AB =AD =a ,SD =2a.(1)求证:平面SAB ⊥平面SAD.(2)设SB 的中点为M ,当CD AB 为何值时,能使DM ⊥MC ?请给出证明.解:(1)证明:∵∠BAD =90°,∴AB ⊥AD.又∵SD ⊥平面ABCD ,平面ABCD ,∴SD ⊥AB.又∵SD ∩AD =D ,∴AB ⊥平面SAD.又∵平面SAB ,∴平面SAB ⊥平面SAD.(2)当CD AB =2时,能使DM ⊥MC.证明:连接BD,∵∠BAD=90°,AB=AD=a,∴BD=2a,∠BDA=45°,∴SD=BD.又∵M为SB的中点,∴DM⊥SB.①设CD的中点为P,连接BP,∴DP∥AB,且DP=AB.故四边形ABPD是平行四边形.∴BP∥AD.故BP⊥CD.因而BD=BC.又∵∠BDC=90°-∠BDA=45°,∴∠CBD=90°,即BC⊥BD.又∵BC⊥SD,BD∩SD=D,∴BC⊥平面SBD.又∵平面SBD,∴DM⊥BC.②由①②知DM⊥平面SBC,又∵平面SBC,∴DM⊥MC.22.(12分)如图,已知圆心坐标为(3,1)的圆M与x轴及直线y =3x 分别相切于A ,B 两点,另一圆N 与圆M 外切,且与x 轴及直线y =3x 分别相切于C ,D 两点.(1)求圆M 与圆N 的方程;(2)过点B 作直线MN 的平行线l ,求直线l 被圆N 截得的弦的长度.解:(1)∵点M 的坐标为(3,1),∴M 到x 轴的距离为1,即圆M 的半径为1,则圆M 的方程为(x -3)2+(y -1)2=1.设圆N 的半径为r ,连接MA ,NC ,OM ,则MA ⊥x 轴,NC ⊥x 轴,由题意知:M ,N 点都在∠COD 的平分线上,∴O ,M ,N 三点共线.由Rt △OAM ∽Rt △OCN 可知,OM ON =MA NC ,即23+r =1r =3,则OC =33,则圆N 的方程为(x -33)2+(y -3)2=9.(2)由对称性可知,所求的弦长等于过A 点与MN 平行的直线被圆N 截得的弦的长度,此弦的方程是y =33(x -3),即x -3y -3=0,圆心N到该直线的距离d=3,2则弦长为2r2-d2=33.。
2019-2020学年高中数学 本册综合素质检测 新人教A 版必修2一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2012·湖北卷)已知某几何体的三视图如图所示,则该几何体的体积为( )A .8π3 B .3π C .10π3D .6π[命题意图] 本题考察空间几何体的三视图. [答案] B[解析] 显然有三视图我们易知原几何体为一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B .2.已知正方体外接球的体积是323π,那么正方体的棱长等于( )A .2 2B .223 C .423D .433[答案] D[解析] 设正方体的棱长为a ,球的半径为R ,则43πR 3=323π,∴R=2.又∵3a =2R =4,∴a=433.3.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0[答案] D[解析] 在所求直线上任取一点P(x ,y),则点P 关于直线x =1的对称点为P′(2-x ,y),且P′在直线x -2y +1=0上,即2-x -2y +1=0,整理得x +2y -3=0,故选D .4.在空间直角坐标系中,O 为坐标原点,设A(12,12,12),B(12,12,0),C(13,13,13),则( )A .OA⊥AB B .AB⊥AC C .AC⊥BCD .OB⊥OC[答案] C[解析] |AB|=12,|AC|=36,|BC|=66,因为|AC|2+|BC|2=|AB|2,所以AC⊥BC.5.若P(2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为( )A .x -y -3=0B .2x +y -3=0C .x +y -1=0D .2x -y -5=0[答案] A[解析] 设圆(x -1)2+y 2=25的圆心为C(1,0),则AB⊥CP, ∵k CP =-1,∴k AB =1,∴y+1=x -2, 即x -y -3=0,故选A .6.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是( )A .若m∥α,n∥α,则m∥nB .若α⊥γ,β⊥γ,则α∥βC .若m∥α,m∥β,则α∥βD .若m⊥α,n⊥α,则m∥n[答案] D[解析] A 中还可能m ,n 相交或异面,所以A 不正确;B 、C 中还可能α,β相交,所以B 、C 不正确.很明显D 正确.7.如图,在长方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱BB 1,B 1C 1的中点,若∠CMN=90°,则异面直线AD 1和DM 所成角为( )A .30°B .45°C .60°D .90°[答案] D[解析] 因为MN⊥DC,MN⊥MC,所以MN⊥平面DCM.所以MN⊥DM. 因为MN∥AD 1,所以AD 1⊥DM.8.(2012-2013·山东济宁模拟)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2)C .(-24,24) D .(-18,18)[答案] C[解析] 设直线l 的斜率为k ,则l 的方程为y =k(x +2),即kx -y +2k =0,由于l 与圆x 2+y 2=2x 有两个交点,则需满足圆心到直线的距离d =|3k|k 2+1<1,解得-24<k <24. 9.在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( )A .30°B .45°C .60°D .90°[答案] C[解析] 过A 作AE⊥BC 于点E ,则易知AE⊥面BB 1C 1C ,则∠ADE 即为所求, 又tan ∠ADE=AEDE=3,故∠ADE=60°.故选C .10.过点M(-2,4)作圆C :(x -2)2+(y -1)2=25的切线l ,且直线l 1:ax +3y +2a =0与l 平行,则l 1与l 间的距离是( )A .85B .25C .285D .125[答案] D[解析] 因为点M(-2,4)在圆C 上,所以切线l 的方程为(-2-2)(x -2)+(4-1)(y -1)=25,即4x -3y +20=0.因为直线l 与直线l 1平行, 所以-a 3=43,即a =-4,所以直线l 1的方程是-4x +3y -8=0, 即4x -3y +8=0.所以直线l 1与直线l 间的距离为|20-8|42+-2=125.故选D . 11.点P(4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y -1)2=4C .(x -4)2+(y -2)2=1D .(x -2)2+(y -1)2=1[答案] A[解析] 设圆上任意一点为(x 1,y 1),中点为(x ,y),则⎩⎪⎨⎪⎧x =x 1+42y =y 1-22,⎩⎪⎨⎪⎧x 1=2x -4y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.12.设P(x ,y)是圆x 2+(y +4)2=4上任意一点,则-2+-2的最小值为( )A .26+2B .26-2C .5D .6[答案] B[解析] 如图,设A(1,1),-2+-2=|PA|,则|PA|的最小值为|AC|-r =26-2.三、填空题(本大题共4小题,每小题5分,共20分)13.顺次连结A(1,0),B(1,4),C(3,4),D(5,0)所得到的四边形绕y 轴旋转一周,所得旋转体的体积是________.[答案]184π3[解析] 所得旋转体的上底、下底分别为3,5,高为4的圆台,去掉一个半径为1,高为4的圆柱.V 台=13(9π+9π×25π+25π)×4=196π3,V 柱=4π,则V =V 台-V 柱=184π3.14.经过点P(1,2)的直线,且使A(2,3),B(0,-5)到它的距离相等的直线方程为________.[答案] 4x -y -2=0或x =1[解析] x =1显然符合条件;当A(2,3),B(0,-5)在所求直线同侧时,所求直线与AB 平行,∵k AB =4,∴y-2=4(x -1), 即4x -y -2=0.15.圆x 2+y 2+Dx +Ey +F =0关于直线l 1:x -y +4=0与直线l 2:x +3y =0都对称,则D =________,E =________.[答案] 6 -2[解析] 由题设知直线l 1,l 2的交点为已知圆的圆心.由⎩⎪⎨⎪⎧x -y +4=0,x +3y =0,得⎩⎪⎨⎪⎧x =-3,y =1,所以-D 2=-3,D =6,-E2=1,E =-2.16.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为________.[答案] x +y -3=0[解析] 设圆心(a,0)(a >0), ∴(|a -1|2)2+(2)2=|a -1|2.∴a=3.∴圆心(3,0).∴所求直线方程为x +y -3=0.四、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)(2011·课标全国高考,文18)如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB =2AD ,PD⊥底面ABCD.(1)证明PA⊥BD;(2)设PD =AD =1,求棱锥D -PBC 的高. [解析] (1)证明:因为∠DAB=60°,AB =2AD , 由余弦定理得BD =3AD. 从而BD 2+AD 2=AB 2, 故BD⊥AD.又PD⊥底面ABCD ,可得BD⊥PD. 所以BD⊥平面PAD.故PA⊥BD.(2)如图,作DE⊥PB,垂足为E.已知PD⊥底面ABCD,则PD⊥BC.由(1)知BD⊥AD,又BC∥AD,所以BC⊥BD.故BC⊥平面PBD,所以BC⊥DE.则DE⊥平面PBC.由题设知PD=1,则BD=3,PB=2.根据DE·PB=PD·BD,得DE=32,即棱锥D-PBC的高为32.18.(本小题满分12分)如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.(1)求AD边所在直线的方程;(2)求矩形ABCD 外接圆的方程.[解析] (1)因为AB 边所在直线的方程为x -3y -6=0,且AD 与AB 垂直,所以直线AD 的斜率为-3.又因为点T(-1,1)在直线AD 上,所以AD 边所在直线的方程为y -1=-3(x +1),即3x +y +2=0.(2)由⎩⎪⎨⎪⎧x -3y -6=03x +y +2=0,解得点A 的坐标为(0,-2).因为矩形ABCD 两条对角线的交点为M(2,0),所以M 为矩形ABCD 外接圆的圆心.又r =|AM|=-2++2=2 2.所以矩形ABCD 外接圆的方程为(x -2)2+y 2=8.19.(本小题满分12分)已知圆的半径为10,圆心在直线y =2x 上,圆被直线x -y =0截得的弦长为42,求圆的方程.[解析] 方法一:设圆的方程是(x -a)2+(y -b)2=10.因为圆心在直线y =2x 上,所以b =2a. ①解方程组⎩⎪⎨⎪⎧x -y =0,-2+-2=10,得2x 2-2(a +b)x +a 2+b 2-10=0, 所以x 1+x 2=a +b ,x 1·x 2=a 2+b 2-102.由弦长公式得2·+2-2+b 2-=42,化简得(a -b)2=4. ②解①②组成的方程组,得a =2,b =4, 或a =-2,b =-4.故所求圆的方程是(x -2)2+(y -4)2=10, 或(x +2)2+(y +4)2=10.方法二:设圆的方程为(x -a)2+(y -b)2=10,则圆心为(a ,b),半径r =10,圆心(a ,b)到直线x -y =0的距离d =|a -b|2.由弦长、弦心距、半径组成的直角三角形得d 2+(422)2=r 2,即-22+8=10,所以(a -b)2=4.又因为b =2a ,所以a =2,b =4, 或a =-2,b =-4.故所求圆的方程是(x -2)2+(y -4)2=10, 或(x +2)2+(y +4)2=10.20.(本小题满分12分)(2012·山东卷)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.[解析](1)设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,又已知CE⊥BD,所以BD⊥平面OCE.所以BD⊥OE,即OE是BD的垂直平分线,所以BE=DE.(2)取AB中点N,连接MN,DN,∵M是AE的中点,∴MN∥BE,∵△ABD是等边三角形,∴DN⊥AB.由∠BCD=120°知,∠CBD=30°,所以∠ABC=60°+30°=90°,即BC⊥AB,所以ND∥BC,所以平面MND∥平面BEC ,故DM∥平面BEC.21.(本小题满分12分)在平面直角坐标系xOy 中,已知圆C 1:(x -4)2+(y -5)2=4和圆C 2:(x +3)2+(y -1)2=4.(1)若直线l 1过点A(2,0),且与圆C 1相切,求直线l 1的方程;(2)直线l 2的方程是x =52,证明:直线l 1上存在点P ,满足过P 的无穷多对互相垂直的直线l 3和l 4,它们分别与圆C 1和圆C 2相交,且直线l 3被圆C 1截得的弦长与直线l 4被圆C 2截得的弦长相等.[解析] (1)若直线斜率不存在,x =2符合题意; 当直线l 1的斜率存在时, 设直线l 1的方程为y =k(x -2), 即kx -y -2k =0, 由条件得|4k -5-2k|k 2+1=2, 解得k =2120,所以直线l 1的方程为x =2或y =2120(x -2),即x =2或21x -20y -42=0.(2)由题意知,直线l 3,l 4的斜率存在,设直线l 3的斜率为k ,则直线l 4的斜率为-1k ,设点P 坐标为(52,n),互相垂直的直线l 3,l 4的方程分别为:y -n =k(x -52),y -n =-1k (x -52), 即kx -y +n -52k =0,-1k x -y +n +52k=0,根据直线l 3被圆C 1截得的弦长与直线l 4被圆C 2截得的弦长相等,两圆半径相等.由垂径定理得:圆心C 1到直线l 3与圆心C 2到直线l 4的距离相等.故有⎪⎪⎪⎪⎪⎪4k -5+n -52k k 2+1=⎪⎪⎪⎪⎪⎪3k -1+n +52k 1k2+1,化简得(52-n)k =212-n 或(12+n)k =-n -12=-(12+n). 关于k 的方程有无穷多解,有12+n =0,即n =-12, 即直线l 2上满足条件的点P 是存在的,坐标是(52,-12). 22.(本小题满分12分)(2013·全国高考卷Ⅱ文科18题)如图已知三棱柱ABC -A 1B 1C 1中,D 、E 分别是AB 、BB 1的中点.(1)证明:BC 1∥面A 1CD 1;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.[解析] (1)连结AC 1交A 1C 于点F ,则F 为AC 1的中点,又D 是AB 中点,连结DF ,则BC 1∥DF,因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD.(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD,由已知AC =CB ,D 为AB 中点,所以,CD⊥AB,又AA 1∩AB=A ,于是CD⊥平面ABB 1A 1,由AA 1=AC =CB =2,AB =22得,∠ACB=90°,CD =2,A 1D =6,DE =3,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE⊥A 1D ,所以VC -A 1DE =13×12×6×3×2=1.。
模块综合测评(建议用时:120分钟)(教师独具)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.关于空间直角坐标系O -xyz 中的一点P (1,2,3)有下列说法: ①OP 的中点坐标为⎝ ⎛⎭⎪⎫12,1,32;②点P 关于x 轴对称的点的坐标为(-1,-2,-3); ③点P 关于坐标原点对称的点的坐标为(1,2,-3); ④点P 关于xOy 平面对称的点的坐标为(1,2,-3). 其中正确说法的个数是( )A .2B .3C .4D .1A [①显然正确;点P 关于x 轴对称的点的坐标为(1,-2,-3),故②错;点P 关于坐标原点对称的点的坐标为(-1,-2,-3),故③错;④显然正确.]2.直线的方程为x -3y +2 016=0,则直线的倾斜角为( ) A .30° B .60° C .120° D .150°A [设直线的倾斜角为α,则tan α=33,又α∈[0°,180°),∴α=30°.选A.]3.直线ax -y +2a =0与圆x 2+y 2=9的位置关系是( )【导学号:07742343】A .相离B .相切C .相交D .不确定C [将直线ax -y +2a =0化为点斜式得y =a (x +2),知该直线过定点(-2,0).又(-2)2+02<9,故该定点在圆x 2+y 2=9的内部,所以直线ax -y +2a =0与圆x 2+y 2=9必相交.故选C.]4.已知正方体外接球的体积是323π,那么正方体的棱长等于( )A .2 2B .223C .423D .433D [设正方体的棱长为a ,球的半径为R ,则43πR 3=323π,∴R =2.又∵3a =2R =4,∴a =433.]图15.如图1所示,在长方体ABCD -A 1B 1C 1D 1中,P 为BD 上任意一点,则一定有( )A .PC 1与AA 1异面B .PC 1与A 1A 垂直 C .PC 1与平面AB 1D 1相交 D .PC 1与平面AB 1D 1平行 D [连BC 1和DC 1(图略), ∵BD ∥B 1D 1,AB 1∥DC 1, ∴平面AB 1D 1∥平面C 1BD , 而PC 1⊂平面C 1BD , ∴PC 1∥平面AB 1D 1.选D.]6.直线2ax +y -2=0与直线x -(a +1)y +2=0互相垂直,则这两条直线的交点坐标为( )A .⎝ ⎛⎭⎪⎫-25,-65B .⎝ ⎛⎭⎪⎫25,-65C .⎝ ⎛⎭⎪⎫25,65D .⎝ ⎛⎭⎪⎫-25,65C [依题意得,2a ×1+1×[-(a +1)]=0,∴a =1, 代入方程可得⎩⎪⎨⎪⎧2x +y -2=0,x -2y +2=0,解得交点坐标为⎝ ⎛⎭⎪⎫25,65.选C.]7.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A.23B.76C.45D.56D [如图,去掉的一个棱锥的体积是13×⎝ ⎛⎭⎪⎫12×12×12×12=148,剩余几何体的体积是1-8×148=56.]8.一个动点在圆x 2+y 2=1上移动时,它与定点(3,0)连线中点的轨迹方程是( )A .(x +3)2+y 2=4B .(x -3)2+y 2=1C .⎝ ⎛⎭⎪⎫x +322+y 2=12D .(2x -3)2+4y 2=1D [设中点M (x ,y ),则动点A (2x -3,2y ), ∵A 在圆x 2+y 2=1上,∴(2x -3)2+(2y )2=1,即(2x -3)2+4y 2=1. 故选D.]9.已知定点P (-2,0)和直线l :(1+3λ)x +(1+2λ)y =2+5λ(λ∈R ),则点P 到直线l 的距离的最大值为( )A .2 3B .10C .14D .215B [将(1+3λ)x +(1+2λ)y =2+5λ变形,得(x +y -2)+λ(3x +2y -5)=0,所以l 经过两直线x +y -2=0和3x +2y -5=0的交点.设两直线的交点为Q ,由⎩⎪⎨⎪⎧x +y -2=0,3x +2y -5=0,得交点Q (1,1),所以直线l 恒过定点Q (1,1),于是点P 到直线l 的距离d ≤|PQ |=10,即点P 到直线l 的距离的最大值为10.]10.球O 的一个截面圆的圆心为M ,圆M 的半径为3,OM 的长度为球O 的半径的一半,则球O 的表面积为( )A .4πB .323π C .12πD .16πD [设截面圆的直径为AB ,∵截面圆的半径为3,∴BM =3,∵OM 的长度为球O 的半径的一半,∴OB =2OM ,设球的半径为R ,在直角三角形OMB 中,R 2=(3)2+14R 2. 解得R 2=4,∴该球的表面积为16π,故选D.]11.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是AB 、B 1C 的中点,则EF 与平面ABCD 所成的角的正切值为( )图2A .2B . 2C .12 D .22D [取BC 中点O ,连接OE , ∵F 是B 1C 的中点,∴OF ∥B 1B ,∴FO ⊥平面ABCD , ∴∠FEO 是EF 与平面ABCD 所成的角, 设正方体的棱长为2,则FO =1,EO =2, ∴EF 与平面ABCD 所成的角的正切值为22. 故选D.]12.过直线y =2x 上一点P 作圆M: (x -3)2+(y -2)2=45的两条切线l 1,l 2,A ,B 为切点,当直线l 1,l 2关于直线y =2x 对称时,则∠APB 等于( )【导学号:07742345】A .30°B .45°C .60°D .90°C [连接PM 、AM ,可得当切线l 1,l 2关于直线l 对称时, 直线l ⊥PM ,且射线PM 恰好是∠APB 的平分线,∵圆M 的方程为(x -3)2+(y -2)2=45,∴点M 坐标为(3, 2), 半径r =255, 点M 到直线l :2x -y =0的距离为PM =|2×3-2|22+(-1)2=455,由P A 切圆M 于A ,得Rt △P AM 中,sin ∠APM =AM PM =12, 得∠APM =30°, ∴∠APB =2∠APM =60°. 故选C.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.△ABC 中,已知A (2, 1),B (-2,3),C (0,1),则BC 边上的中线所在的直线的一般式方程为________. 【导学号:07742346】x +3y -5=0 [线段BC 的中点D (-1,2). 可得BC 边上的中线所在的直线的方程: y -1=2-1-1-2(x -2),一般式方程为x +3y -5=0. 故答案为:x +3y -5=0.]14.一个四面体的所有棱长都为2,四个顶点都在同一球面上,则此球的表面积为________.3π [如图,把四面体ABCD 补成正方体,则正方体的棱长为1,正方体的体对角线长等于外接球的直径,球的直径2R =3,球的表面积S =4πR 2=3π.]15.一个横放的圆柱形水桶,桶内的水漫过底面周长的四分之一,那么当桶直立时,水的高度与桶的高度的比为________.【导学号:07742347】(π-2)∶4π [设圆柱形水桶的底面半径为R ,高为h ,桶直立时,水的高度为x .横放时水桶底面在水内的面积为⎝⎛⎭⎫14πR 2-12R 2,水的体积为V 水=⎝⎛⎭⎫14πR 2-12R 2h .直立时水的体积不变,则有V 水=πR 2x , ∴x ∶h =(π-2)∶4π.]16.若曲线C 1:y =1+-x 2+2x 与曲线C 2:(y -1)·(y -kx -2k )=0有四个不同的交点,则实数k 的取值范围为________.图3⎝ ⎛⎭⎪⎫12,34 [由y =1+-x 2+2x 得(x -1)2+(y -1)2=1(y ≥1),曲线C 1表示以(1,1)为圆心以1为半径的上半圆,显然直线y =1与曲线C 1有两个交点,交点为半圆的两个端点. ∴直线y =kx +2k =k (x +2)与半圆有2个除端点外的交点, 当直线y =k (x +2)经过点(0,1)时,k =12, 当直线y =k (x +2)与半圆相切时,|3k -1|k 2+1=1,解得k =34或k =0(舍), ∴当12<k <34时,直线y =k (x +2)与半圆有2个除端点外的交点, 故答案为⎝ ⎛⎭⎪⎫12,34.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点.(1)求AB 边所在的直线方程;(2)求中线AM的长. 【导学号:07742348】[解](1)由两点式得方程为y-5-1-5=x+1-2+1,即6x-y+11=0.或直线AB的斜率为k=-1-5-2-(-1)=-6-1=6,直线AB的方程为y-5=6(x+1),即6x-y+11=0.(2)设M的坐标为(x0,y0), 则由中点坐标公式得x0=-2+42=1,y0=-1+32=1,故M(1,1),AM=(1+1)2+(1-5)2=2 5.18.(本小题满分12分)如图6,在四棱锥S-ABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.图4(1)当E为侧棱SC的中点时,求证:SA∥平面BDE;(2)求证:平面BED⊥平面SAC. 【导学号:07742349】[证明](1)连接OE,当E为侧棱SC的中点时,OE为△SAC的中位线,所以SA∥OE,因为SA⊄平面BDE,OE⊂平面BDE,所以SA ∥平面BDE .(2)因为SB =SD ,O 是BD 中点, 所以BD ⊥SO ,又因为四边形ABCD 是正方形,所以BD ⊥AC , 因为AC ∩SO =O ,所以BD ⊥平面SAC . 又因为BD ⊂平面BDE , 所以平面BDE ⊥平面SAC .19.(本小题满分12分)在△ABC 中,点B (4,4),角A 的内角平分线所在直线的方程为y =0,BC 边上的高所在直线的方程为x -2y +2=0.(1)求点C 的坐标; (2)求△ABC 的面积.[解] (1)由题意知BC 的斜率为-2,又点B (4,4),∴直线BC 的方程为y -4=-2(x -4),即2x +y -12=0.解方程组⎩⎪⎨⎪⎧ y =0,x -2y +2=0,得⎩⎪⎨⎪⎧x =-2,y =0,∴点A 的坐标为(-2,0).又∠A 的内角平分线所在直线的方程为y =0,∴点B (4,4)关于直线y =0的对称点B ′(4,-4)在直线AC 上,∴直线AC 的方程为y =-23(x +2),即2x +3y +4=0. 解方程组⎩⎪⎨⎪⎧ 2x +y -12=0,2x +3y +4=0,得⎩⎪⎨⎪⎧x =10,y =-8,∴点C的坐标为(10,-8).(2)∵|BC|=(10-4)2+(-8-4)2=65,又直线BC的方程是2x+y-12=0,∴点A到直线BC的距离是d=|2×(-2)+0-12|22+12=165,∴△ABC的面积是S=12×|BC|×d=12×65×165=48.20.(本小题满分12分)如图7所示,在Rt△ABC中,已知A(-2,0),直角顶点B(0,-22),点C在x轴上.图5(1)求Rt△ABC外接圆的方程;(2)求过点(0,3)且与Rt△ABC外接圆相切的直线的方程. 【导学号:07742350】[解](1)由题意可知点C在x轴的正半轴上,可设其坐标为(a,0)(a>0),又AB⊥BC,则k AB·k BC=-1,即-222·22a=-1,解得a=4.则所求圆的圆心为(1,0),半径为3,故所求圆的方程为(x-1)2+y2=9.(2)由题意知直线的斜率存在,故设所求直线方程为y=kx+3,即kx-y+3=0.当圆与直线相切时,有d=|k+3|k2+1=3,解得k=0或k=34,故所求直线方程为y=3或y=34x+3,即y-3=0或3x-4y+12=0. 21.(本小题满分12分)如图8,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD ,点E 在棱PB 上.图6(1)求证:平面AEC ⊥平面PDB ;(2)当PD =2AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.[解] (1)证明:∵四边形ABCD 是正方形,∴AC ⊥BD ,∵PD ⊥底面ABCD ,∴PD ⊥AC ,∴AC ⊥平面PDB ,∴平面AEC ⊥平面PDB .(2)设AC ∩BD =O ,连接OE ,由(1)知AC ⊥平面PDB 于O ,∴∠AEO 为AE 与平面PDB 所成的角,∴O ,E 分别为DB 、PB 的中点,∴OE ∥PD ,OE =12PD ,又∵PD ⊥底面ABCD ,∴OE ⊥底面ABCD ,OE ⊥AO ,在Rt △AOE 中,OE =12PD =22AB =AO ,∴∠AEO =45°,即AE 与平面PDB 所成的角的大小为45°.22.(本小题满分12分)已知圆M 过两点A (1, -1),B (-1,1),且圆心M 在直线x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PC 、PD 是圆M 的两条切线,C 、D 为切点,求四边形PCMD 面积的最小值. 【导学号:07742351】[解] (1)设圆心M (a ,b ),则a +b -2=0,①又A (1,-1),B (-1,1),∴k AB =1-(-1)-1-1=-1,∴AB 的垂直平分线l 的斜率k =1, 又AB 的中点为O (0,0),∴l 的方程为y =x ,而直线l 与直线x +y -2=0的交点就是圆心M (a ,b ), 由⎩⎪⎨⎪⎧ a +b -2=0,a =b ,解得⎩⎪⎨⎪⎧a =1,b =1,又r =|MA |=2, ∴圆M 的方程为(x -1)2+(y -1)2=4.(2)如图:S PCMD =|MC |·|PC |=2|PM |2-|MC |2=2|PM |2-4,又点M (1,1)到3x +4y +8=0的距离d =|MN |=|3×1+4×1+8|32+42=3,所以|PM|min=d=3,所以(S PCMD)min=232-4=2 5.。
模块质量检测一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A .圆柱B .圆锥C .球体D .圆柱、圆锥、球体的组合体解析:当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.答案:C2.已知直线x -3y -2=0,则该直线的倾斜角为( )A .30°B .60°C .120°D .150°解析:直线x -3y -2=0的斜率k =33,故倾斜角为30°,故选A . 答案:A3.点P(2,m)到直线l :5x -12y +6=0的距离为4,则m 的值为( )A .1B .-3C .1或53D .-3或173解析:利用点到直线的距离公式. 答案:D4.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离解析:两圆的圆心分别为(-2,0),(2,1),半径分别为r =2,R =3两圆的圆心距离为-2-22+0-12=17,则R -r<17<R +r ,所以两圆相交,选B .答案:B5.在空间给出下面四个命题(其中m ,n 为不同的两条直线,α,β为不同的两个平面): ①m⊥α,n∥α⇒m⊥n ②m∥n,n∥α⇒m∥α ③m∥n,n⊥β,m∥α⇒α⊥β ④m∩n=A ,m∥α,m∥β,n∥α,n∥β⇒α∥β.其中正确的命题个数有( )A .1个B .2个C.3个D.4个解析:②中m也可能在平面α内,②错,①③④正确,故选C.答案:C6.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为( )A.30° B.45°C.60° D.90°解析:利用正方体求解,如图所示:PA与BD所成的角,即为PA与PQ所成的角,因为△APQ为等边三角形,所以∠APQ=60°,故PA与BD所成角为60°,故选C.答案:C7.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为( )A.1或-1 B.2或-2C.1 D.-1解析:圆x2+y2-2x=0的圆心(1,0),半径为1,依题意得|1+a+0+1|1+a2+1=1,即|a+2|=a+12+1,平方整理得a=-1,故选D.答案:D8.已知三点A(-1,0,1),B(2,4,3),C(5,8,5),则( )A.三点构成等腰三角形B.三点构成直角三角形C.三点构成等腰直角三角形D.三点构不成三角形解析:∵|AB|=29,|AC|=229,|BC|=29,而|AB|+|BC|=|AC|,∴三点A,B,C共线,构不成三角形.答案:D9.已知圆(x-2)2+(y+1)2=16的一条直径通过直线x-2y+3=0被圆所截弦的中点,则该直径所在的直线方程为( )A.3x+y-5=0 B.x-2y=0C.x-2y+4=0 D.2x+y-3=0解析:直线x -2y +3=0的斜率为12,已知圆的圆心坐标为(2,-1),该直径所在直线的斜率为-2,所以该直径所在的直线方程为y +1=-2(x -2),即2x +y -3=0,故选D .答案:D10.在四面体A -BCD 中,棱AB ,AC ,AD 两两互相垂直,则顶点A 在底面BCD 上的投影H 为△BCD 的( )A .垂心B .重心C .外心D .内心解析:因为AB⊥AC,AB⊥AD,AC∩AD=A , 因为AB⊥平面ACD ,所以AB⊥CD. 因为AH⊥平面BCD , 所以AH⊥CD,AB∩AH=A , 所以CD⊥平面ABH ,所以CD⊥BH. 同理可证CH⊥BD,DH⊥BC, 则H 是△BCD 的垂心.故选A . 答案:A11.若过点A(4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为( )A .[-3,3]B .(-3,3)C .⎣⎢⎡⎦⎥⎤-33,33 D .⎝ ⎛⎭⎪⎫-33,33 解析:设直线方程为y =k(x -4),即kx -y -4k =0, 因为直线l 与曲线(x -2)2+y 2=1有公共点, 所以圆心到直线的距离d 小于或等于半径, ∴d=|2k -4k|k 2+1≤1,解得-33≤k≤33. 答案:C12.设A ,B ,C ,D 是一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3解析:由于△ABC 为等边三角形且面积为93,故当三棱锥D -ABC 体积最大时,点D 到平面ABC 的距离最大.设等边△ABC 的边长为a ,则34a 2=93,得a 2=36,解得a =6.设△ABC 的中心为点E ,连接AE ,BE ,CE ,由正三角形的性质得AE =BE =CE =23,设球心为点O ,连接OA ,OB ,OC ,OE ,OD ,则OA =OB =OC =4,则OE =42-232=2,故D 到平面ABC 的距离的最大值为OE +OD =2+4=6,则(V D -ABC )max =93×6×13=18 3.答案:B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.如图所示,Rt △A′B′C′为水平放置的△ABC 的直观图,其中A′C′⊥B′C′,B′O′=O′C′=1,则△ABC 的面积为________.解析:由直观图画法规则将△A′B′C′还原为△ABC,如图所示,则有BO =OC =1,AO =2 2.故S △ABC =12BC·AO=12×2×22=2 2.答案:2 214.已知点P(0,-1),点Q 在直线x -y +1=0上,若直线PQ 垂直于直线x +2y -5=0,则点Q 的坐标是________.解析:设Q(x 0,y 0),因为点Q 在直线x -y +1=0上,所以x 0-y 0+1=0① 又直线x +2y -5=0的斜率k =-12,直线PQ 的斜率k PQ =y 0+1x 0,所以由直线PQ 垂直于直线x +2y -5=0,得y 0+1x 0·⎝ ⎛⎭⎪⎫-12=-1②由①②解得x 0=2,y 0=3,即点Q 的坐标是(2,3). 答案:(2,3)15.若直线y =ax +b 通过第一、二、四象限,则圆(x +a)2+(y +b)2=1的圆心位于第________象限.解析:(-a ,-b)为圆的圆心,由直线经过一、二、四象限,得到a<0,b>0,即-a>0,-b<0,故圆心位于第四象限.答案:四16.如图所示,半径为R 的半圆内的阴影部分以直径AB 所在直线为轴,旋转一周得到一几何体,∠BAC=30°,则此几何体的体积为________.解析:半圆旋转一周形成一个球体,其体积V 球=43πR 3,内部两个圆锥的体积之和为V锥=13πCD 2·AB=13π·⎝ ⎛⎭⎪⎫32R 2·2R=π2R 3,所以所求几何体的体积为43πR 3-π2R 3=56πR 3. 答案:65πR 3三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)[2019·广州高一检测]三棱锥S -ABC 中,SA⊥AB,SA⊥AC,AC⊥BC 且AC =2,BC =13,SB =29.(1)证明:SC⊥BC. (2)求三棱锥的体积V S -ABC .解析:(1)证明:因为SA⊥AB,SA⊥AC,AB∩A C =A ,所以SA⊥平面ABC ,所以AC 为SC 在平面ABC 内的射影,又因为BC⊥AC,所以SC⊥BC.(2)在△ABC 中,AC⊥BC,AC =2,BC =13,所以AB =4+13=17,因为SA⊥AB,所以△SAB 为直角三角形,SB =29,所以SA =29-17=23,因为SA⊥平面ABC ,所以SA 为棱锥的高,所以V SABC =13×12×AC×BC×SA =16×2×13×23=2393.18.(12分)求经过直线x +y =0与圆x 2+y 2+2x -4y -8=0的交点,且经过点P(-1,-2)的圆的方程.解析:解方程组⎩⎪⎨⎪⎧x +y =0,x 2+y 2+2x -4y -8=0,得x =1,y =-1或x =-4,y =4,即直线与圆交于点A(1,-1)和点B(-4,4).设所求圆的方程为x 2+y 2+Dx +Ey +F =0,分别将A ,B ,P 的坐标代入, 得方程组⎩⎪⎨⎪⎧1+1+D -E +F =0,16+16-4D +4E +F =0,1+4-D -2E +F =0,解得⎩⎪⎨⎪⎧D =3,E =-3,F =-8,所求圆的方程为x 2+y 2+3x -3y -8=0.19.(12分)已知圆的方程为x 2+y 2=8,圆内有一点P(-1,2),AB 为过点P 且倾斜角为α的弦.(1)当α=135°时,求AB 的长;(2)当弦AB 被点P 平分时,写出直线AB 的方程. 解析:有两种方法. (1)方法一 (几何法)如图所示,过点O 作OC⊥AB.由已知条件得直线AB 的斜率为k =tan 135°=-1, 所以直线AB 的方程为y -2=-(x +1), 即x +y -1=0.因为圆心为(0,0),所以|OC|=|-1|2=22.因为r =22,所以|BC|=8-⎝⎛⎭⎪⎫222=302,所以|AB|=2|BC|=30. 方法二 (代数法)当α=135°时,直线AB 的方程为y -2=-(x +1), 即y =-x +1,代入x 2+y 2=8,得2x 2-2x -7=0. 所以x 1+x 2=1,x 1x 2=-72,所以|AB|=1+k 2|x 1-x 2|=1+1[x 1+x 22-4x 1x 2]=30.(2)如图,当弦AB 被点P 平分时, OP⊥AB,因为k OP =-2,所以k AB =12,所以直线AB 的方程为y -2= 12(x +1),即x -2y +5=0. 20.(12分)如图,四棱锥PABCD 中,侧面PAD 为等边三角形且垂直于低面ABCD ,AB =BC =12AD ,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥PABCD 的体积.解析:(1)证明:在平面ABCD 内,因为∠BAD=∠ABC=90°,所以BC∥AD,又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC∥平面PAD.(2)取AD 的中点M ,连接PM ,CM ,由AB =BC =12AD 及BC∥AD,∠ABC=90°,得四边形ABCM 为正方形,则CM⊥AD,因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD∩平面ABCD =AD ,所以PM⊥AD,PM⊥平面ABCD ,因为CM ⊂平面ABCD ,所以PM⊥CM,设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x ,取CD 中点N ,连接PN ,则PN⊥CD,所以PN =142x ,因为△PCD 的面积为27,所以12×2x×142x =27,解得x =-2(舍去),x =2,于是AB =BC =2,AD =4,PM =23,所以四棱锥PABCD 的体积V =13×2×2+42×23=4 3.21.(12分)[2019·上饶县校级月考]已知圆C 1:x 2+y 2-6x -6=0,圆C 2:x 2+y 2-4y -6=0(1)试判断两圆的位置关系; (2)求公共弦所在的直线的方程; (3)求公共弦的长度.解析:(1)圆C 1:x 2+y 2-6x -6=0,化为(x -3)2+y 2=15,圆心坐标为(3,0),半径为15;圆C 2:x 2+y 2-4y -6=0化为x 2+(y -2)2=10,圆心坐标(0,2),半径为 10.圆心距为:32+22=13,因为15 -10 <13 <15 +10 ,所以两圆相交.(2)将两圆的方程相减,得-6x +4y =0,化简得:3x -2y =0, ∴公共弦所在直线的方程是3x -2y =0;(3)由(2)知圆C 1的圆心(3,0)到直线3x -2y =0的距离d =99+4=913,由此可得,公共弦的长l =215-8113=2 1 48213.22.(12分)[2019·大连高一检测]如图已知直三棱柱ABCA 1B 1C 1(侧棱垂直于底面)中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求二面角A 1ECC 1的正弦值.解析:(1)证明:连接AC 1交A 1C 于点F ,则F 为AC 1的中点,又D 是AB 中点,连接DF ,则BC 1∥DF,因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD.(2)连接A 1E ,C 1E ,过C 1作C 1G⊥EC,垂足为G ,连接A 1G ,由题意知,AB 2=AC 2+BC 2,所以AC⊥BC,又由直三棱柱得AC⊥平面BB 1C 1C ,所以A 1C 1⊥平面BB 1C 1C ,所以∠A 1GC 1为二面角A 1ECC 1的平面角,在△CEC 1中,CE =C 1E =5,CC 1=2,利用等面积法可知12CE·C 1G =12×2×2,所以C 1G =45,在Rt △A 1GC 1中,A 1C 1=2,C 1G =45,所以A 1G =22+⎝⎛⎭⎪⎫452=65,所以sin ∠A 1GC 1=A 1C 1A 1G =265=53,所以二面角A 1EC-C 1的正弦值为53.。
模块综合检测(二)(满分:150分 时间:120分钟)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=ln x 2x ,则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =( ) A .-2-ln 2B .-2+ln 2C .2-ln 2D .2+ln 2A [由题意,函数f (x )=ln x 2x , 则f ′(x )=1x ·2x -(2x )′ln x (2x )2=2x -12⎝ ⎛⎭⎪⎫1-12ln x 2x , 则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =-f ′⎝ ⎛⎭⎪⎫12=-2+ln 22×12=-2-ln 2,故选A.] 2.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( )A .±2B .±4C .2D .4C [∵T 13=4T 9,∴a 1a 2…a 9a 10a 11a 12a 13=4a 1a 2…a 9,∴a 10a 11a 12a 13=4.又∵a 10·a 13=a 11·a 12=a 8·a 15,∴(a 8·a 15)2=4,∴a 8a 15=±2.又∵{a n }为递减数列,∴q >0,∴a 8a 15=2.]3.已知公差不为0的等差数列{a n }的前23项的和等于前8项的和.若a 8+a k =0,则k =( )A .22B .23C .24D .25C [等差数列的前n 项和S n 可看做关于n 的二次函数(图象过原点).由S 23=S 8,得S n 的图象关于n =312对称,所以S 15=S 16,即a 16=0,所以a 8+a 24=2a 16=0,所以k =24.]4.已知函数f (x )=(x +a )e x 的图象在x =1和x =-1处的切线相互垂直,则a =( )A .-1B .0C .1D .2A [因为f ′(x )=(x +a +1)e x ,所以f ′(1)=(a +2)e ,f ′(-1)=a e -1=a e ,由题意有f (1)f ′(-1)=-1,所以a =-1,选A.]5.设S n 是公差不为0的等差数列{a n }的前n 项和,S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=( )A .15B .19C .21D .30B [由S 3=a 22得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列可得S 22=S 1·S 4,又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d ,故(2a 2-d )2=(a 2-d )(4a 2+2d ),化简得3d 2=2a 2d ,又d ≠0,∴a 2=3,d =2,a 1=1,∴a n =1+2(n -1)=2n -1,∴a 10=19.]6.若函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,则实数a 的取值X 围是( )A .(-2,+∞)B .⎝ ⎛⎭⎪⎫12,+∞ C .⎝ ⎛⎭⎪⎫-12,+∞ D .(2,+∞)D [因为函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,所以函数f (x )=ax -ln x 的图象上存在斜率为2的切线,故k =f ′(x )=a -1x =2有解,所以a =2+1x ,x >0有解,因为y =2+1x ,x >0的值域为(2,+∞).所以a ∈(2,+∞).]7.已知等差数列{}a n 的前n 项为S n ,且a 1+a 5=-14,S 9=-27,则使得S n 取最小值时的n 为( )A .1B .6C .7D .6或7B [由等差数列{a n }的性质,可得a 1+a 5=2a 3=-14⇒a 3=-7,又S 9=9(a 1+a 9)2=-27⇒a 1+a 9=-6⇒a 5=-3,所以d =a 5-a 35-3=2,所以数列{a n }的通项公式为a n =a 3+(n -3)d =-7+(n -3)×2=2n -13,令a n ≤0⇒2n -13≤0,解得n ≤132,所以数列的前6项为负数,从第7项开始为正数,所以使得S n 取最小值时的n 为6,故选B.]8.若方底无盖水箱的容积为256,则最省材料时,它的高为( )A .4B .6C .4.5D .8A [设底面边长为x ,高为h ,则V (x )=x 2·h =256,∴h =256x 2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2. 令S ′(x )=0,解得x =8,∴当x =8时,S (x )取得最小值.∴h =25682=4.]二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.设数列{}a n 是等差数列,S n 是其前n 项和,a 1>0,且S 6=S 9,则( )A .d <0B .a 8=0C .S 5>S 6D .S 7或S 8为S n 的最大值ABD [根据题意可得a 7+a 8+a 9=0⇒3a 8=0⇒a 8=0,∵数列{}a n 是等差数列,a 1>0,∴公差d <0,所以数列{}a n 是单调递减数列, 对于A 、B ,d <0,a 8=0,显然成立;对于C ,由a 6>0,则S 5<S 6,故C 不正确;对于D ,由a 8=0,则S 7=S 8,又数列为递减数列,则S 7或S 8为S n 的最大值,故D 正确.故选ABD.]10.如图是y =f (x )导数的图象,对于下列四个判断,其中正确的判断是( )A .f (x )在(-2,-1)上是增函数B .当x =-1时,f (x )取得极小值C .f (x )在(-1,2)上是增函数,在(2,4)上是减函数D .当x =3时,f (x )取得极小值BC [根据图象知当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数单调递减; 当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数单调递增.故A 错误;故当x =-1时,f (x )取得极小值,B 正确;C 正确;当x =3时,f (x )不是取得极小值,D 错误.故选BC.]11.已知等比数列{}a n 的公比q =-23,等差数列{}b n 的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10AD [∵等比数列{}a n 的公比q =-23,∴a 9和a 10异号,∴a 9a 10<0 ,故A 正确;但不能确定a 9和a 10的大小关系,故B 不正确;∵a 9和a 10异号,且a 9>b 9且a 10>b 10,∴b 9和b 10中至少有一个数是负数, 又∵b 1=12>0 ,∴d <0,∴b 9>b 10 ,故D 正确,∴b 10一定是负数,即b 10<0 ,故C 不正确. 故选AD.]12.已知函数f (x )=x ln x ,若0<x 1<x 2,则下列结论正确的是( )A .x 2f (x 1)<x 1f (x 2)B .x 1+f (x 1)<x 2+f (x 2)C .f (x 1)-f (x 2)x 1-x 2<0 D .当ln x >-1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1)AD [设g (x )=f (x )x =ln x ,函数单调递增,则g (x 2)>g (x 1),即f (x 2)x 2>f (x 1)x 1,∴x 1f (x 2)>x 2f (x 1),A 正确; 设h (x )=f (x )+x ∴h ′(x )=ln x +2不是恒大于零,B 错误;f (x )=x ln x ,∴f ′(x )=ln x +1不是恒小于零,C 错误;ln x >-1,故f ′(x )=ln x +1>0,函数单调递增.故(x 2-x 1)(f (x 2)-f (x 1))=x 1f (x 1)+x 2f (x 2)-x 2f (x 1)-x 1f (x 2)>0,即x 1f (x 1)+x 2f (x 2)>x 2f (x 1)+x 1f (x 2).f (x 2)x 2=ln x 2>f (x 1)x 1=ln x 1,∴x 1f (x 2)>x 2f (x 1),即x 1f (x 1)+x 2f (x 2)>2x 2f (x 1),D 正确.故选AD.]三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.数列{a n }的前n 项和为S n ,若a n +1=11-a n(n ∈N *),a 1=2,则S 50=________. 25[因为a n +1=11-a n (n ∈N *),a 1=2,所以a 2=11-a 1=-1,a 3=11-a 2=12,a 4=11-a 3=2,∴数列{a n }是以3为周期的周期数列,且前三项和S 3=2-1+12=32, ∴S 50=16S 3+2-1=25.]14.将边长为1 m 的正三角形薄铁皮,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =(梯形的周长)2梯形的面积,则s 的最小值是________. 3233[设AD =x (0<x <1),则DE =AD =x ,∴梯形的周长为x+2(1-x )+1=3-x .又S △ADE =34x 2,∴梯形的面积为34-34x 2,∴s =433×x 2-6x +91-x 2(0<x <1), 则s ′=-833×(3x -1)(x -3)(1-x 2)2. 令s ′=0,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′<0,s 为减函数;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′>0,s 为增函数.故当x =13时,s 取得极小值,也是最小值,此时s 的最小值为3233.]15.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.32[由S 2=3a 2+2,S 4=3a 4+2相减可得a 3+a 4=3a 4-3a 2,同除以a 2可得2q 2-q -3=0,解得q =32或q =-1.因为q >0,所以q =32.]16.已知函数f (x )是定义在R 上的偶函数,当x >0时,xf ′(x )>f (x ),若f (2)=0,则2f (3)________3f (2)(填“>”“<”)不等式x ·f (x )>0的解集为________.(本题第一空2分,第二空3分)> (-2,0)∪(2,+∞)[由题意,令g (x )=f (x )x ,∵x >0时,g ′(x )=xf ′(x )-f (x )x 2>0.∴g (x )在(0,+∞)单调递增,∵f (x )x 在(0,+∞)上单调递增,∴f (3)3>f (2)2即2f (3)>3f (2).又∵f (-x )=f (x ),∴g (-x )=-g (x ),则g (x )是奇函数,且g (x )在(-∞,0)上递增,又g (2)=f (2)2=0,∴当0<x <2时,g (x )<0,当x >2时,g (x )>0;根据函数的奇偶性,可得当-2<x <0时,g (x )>0,当x <-2时,g (x )<0. ∴不等式x ·f (x )>0的解集为{x |-2<x <0或x >2}.]四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在等差数列{}a n 中,已知a 1=1,a 3=-5.(1)求数列{}a n 的通项公式;(2)若数列{}a n 的前k 项和S k =-25,求k 的值.[解](1)由题意,设等差数列{}a n 的公差为d ,则a n =a 1+()n -1d ,因为a 1=1,a 3=-5,可得1+2d =-5,解得d =-3,所以数列{}a n 的通项公式为a n =1+()n -1×()-3=4-3n .(2)由(1)可知a n =4-3n ,所以S n =n [1+(4-3n )]2=-32n 2+52n ,又由S k =-25,可得-32k 2+52k =-25,即3k 2-5k -50=0,解得k =5或k =-103,又因为k ∈N *,所以k =5.18.(本小题满分12分)已知函数f (x )=a ln x +12x 2.(1)求f (x )的单调区间;(2)函数g (x )=23x 3-16(x >0),求证:a =1时f (x )的图象不在g (x )的图象的上方.[解](1)f ′(x )=a x +x (x >0),若a ≥0,则f ′(x )>0,f (x )在 (0,+∞)上单调递增;若a <0,令f ′(x )=0,解得x =±-a ,由f ′(x )=(x --a )(x +-a )x >0,得x >-a ,由f ′(x )<0,得0<x <-a .从而f (x )的单调递增区间为(-a ,+∞),单调递减区间为(0,-a ). (2)证明:令φ(x )=f (x )-g (x ),当a =1时,φ(x )=ln x +12x 2-23x 3+16(x >0),则φ′(x )=1x +x -2x 2=1+x 2-2x 3x =(1-x )(2x 2+x +1)x. 令φ′(x )=0,解得x =1.当0<x <1时,φ′(x )>0,φ(x )单调递增;当x >1时,φ′(x )<0,φ(x )单调递减.∴当x =1时,φ(x )取得最大值φ(1)=12-23+16=0,∴φ(x )≤0,即f (x )≤g (x ).故a =1时f (x )的图象不在g (x )的图象的上方.19.(本小题满分12分)已知数列{}a n 的前n 项和为S n ,且2S n =3a n -1.(1)求数列{}a n 的通项公式;(2)若数列{}b n 满足b n =log 3a n +1,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n .[解](1)由2S n =3a n -1()n ∈N +得,2S n -1=3a n -1-1()n ≥2.两式相减并整理得,a n =3a n -1()n ≥2.令n =1,由2S n =3a n -1()n ∈N +得,a 1=1.故{}a n 是以1为首项,公比为3的等比数列,因此a n =3n -1()n ∈N +.(2)由b n =log 3a n +1,结合a n =3n -1得,b n =n .则1b n b n +1=1n ()n +1=1n -1n +1 故T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+1n -1n +1=n n +1. 20.(本小题满分12分)某旅游景点预计2019年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧ 35-2x (x ∈N *,且1≤x ≤6),160x (x ∈N *,且7≤x ≤12).(1)写出2019年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)问2019年第几个月旅游消费总额最大?最大月旅游消费总额为多少元?[解](1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x )=-3x 2+40x ,验证x =1也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x 个月旅游消费总额(单位:万元)为g (x )=⎩⎨⎧ (-3x 2+40x )(35-2x )(x ∈N *,且1≤x ≤6),(-3x 2+40x )·160x (x ∈N *,且7≤x ≤12),即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x (x ∈N *,且1≤x ≤6),-480x +6 400(x ∈N *,且7≤x ≤12). (i)当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5或x =1409(舍去).当1≤x <5时,g ′(x )>0,当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125.(ii)当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数,∴当x =7时,g (x )max =g (7)=3 040.综上,2019年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.21.(本小题满分12分)已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0,且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列.(1)求数列{a n b n }的通项公式;(2)求数列{a n b n }的前n 项和T n .[解](1)∵a n =3n -1,∴a 1=1,a 2=3,a 3=9.∵在等差数列{b n }中,b 1+b 2+b 3=15,∴3b 2=15,则b 2=5.设等差数列{b n }的公差为d ,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,∴(1+5-d )(9+5+d )=64,解得d =-10或d =2.∵b n >0,∴d =-10应舍去,∴d =2,∴b 1=3,∴b n =2n +1.故a n b n=(2n+1)·3n-1.(2)由(1)知T n=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①3T n=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②①-②,得-2T n=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)×3n =3+2×(3+32+33+…+3n-1)-(2n+1)×3n=3+2×3-3n1-3-(2n+1)×3n=3n-(2n+1)×3n=-2n·3n.∴T n=n·3n.22.(本小题满分12分)设函数f (x)=x3-6x+5,x∈R.(1)求f (x)的极值点;(2)若关于x的方程f (x)=a有3个不同实根,某某数a的取值X围;(3)已知当x∈(1,+∞)时,f (x)≥k(x-1)恒成立,某某数k的取值X围.[解](1)f ′(x)=3(x2-2),令f ′(x)=0,得x1=-2,x2= 2.当x∈(-∞,-2)∪(2,+∞)时,f ′(x)>0,当x∈(-2,2) 时,f ′(x)<0,因此x1=-2,x2=2分别为f (x)的极大值点、极小值点.(2)由(1)的分析可知y=f (x)图象的大致形状及走向如图所示.要使直线y=a 与y=f (x)的图象有3个不同交点需5-42=f (2)<a<f (-2)=5+4 2.则方程f (x)=a有3个不同实根时,所某某数a的取值X围为(5-42,5+42).(3)法一:f (x)≥k(x-1),即(x-1)(x2+x-5)≥k(x-1),因为x>1,所以k≤x2+x-5在(1,+∞)上恒成立,令g(x)=x2+x-5,由二次函数的性质得g(x)在(1,+∞)上是增函数,所以g(x)>g(1)=-3,所以所求k的取值X围是为(-∞,-3].法二:直线y=k(x-1)过定点(1,0)且f (1)=0,曲线f (x)在点(1,0)处切线斜率f ′(1)=-3,由(2)中图知要使x∈(1,+∞)时,f (x)≥k(x-1)恒成立需k≤-3.故实数k的取值X围为(-∞,-3].。
模块综合测评(A)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知命题p:∀x∈R,x≥1,则命题p为()A.∀x∈R,x≤1B.∃x0∈R,x0<1C.∀x∈R,x≤-1D.∃x0∈R,x0<-1解析全称命题的否定是特称命题.答案B2.设向量a=(2,2,0),b=cos α,-1,1(0°<α<180°),若a⊥b,则角α=()A.30°B.60°C.1 0°D.150°解析a·b=2cosα+2×-1+0×1=0得cosα=1,因为0°<α<180°,所以α=60°,故选B. 答案B3.抛物线y=ax2的准线方程是y=2,则a的值为()A.18B.-18C.8D.-8解析由y=ax2得x2=1y,∴1=-8,∴a=-18.答案B4.“α是第一象限角”是“关于x,y的方程x2sin α+y2cos α=1所表示的曲线是椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若x2sinα+y2cosα=1表示的曲线是椭圆,则满足sinα>0,cosα>0,且sinα≠cosα,即2kπ<α<2kπ+,且α≠2kπ+,k∈Z,所以“α是第一象限角”是“关于x,y的方程x2sinα+y2cosα=1所表示的曲线是椭圆”的必要不充分条件,故选B.答案B5.下列选项中,p是q的必要不充分条件的是()A.p:a+c>b+d,q:a>b且c>dB.p:a>1,b>1,q:f(x)=a x-b(a>0且a≠1)的图象不过第二象限C.p:x=1,q:x2=xD.p:a>1,q:f(x)=log a x(a>0且a≠1)在(0,+∞)内为增函数解析由于a>b ,c>d ⇒a+c>b+d ,而a+c>b+d 却不一定推出a>b ,且c>d ,故A 中p 是q 的必要不充分条件;B 中,当a>1,b>1时,函数f (x )=a x -b 不过第二象限,当f (x )=a x-b 不过第二象限时,有a>1,b ≥1,故B 中p 是q 的充分不必要条件;C 中,因为当x=1时有x 2=x ,但当x 2=x 时不一定有x=1,故C 中p 是q 的充分不必要条件;D 中,p 是q 的充要条件.答案A6.已知椭圆=1(a>b>0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( ) A.椭圆B.圆C.双曲线的一支D.线段解析∵P 为MF 1中点,O 为F 1F 2的中点,其中F 2为椭圆的右焦点,∴OP=1MF 2.又MF 1+MF 2=2a ,∴PF 1+PO=1 MF 1+1MF 2=a.∴P 的轨迹是以F 1,O 为焦点的椭圆.答案A7.在空间四面体O-ABC 中,M ,N 分别是OA ,BC 的中点,P 是MN 的三等分点(靠近N ),若 =a , =b , =c ,则 =( ) A.13a +16b +16cB.16a +13b +13c C.1 a +16b +13cD.16a +1 b +13c 解析由题意可得:1 )=1 [( )+( )]=1(b +c )-a , 1 a +1 (b +c )-a =1(b +c -a ), 3 1 a +13(b +c -a )=16a +13b +13c . 故选B. 答案B8.经过点(3,- )的双曲线=1(a>0,b>0),其一条渐近线方程为y= 33x ,该双曲线的焦距为( )A. B.2C.2D.4解析点(3,- )在双曲线=1上,可得=1.又渐近线方程为y=± x ,一条渐近线方程为y= 33x ,可得 33,解得a= 3,b=1.所以c= =2,焦距为2c=4.故选D . 答案D9.已知向量a =(2,1,0),b =(-1,1,1),且a +b 与k a -b 互相垂直,则k 的值是( ) A.1B.1C.-1D.13解析因为向量a =(2,1,0),b =(-1,1,1),所以a +b =(1,2,1),k a -b =(2k+1,k-1,-1),又a +b 与k a -b 互相垂直,所以(a +b )·(k a -b )=0,即1×(2k+1)+2×(k-1)+1×(-1)=0,解得k=1.故选B. 答案B10.设双曲线=1(a>0,b>0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于( ) A. 3B.2C. 6D. 5解析双曲线的一条渐近线为y=x , 由,1,消y 得x 2-x+1=0.由题意,知Δ= --4=0,∴b 2=4a 2. 又c 2=a 2+b 2,∴c 2=a 2+4a 2=5a 2.∴5.答案D11.如图,在直三棱柱ABC-A 1B 1C 1中,∠BAC= 0°,AB=AC=2,AA 1= 6,则AA 1与平面AB 1C 1所成的角为( )A.6 B.C. 3D.解析∵在直三棱柱ABC-A 1B 1C 1中,∠BAC= 0°,AB=AC=2,AA 1= 6,∴建立以A 为坐标原点,直线AC ,AB ,AA 1分别为x ,y ,z 轴的空间直角坐标系如图.则A1(0,0,6),A(0,0,0),B1(0,2,6),C1(2,0,6),则1=(0,2,6),1=(2,0,6),设平面AB1C1的法向量为m=(x,y,z),1=(0,0,6),则m·1=2y+6z=0,m·1=2x+6z=0,令z=1,则x=-6,y=-6,即m=-6,-6,1,则AA1与平面AB1C1所成的角θ满足sinθ=|cos<1,m>|=66-6-611,则θ=6,故选A.答案A12.已知点P1,3是椭圆3=1上一点,点A,B是椭圆上两个动点,满足=3,则直线AB的斜率为()A.-1B.-C.1D.解析设A(x1,y1),B(x2,y2).∵ =3,点P1,3,∴1-1,1-3-1,-3=3-1,-3.∴x1+x2=-1,y1+y2=-3.把A,B代入椭圆方程,得311 1 , 3 1 ,两式相减,得3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,∴1-1-=-3(1)(1).∵x1+x2=-1,y1+y2=-3,∴k AB=1-1-=-3(1)(1)=-1.故选A.答案A二、填空题(本大题共4小题,每小题5分,共20分)13.双曲线1 -=1的焦距是.解析依题意a2=m2+12,b2=4-m2,所以c2=a2+b2=16,c=4,2c=8.答案814.设p:-<0,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围是.解析不等式-<0可得:0<x<2,因为p是q成立的充分不必要条件,所以集合{x|0<x<2}是集合{x|0<x<m}的真子集,∴m>2.故答案为(2,+∞).答案(2,+∞)15.已知点P是椭圆5=1上的一点,F1,F2是焦点,且∠F1PF2= 0°,则△F1PF2的面积为.解析由椭圆5=1知,|PF1|+|PF2|=2a=6.又∠F1PF2= 0°,所以|PF1|2+|PF2|2=(2c)2=16,而|PF1|2+|PF2|2=(|PF1|+|PF2|)2-2|PF1|·|PF2|=16,解得|PF1|·|PF2|=10,所以△F1PF2的面积为S=1|PF1|·|PF2|=5.故答案为5.答案516.在棱长为2的正四面体ABCD中,E是BC的中点,则=.解析∵E是BC的中点,∴ 1).∴ =()·=1)·=11=||·||·cos1 0°+1|·||·cos60°+2=-2+1+2=1.故答案为1.答案1三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).(1)若m=2,且p∧q为真,求实数x的取值范围;(2)若p是q的充分条件,求实数m的取值范围.解(1)由x2-6x+5≤0,得1≤x≤5,∴p:1≤x≤5.当m=2时,q:-1≤x≤3.若p∧q为真,p,q同时为真命题,则15,-13,即1≤x≤3.∴实数x的取值范围为[1,3].(2)由x2-2x+1-m2≤0,得q:1-m≤x≤1+m.∵p是q的充分条件,∴0,1-1,15,解得m≥ .∴实数m的取值范围为[4,+∞).18.(本小题满分12分)如图,在平行六面体ABCD-A1B1C1D1中,E,F,G分别是A1D1,D1D,D1C1的中点.(1)求证:EG∥AC;(2)求证:平面EFG∥平面AB1C.证明把{1}作为空间的一个基底.(1)因为1111,所以=2.所以EG∥AC.(2)由(1)知EG∥AC,又AC⊂平面AB1C,EG⊄平面AB1C,所以EG∥平面AB1C.因为1111111,所以1=2.所以FG∥AB1.又AB1⊂平面AB1C,FG⊄平面AB1C,所以FG∥平面AB1C.又EG∩FG=G,所以平面EFG∥平面AB1C.19.(本小题满分12分)设命题p:函数f(x)=lg-16的定义域为R;命题q:不等式3x-9x<a对一切正实数x均成立.(1)如果p是真命题,求实数a的取值范围;(2)如果“p∨q”为真命题,且“p∧q”为假命题,求实数a的取值范围.解(1)若命题p是真命题,则:①当a=0时,定义域为{x|x<0},不符合题意;②由0,1-·160,得0,或- ,∴a>2.因此,实数a的取值范围为(2,+∞).(2)若命题q是真命题,则不等式3x-9x<a对一切正实数x均成立.令t=3x,t>1,y=t-t2.当t=1时,y max=0,∴a≥0.若命题“p∨q”为真命题,且“p∧q”为假命题,则p,q一真一假.①若p真q假,则,0,此时a无解.②若p假q真,则 ,0,得0≤a≤ .综上,实数a的取值范围为[0,2].20.(本小题满分12分)已知椭圆=1(a>b>0)的左、右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.(1)求椭圆的方程;(2)若C,D分别是椭圆的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:为定值.(3)在(2)的条件下,试问x 轴上是否存在异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP ,MQ 的交点?若存在,求出点Q 的坐标;若不存在,请说明理由. (1)解a=2,b=c ,a 2=b 2+c 2,∴b 2=2.∴椭圆方程为=1.(2)证明C (-2,0),D (2,0),设M (2,y 0),P (x 1,y 1),则 =(x 1,y 1), =(2,y 0).直线CM :y= 0(x+2),即y= 0x+1y 0,代入椭圆方程x 2+2y 2=4,得 1 08 x 2+1 0 x+1-4=0. ∵x 1=-1( 0 -8)8,∴x 1=-( 0 -8)0 8,∴y 1=80 0 8.∴ - ( 0 -8)0 8,80 0 8 .∴ =-( 0 -8)0 88 080 38=4(定值).(3)解设存在Q (m ,0)满足条件,则MQ ⊥DP.=(m-2,-y 0), - 08,80 08, 则由 =0得- 0 0 8(m-2)-8 00 8=0,从而得m=0.∴存在Q (0,0)满足条件.21.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,PA=AD=2,AB= ,M 是棱PD 上一点,且 =λ ,0≤λ≤1.(1)当λ=13时,求直线AM 与PC 所成角的余弦值; (2)当CM ⊥BD 时,求二面角M-AC-B 的大小.解(1)以A 为原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,则A (0,0,0),B ( ,0,0),C ( ,2,0),D (0,2,0),P (0,0,2),设M (x ,y ,z ),则 =λ =(0,-2λ,2λ)(0≤λ≤1),=(0,2-2λ,2λ),当λ=13时, 0,3,3 =( ,2,-2),∴cos < >= ··5, ∴直线AM 与PC 所成角的余弦值为5.(2) =(- ,2,0), =(- ,-2λ,2λ), 当CM ⊥BD 时, =2-4λ=0,解得λ=1,此时, =(0,1,1), =( ,2,0),设平面MAC 的一个法向量n =(x ,y ,z ), 则· 0, · 0,取z=1,得n =( ,-1,1), 又平面BAC 的一个法向量 =(0,0,2),∴cos <n , >= · · 1,由图象得,二面角M-AC-B 是钝二面角,∴二面角M-AC-B 的大小为1 0°.22.(本小题满分12分)如图,在平面直角坐标系xOy 中,焦点在x 轴上的椭圆=1(b>0)的右顶点和上顶点分别为A ,B ,M 为线段AB 的中点,且 =-3b 2.(1)求椭圆的离心率;(2)四边形ABCD 内接于椭圆,AB ∥CD.记直线AD ,BC 的斜率分别为k 1、k 2,求证:k 1·k 2为定值. 解(1)A (2,0),B (0,b ),线段AB 的中点M 1,.=(-2,b ), =1,.∵ =-3b 2,∴-2+=-3b 2,解得a=2,b=1.∴c=-3,∴椭圆的离心率e=3.(2)证明:由(1)得椭圆的标准方程为+y2=1,A(2,0),B(0,1),直线BC的方程为y=k2x+1,联立1,1,得(1+4)x2+8k2x=0,解得x C=-81,y C=1-1,即C-811-1,直线AD的方程为y=k1(x-2).联立1(- ),1,化为(1+41)x2-161x+161-4=0, ∴2x D=161-11,解得x D=81-11,y D=-111,∴D81-11-111,∴k CD=--=-1,化为1-161+2k1-2k2+8k1-8k21=0, ∴k1k2-1(4k1k2-2k2+2k1+1)=0, ∴k1·k2=1为定值.。
模块综合检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i z +2=i,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A2.在△ABC 中,a =3,b =2,A =30°,则sin B =( ) A .13 B .23 C .23D .223【答案】A3.某校高一年级有男生450人,女生550人,若在各层中按比例抽取样本,总样本量为40,则在男生、女生中抽取的人数分别为( )A .17,23B .18,22C .19,21D .22,18【答案】B4.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则a -2b 与b 的夹角是( ) A .30° B .60° C .120° D .150° 【答案】C5.在某中学举行的环保知识竞赛中,将三个年级参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80~100分的学生人数是( )A .25B .20C .18D .15【答案】D6.2021年是中国共产党成立100周年,电影频道推出“经典频传:看电影,学党史”系列短视频,首批21支短视频全网发布,传扬中国共产党伟大精神,为广大青年群体带来精神感召.小李同学打算从《青春之歌》《闪闪的红星》《英雄儿女》《焦裕禄》等四支短视频中随机选择两支观看,则选择观看《青春之歌》的概率为( )A .12B .13C .14D .25【答案】A7.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里记载了这样一个题目:“今有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一块三角形的沙田,三边长分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为( )A .15平方千米B .18平方千米C .21平方千米D .24平方千米【答案】C【解析】设在△ABC 中,a =13里,b =14里,c =15里,∴由余弦定理得cos C =132+142-1522×13×14=513,∴sin C =1213.故△ABC 的面积为12×13×14×1213×5002×11 0002=21(平方千米).故选C .8.在三棱锥ABCD 中,△ABC 与△BCD 都是正三角形,平面ABC ⊥平面BCD ,若该三棱锥的外接球的体积为2015π,则△ABC 的边长为( )A .332 B .634 C .633 D .6【答案】D【解析】如图,取BC 中点M ,连接AM ,DM .设等边△ABC 与等边△BCD 的外心分别为N ,G ,三棱锥外接球的球心为O ,连接OA ,OD ,ON ,OG .由V =4π3R 3=2015π,得外接球半径R =15.设△ABC 的边长为a ,则ON =GM =13DM =36a ,AN =23AM =33a .在Rt △ANO 中,由ON 2+AN 2=R 2,得a 212+a 23=15,解得a =6.故选D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中错误的是( )A .若事件A 与事件B 互斥,则P (A )+P (B )=1B .若事件A 与事件B 满足P (A )+P (B )=1,则事件A 与事件B 为对立事件C .“事件A 与事件B 互斥”是“事件A 与事件B 对立”的必要不充分条件D .某人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”互为对立事件【答案】ABD【解析】若事件A 与事件B 互斥,则有可能P (A )+P (B )<1,故A 不正确;若事件A 与事件B 为同一事件,且P (A )=0.5,则满足P (A )+P (B )=1,但事件A 与事件B 不是对立事件,B 不正确;互斥不一定对立,对立一定互斥,故C 正确;某人打靶时连续射击两次,事件“至少有一次中靶”与事件“至多有一次中靶”既不互斥也不对立,D 错误.故选ABD .10.如图是民航部门统计的今年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述正确的是( )A .深圳的变化幅度最小,北京的平均价格最高B .深圳和厦门的春运期间往返机票价格同去年相比有所下降C .平均价格从高到低居于前三位的城市为北京、深圳、广州D .平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门 【答案】ABC【解析】由图可知深圳对应的小黑点最接近0%,故变化幅度最小,北京对应的条形图最高,则北京的平均价格最高,A 正确;深圳和厦门对应的小黑点在0%以下,故深圳和厦门的价格同去年相比有所下降,B 正确;条形图由高到低居于前三位的城市为北京、深圳和广州,C 正确;平均价格的涨幅由高到低分别为天津、西安和南京,D 错误.故选ABC .11.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是( )A .a 为单位向量B .a ⊥bC .b ∥BC →D .(4a +b )⊥BC →【答案】ACD【解析】由AB →=2a ,得a =12AB →,又AB =2,所以|a |=1,即a 是单位向量,A 正确;a ,b 的夹角为120°,B 错误;因为AC →=AB →+BC →=2a +b ,所以BC →=b ,C 正确;(4a +b )·BC →=4a ·b +b2=4×1×2×cos 120°+4=-4+4=0,D 正确.故选ACD .12.如图,点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则( )A .三棱锥A -D 1PC 的体积不变B .A 1P ∥平面ACD 1C .DP ⊥BC 1D .平面PDB 1⊥平面ACD 1【答案】ABD【解析】连接BD 交AC 于点O ,连接DC 1交D 1C 于点O 1,连接OO 1,则OO 1∥BC 1,所以BC 1∥平面AD 1C ,动点P 到平面AD 1C 的距离不变,所以三棱锥PAD 1C 的体积不变,又因为V 三棱锥PAD 1C =V 三棱锥AD 1PC ,所以A 正确;因为平面A 1C 1B ∥平面AD 1C ,A 1P ⊂平面A 1C 1B ,所以A 1P ∥平面ACD 1,B 正确;由于当点P 在B 点时,DB 不垂直于BC 1,即DP 不垂直BC 1,故C 不正确;由于DB 1⊥D 1C ,DB 1⊥AD 1,D 1C ∩AD 1=D 1,所以DB 1⊥平面ACD 1,又因为DB 1⊂平面PDB 1,所以平面PDB 1⊥平面ACD 1,D 正确.故选ABD .三、填空题:本题共4小题,每小题5分,共20分.13.已知复数z =1+3i 1-i ,z -为z 的共轭复数,则z 的虚部为________.【答案】-2【解析】由z =1+3i 1-i =(1+3i )(1+i )(1-i )(1+i )=-2+4i2=-1+2i,得z -=-1-2i,∴复数z 的虚部为-2.14.一组数据按从小到大的顺序排列为1,3,3,x ,7,8,10,11,其中x ≠7,已知该组数据的中位数为众数的2倍,则:(1)该组数据的上四分位数是________; (2)该组数据的方差为________. 【答案】(1)9 (2)11.25【解析】(1)一组数据按从小到大的顺序排列为1,3,3,x ,7,8,10,11,其中x ≠7,∵该组数据的中位数为众数的2倍,∴x +72=2×3,解得x =5.∵8×0.75=6,∴该组数据的上四分位数是8+102=9.(2)该组数据的平均数为:18(1+3+3+5+7+8+10+11)=6,∴该组数据的方差为18[(1-6)2+(3-6)2+(3-6)2+(5-6)2+(7-6)2+(8-6)2+(10-6)2+(11-6)2]=11.25.15.a ,b ,c 分别为△ABC 内角A ,B ,C 的对边.已知ab cos(A -B )=a 2+b 2-c 2,A =45°,a =2,则c =________.【答案】4105【解析】由ab cos(A -B )=a 2+b 2-c 2,得cos(A -B )=2·a 2+b 2-c 22ab=2cos C =-2cos(A+B ),整理,得3cos A cos B =sin A sin B ,所以tan A tan B =3.又A =45°,所以tan A =1,tan B =3.由sin B cos B =3,sin 2B +cos 2B =1,得sin B =31010,cosB =1010.所以sin C =sin(A +B )=22⎝ ⎛⎭⎪⎫31010+1010=255.由正弦定理,得c =a sin C sin A =4105. 16.如图,AB →=3AD →,AC →=4AE →,BE 与CD 交于P 点,若AP →=mAB →+nAC →,则m =________,n =________.【答案】311 211【解析】因为AB →=3AD →,AC →=4AE →,且E 、P 、B 三点共线,D 、P 、C 三点共线,所以存在x ,y 使得AP →=xAE →+(1-x )AB →=14xAC →+(1-x )AB →.因为AP →=yAC →+(1-y )AD →=yAC →+13(1-y )AB →,所以⎩⎪⎨⎪⎧14x =y ,1-x =13(1-y ),解得x =811,y =211,所以AP →=14×811AC →+⎝ ⎛⎭⎪⎫1-811AB →=211AC →+311AB →=311AB →+211AC →.又因为AP →=mAB →+nAC →,所以m =311,n =211.四、解答题:本题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知复数z =m 2-m i(m ∈R),若|z |=2,且z 在复平面内对应的点位于第四象限. (1)求复数z ;(2)若z 2+az +b =1+i,求实数a ,b 的值.解:(1)∵z =m 2-m i,|z |=2,∴m 4+m 2=2,得m 2=1.又∵z 在复平面内对应的点位于第四象限,∴m =1,即z =1-i.(2)由(1)得z =1-i,∴z 2+az +b =1+i ⇒(1-i)2+a (1-i)+b =1+i.∴(a +b )-(2+a )i =1+i,∴⎩⎪⎨⎪⎧a +b =1,2+a =-1,解得a =-3,b =4.18.在①b +b cos C =2c sin B ,②S △ABC =2CA →·CB →,③(3b -a )cos C =c cos A ,三个条件中任选一个,补充在下面问题中,并解决问题.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足________. (1)求cos C 的值;(2)若点E 在AB 上,且AE →=2EB →,EC =413,BC =3,求sin B .解:(1)若选①:因为b +b cos C =2c sin B ,由正弦定理可得sin B +sin B cos C =2sin C sin B .因为sin B ≠0,所以1+cos C =2sin C .联立⎩⎨⎧1+cos C =2sin C ,sin 2C +cos 2C =1,解得cos C =13,sin C =223,故cos C =13. 若选②:因为S △ABC =2CA →·CB →,所以12ab sin C =2ba cos C ,即sin C =22cos C >0,联立sin 2C +cos 2C =1,可得cos C =13.若选③:因为(3b -a )cos C =c cos A ,由正弦定理可得(3sin B -sin A )cos C =sin C cosA ,所以3sinB cosC =sin A cos C +sin C cos A =sin(A +C )=sin B .因为sin B ≠0,所以cos C =13.(2)由余弦定理可得cos ∠AEC =AE 2+EC 2-AC 22AE ·EC =49c 2+EC 2-b 243c ·EC ,cos ∠BEC =BE 2+EC 2-BC 22BE ·EC=19c 2+EC 2-a 223c ·EC ,因为cos ∠AEC +cos ∠BEC =0,所以49c 2+EC 2-b 243c ·EC +19c 2+EC 2-a 223c ·EC =0,即2c 2+9EC 2-3b 2-6a 2=0,则2c 2-3b 2=6a 2-9EC 2=6×9-9×419=13,①同时cos C =a 2+b 2-c 22ab =13,即b 2-c 2=2b -9,②联立①②可得b 2+4b -5=0,解得b =1,则c =22,故cos B =a 2+c 2-b 22ac =223,则sin B=13. 19.如图所示,在四棱锥MABCD 中,底面ABCD 为直角梯形,BC ∥AD ,∠CDA =90°,AD =4,BC =CD =2,△MBD 为等边三角形.(1)求证:BD ⊥MC ;(2)若平面MBD ⊥平面ABCD ,求三棱锥CMAB 的体积. (1)证明:取BD 中点O ,连接CO 、MO ,如图所示: ∵△MBD 为等边三角形,且O 为BD 中点,∴MO ⊥BD . 又BC =CD ,O 为BD 中点,∴CO ⊥BD .又MO ∩CO =O ,∴BD ⊥平面MCO . ∵MC ⊂平面MCO ,∴BD ⊥MC .(2)解:∵平面MBD ⊥平面ABCD ,且平面MBD ∩平面ABCD =BD ,MO ⊥BD , ∴MO ⊥平面ABCD .由(1)知MB =MD =BD =22,MO =MB 2-BO 2=6,S △ABC =12BC ·CD =2,∴V CMAB =V MABC =13×S △ABC ×MO =263.20.某冰糖橙为甜橙的一种,云南著名特产,以味甜皮薄著称.该橙按照等级可分为四类:珍品、特级、优级和一级(每箱有5 kg).某采购商打算采购一批该橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:等级 珍品 特级 优级 一级 箱数 40 30 10 20 售价/(元·kg -1)36302418(2)按照分层抽样的方法,从这100箱橙子中抽取10箱,试计算各等级抽到的箱数; (3)若在(2)抽取的特级品和一级品的箱子上均编上号放在一起,再从中抽取2箱,求抽取的2箱中两种等级均有的概率.解:(1)依题意可知,样本中的100箱不同等级橙子的平均价格为36×410+30×310+24×110+18×210=29.4(元/kg). (2)依题意,珍品抽到110×40=4(箱),特级抽到110×30=3(箱),优级抽到110×10=1(箱),一级抽到110×20=2(箱).(3)抽到的特级有3箱,编号为A 1,A 2,A 3,抽到的一级有2箱,编号为B 1,B 2. 从中抽取2箱,有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2)共10种可能,两种等级均有的有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2)共6种可能,∴所求概率p =610=35.21.已知向量a =(3cos ωx ,sin ωx ),b =(cos ωx ,cos ωx ),其中ω>0,记函数f (x )=a ·b .(1)若函数f (x )的最小正周期为π,求ω的值;(2)在(1)的条件下,已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=3,且a=4,b +c =5,求△ABC 的面积.解:(1)f (x )=a ·b =3cos 2ωx +sin ωx ·cos ωx =3(cos 2ωx +1)2+sin 2ωx2=sin ⎝⎛⎭⎪⎫2ωx +π3+32. ∵f (x )的最小正周期为π,且ω>0,∴2π2ω=π,解得ω=1.(2)由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+32.∵f ⎝ ⎛⎭⎪⎫A 2=3,∴sin ⎝ ⎛⎭⎪⎫A +π3=32. 由0<A <π,得π3<A +π3<4π3,∴A +π3=2π3,解得A =π3.由余弦定理a 2=b 2+c 2-2bc cos A ,得16=b 2+c 2-bc .联立b +c =5,得bc =3. ∴S △ABC =12bc sin A =12×3×32=334.22.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90分及以上为认知程度高).现从参赛者中抽取了x 人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45),得到如图所示的频率分布直方图,已知第一组有6人.(1)求x ;(2)求抽取的x 人的年龄的中位数(结果保留整数);(3)从该市大学生、军人、医务人员、工人、个体户,五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5 组的成绩分别为93,96,97,94,90,职业组中1~5 组的成绩分别为93,98,94,95,90.①分别求5个年龄组和5个职业组成绩的平均数和方差;②以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.解:(1)根据频率分布直方图得第一组的频率为0.01×5=0.05,∴6x=0.05,解得x =120.(2)设中位数为a ,则0.01×5+0.07×5+(a -30)×0.06=0.5,∴a =953≈32,则中位数为32.(3)①5个年龄组成绩的平均数为x 1=15×(93+96+97+94+90)=94,方差为s 21=15×[(-1)2+22+32+02+(-4)2]=6.5个职业组成绩的平均数为x 2=15×(93+98+94+95+90)=94,方差为s 22=15×[(-1)2+42+02+12+(-4)2]=6.8.②从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定.。
新人教版(2019A 版)高中数学必修第二册综合测试卷(时间:120分钟 分值:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一个选项是符合题目要求的)1.若复数z =2i3-i ,则z 的共轭复数z =( ) A.-15-35I B.-15+35I C.15+35I D.15-35i 答案:A2.某公司生产三种型号的轿车,其中型号Ⅰ的轿车的月产量为 1 200辆,型号Ⅱ的轿车的月产量为6 000辆,型号Ⅲ的轿车的月产量为2 000辆,现用分层抽样的方法抽取92辆车进行检验,则型号Ⅲ的轿车应抽取( )A.12辆B.36辆C.20辆D.60辆答案:C3.2010-2018年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动汽车及物联网等新机遇,连接器行业发展较快.2010-2018年全球连接器营收情况如图所示,根据折线图,下列结论正确的个数为 ( )①每年的营收额逐年增长;②营收额增长最快的一年为2013-2014年;③2010-2018年的营收额增长率约为40%;④2014-2018年每年的营收额相对于2010-2014年每年的营收额,变化比较平稳.A.1B.2C.3D.4答案:C4.已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:321 421 292 925 274 632 800 478 598 663 531 297 396 021 506 318 230 113 507 965据此估计,小张三次射击恰有两次命中十环的概率约为( )A.0.25B.0.3C.0.35D.0.4答案:B5.盒子中有若干个大小和质地完全相同的红球和黄球,从中任意取出2个球,都是红球的概率为328,都是黄球的概率为514,则从盒子中任意取出2个球,恰好是同一颜色的概率为( )A.1328B.57C.1528D.37 答案:A6.某校篮球运动员进行投篮练习,若他前一球投进,则后一球投进的概率为34;若他前一球投不进,则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A.34 B.58 C.116 D.916 答案:D7.已知数据x 1,x 2,x 3的中位数为k ,众数为m ,平均数为n ,方差为p ,下列说法中,错误的是( )A.数据2x 1,2x 2,2x 3的中位数为2kB.数据2x 1,2x 2,2x 3的众数为2mC.数据2x 1,2x 2,2x 3的平均数为2nD.数据2x 1,2x 2,2x 3的方差为2p答案:D8.一个圆柱的轴截面是正方形,如果这个圆柱的侧面积与一个球的表面积相等,那么圆柱的体积与球的体积之比为( )A.1∶3B.3∶1C.2∶3D.3∶2答案:D二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.如图,已知点O 为正六边形ABCDEF 的中心,下列结论中正确的是( )A.OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =0B.(OA ⃗⃗⃗⃗⃗ -AF ⃗⃗⃗⃗⃗ )·(EF ⃗⃗⃗⃗⃗ -DC ⃗⃗⃗⃗⃗ )=0C.(OA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ D.|OF ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=|FA ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ -CB⃗⃗⃗⃗⃗ | 答案:BC10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下,一定符合该标志的是( )甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.A.甲地B.乙地C.丙地D.丁地答案:AD11.如图,在正方体ABCD -A 1B 1C 1D 1中,以下四个选项正确的是( )A.D1C∥平面A1ABB1B.A1D1与平面BCD1相交C.AD⊥平面D1DBD.平面BCD1⊥平面A1ABB1答案:AD12.在△ABC中,三个内角A,B,C所对的边分别为a,b,c.若b=c cos A,A的平分线交BC于点D,AD=1,cos A=18,以下结论正确的是()A.AC=34B.AB=8C.CDBD =1 8D.△ABD的面积为3√74答案:ACD三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知a=(1,-1),b=(λ,1),若a与b的夹角为钝角,则实数λ的取值范围是(-∞,-1)∪(-1,1).14.从分别写有1,2,3,4,5的五张质地相同的卡片中,任取两张,这两.张卡片上的数字之差的绝对值等于1的概率为2515.(本题第一空2分,第二空3分)随机抽取100名学生,测得他们的身高(单位:cm),按照身高依次分成六组:[155,160),[160,165), [165,170),[170,175),[175,180),[180,185),并得到样本身高的频率分布直方图如图所示,则频率分布直方图中的x的值为0.06;若将身高区间[170,175),[175,180),[180,185)依次记为A,B,C三组,并用分层抽样的方法从这三组中抽取6人,则从A,B,C三组中依次抽取的人数为3,2,1.16.如图所示,已知六棱锥P-ABCDEF的底面是正六边形, PA⊥平面ABC,PA=2 AB.则下列命题中正确的有②④.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD 与平面ABC所成的角为45°.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算过程)17.(10分)如图,正方体ABCD-A1B1C1D1的棱长为2,E,F分别为A1B,AC的中点.(1)证明:EF∥平面A1C1D;(2)求三棱锥C-A1C1D的体积.(1)证明:如图,连接BD.因为四边形ABCD为正方形,所以BD交AC于点F,且F为BD的中点.因为E为A1B的中点,所以EF∥A1D.因为EF⊄平面A1C1D,A1D⊂平面A1C1D,所以EF∥平面A1C1D.(2)解:三棱锥C-A1C1D的体积V=V棱锥A1-CC1D =13S△CC1D·A1D1=13×12×2×2×2=43.18.(12分)从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出所有可能的结果组成的样本空间.(2)求取出的两件产品中,恰有一件次品的概率.解:(1)每次取出一个,取后不放回地连续取两次,其所有可能的结果有6个,即Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.(2)用A 表示事件“取出的两件产品中,恰好有一件次品”,则A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},所以P (A )=46=23. 19.(12分)某居民小区为了提高小区居民的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站.由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内读书者进行年龄调查, 随机抽取了一天中40名读书者进行调查,将他们的年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],得到的频率分布直方图如图所示.(1)估计在这40名读书者中年龄分布在区间[40,70)上的人数;(2)求这40名读书者年龄的平均数和中位数;(3)从年龄在区间[20,40)上的读书者中任选两名,求这两名读书者年龄在区间[30,40)上的人数恰为1的概率.解:(1)由频率分布直方图知,年龄在区间[40,70)上的频率为(0.020+0.030+0.025)×10=0.75.所以40名读书者中年龄分布在区间[40,70)上的人数为40×0.75=30.(2)40名读书者年龄的平均数为25×0.05+35×0.1+45×0.2+55×0.3+ 65×0.25+75×0.1=54.设40名读书者年龄的中位数为x,0.05+0.1+0.2+(x-50)×0.03=0.5,解得x=55,即40名读书者年龄的中位数为55岁.(3)年龄在区间[20,30)上的读书者有2人,分别记为a,b,年龄在区间[30,40)上的读书者有4人,分别记为A,B,C,D.从上述6人中选出2人,有如下样本点:(a,b),(a,A),(a,B),(a,C),(a,D),(b,A),(b,B),(b,C),(b,D),(A,B), (A,C),(A,D),(B,C),(B,D),(C,D),共15个,记选取的两名读书者中恰好有1人年龄在区间[30,40)上为事件A,则事件A包含8个样本点:(a,A),(a,B),(a,C),(a,D),(b,A),(b,B),(b,C), (b,D),故P(A)=8.1520.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,设△ABC的面积为S,已知3c2=16S+3(b2-a2).(1)求tan B 的值;(2)若S =42,a =10,求b 的值.解:(1)因为3c 2=16S +3(b 2-a 2),所以3(c 2+a 2-b 2)=16S ,即3×2ac cos B =16×12ac sin B , 所以3cos B =4sin B ,即tan B =34. (2)由(1)可得sin B =35,cos B =45, 所以S =12ac sin B =12×10c ×35=3c =42, 所以c =14.由余弦定理可得,45=100+196-b 22×10×14,整理可得,b =6√2.21.(12分)已知向量a ,b 满足|a |=|b |=1,|xa +b |=√3|a -xb |(x >0,x ∈R).(1)求a ·b 关于x 的解析式f (x );(2)求向量a 与b 夹角的最大值;(3)若a 与b 平行,且方向相同,试求x 的值. 解:(1)由题意得|xa +b |2=3|a -xb |2,即x 2a 2+2xa ·b +b 2=3a 2-6xa ·b +3x 2b 2. 因为|a |=|b |=1,所以8xa ·b =2x 2+2, 所以a ·b =x 2+14x (x >0),即f (x )=14(x +1x ) (x >0). (2)设向量a 与b 夹角为θ,则cos θ=a ·b |a ||b |=f (x )=14[(√x -√x )2+2], 当√x =√x ,即x =1时,cos θ有最小值12.因为0≤θ≤π,所以θmax =π3. (3)因为a 与b 平行,且方向相同,|a |=|b |=1,所以a =b ,所以a ·b =14(x +1x )=1, 解得x =2±√3.22.(12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,AA 1⊥平面ABCD ,AC 与BD 交于点O ,∠BAD =60°,AB =2,AA 1=√6.(1)证明:平面A 1BD ⊥平面ACC 1A 1;(2)求二面角A -A 1C -B 的大小.(1)证明:由AA 1⊥平面ABCD ,得AA 1⊥BD ,AA 1⊥AC. 因为四边形ABCD 为菱形,所以AC ⊥BD.因为AC ∩AA 1=A ,所以BD ⊥平面ACC 1A 1.因为BD ⊂平面A 1BD ,所以平面A 1BD ⊥平面ACC 1A 1.(2)解:如图,过点O 作OE ⊥A 1C 于点E ,连接BE ,DE. 由(1)知BD ⊥平面ACC 1A 1,所以BD ⊥A 1C.因为OE ⊥A 1C ,OE ∩BD =O ,所以A 1C ⊥平面BDE ,所以A 1C ⊥BE. 因为OE ⊥A 1C ,BE ⊥A 1C ,所以∠OEB 为二面角A -A 1C -B 的平面角. 因为△ABD 为等边三角形且O 为BD 中点, 所以OB =12AB =1,OA =OC =√32AB =√3. 因为AA 1⊥AC ,所以A 1C =√AA 12+AC 2=3√2. 因为△A 1AC ∽△OEC ,所以OE AA 1=OC A 1C ,所以OE =OC ·AA 1A 1C =√3×√63√2=1. 在△OEB 中,OB ⊥OE ,所以tan ∠OEB =OBOE =1,即∠OEB =45°. 综上,二面角A -A 1C -B 的大小为45°.。
学期综合测评(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列说法正确的是( ) A .2>2i B .2>(3i)2C .2+3i <3+3iD .2+2i >2+i 答案 B解析 本题主要考查复数的性质.不全为实数的两个复数不能比较大小,故排除A ,C ,D ;而B 中(3i)2=-9<2,故选B.2.用反证法证明命题“若直线AB ,CD 是异面直线,则直线AC ,BD 也是异面直线”的过程分为三步:①则A ,B ,C ,D 四点共面,所以AB ,CD 共面,这与AB ,CD 是异面直线矛盾; ②所以假设错误,即直线AC ,BD 也是异面直线; ③假设直线AC ,BD 是共面直线. 则正确的顺序为( ) A .①→②→③ B .③→①→② C .①→③→② D .②→③→① 答案 B解析 本题主要考查反证法的步骤.反证法的步骤是:反设→归谬→结论.结合本题,知选B .3.用反证法证明“若a +b +c<3,则a ,b ,c 中至少有一个小于1”时,应( ) A .假设a ,b ,c 至少有一个大于1 B .假设a ,b ,c 都大于1 C .假设a ,b ,c 至少有两个大于1 D .假设a ,b ,c 都不小于1 答案 D解析 假设a ,b ,c 中至少有一个小于1不成立,即a ,b ,c 都不小于1,故选D . 4.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n n 2+3时,从n =k 到n =k +1时,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2 D.13(k +1)[2(k +1)2+1] 答案 B解析 n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12,n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2.5.定义在R 上的可导函数f (x ),已知y =e f ′(x )的图象如图所示,则y =f (x )的增区间是( )A .(-∞,1)B .(-∞,2)C .(0,1)D .(1,2) 答案 B解析 由题中图象知ef ′(x )≥1,即f ′(x )≥0时,x ≤2,∴y =f (x )的增区间为(-∞,2).6.已知x >0,不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +axn ≥n +1,则a的值为( )A .n 2B .n nC .2nD .22n -2答案 B解析 由x +1x ≥2,x +4x 2=x +22x2≥3,x +27x 3=x +33x3≥4,…,可推广为x +n n xn ≥n +1,故a =n n.7.如图,抛物线y =-x 2+2x +1与直线y =1形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是( )A .1 B.43C. 3 D .2 答案 B解析 由⎩⎪⎨⎪⎧y =1,y =-x 2+2x +1,知⎩⎪⎨⎪⎧x =0,y =1或⎩⎪⎨⎪⎧x =2,y =1.故所求面积S =⎠⎛02(-x 2+2x+1)d x -⎠⎛021d x =(-13x 3+x 2+x )||20-x 20=43.故选B .8.设f(x)=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列各点一定在y 轴上的是( )A .(b ,a )B .(a ,c )C .(c ,b )D .(a +b ,c )答案 A解析 f′(x)=3ax 2+2bx +c ,由题意知1,-1是方程3ax 2+2bx +c =0的两根,则1-1=-2b3a=0,所以b =0.故选A.9.已知函数f (x )(x ∈R )满足f (2)=3,且f (x )在R 上的导数满足f ′(x )-1<0,则不等式f (x 2)<x 2+1的解集为( )A .(-∞,-2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2) 答案 C解析 令g (x )=f (x )-x ,则g ′(x )=f ′(x )-1<0,∴g (x )在R 上单调递减.由f (x 2)<x 2+1,得f (x 2)-x 2<1,即g (x 2)<1.又g (2)=f (2)-2=1,∴g (x 2)<g (2),∴x 2>2,解得x >2或x <- 2.故选C.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1. 其中能推出“a ,b 中至少有一个大于1”的条件是( ) A .②③ B.①②③ C.③ D.③④⑤ 答案 C解析 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,若a +b >2,则a ,b 中至少有一个大于1.可用反证法证明:假设a ≤1且b ≤1,则a +b ≤2,与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1.故选C.11.定义复数的一种运算z 1]|z 1|+|z 2|,2)(等式右边为普通运算),若复数z =a +b i ,且正实数a,b满足a+b=3,则z*z的最小值为( )A.92B.322C.32D.94答案 B解析z*z=|z|+|z|2=2a2+b22=a 2+b2=a+b2-2ab,又∵ab≤⎝⎛⎭⎪⎫a+b22=9 4,∴-ab≥-94,z*z≥ 9-2×94=92=322.12.若0<x<π2,则2x与3sin x的大小关系( )A.2x>3sin x B.2x<3sin xC.2x=3sin x D.与x的取值有关答案 D解析令f(x)=2x-3sin x,则f′(x)=2-3cos x.当cos x<23时,f′(x)>0,当cos x=23时,f′(x)=0,当cos x>23时,f′(x)<0.即当0<x<π2时,f(x)先递减再递增,而f(0)=0,f⎝⎛⎭⎪⎫π2=π-3>0.故f(x)的值与x取值有关,即2x与sin x的大小关系与x取值有关.故选D.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.i是虚数单位,复数1-3i1-i的共轭复数是________.答案2+i解析∵1-3i1-i=-+-+=4-2i2=2-i,∴1-3i1-i的共轭复数是2+i.14.通过类比长方形,由命题“周长为定值l的长方形中,正方形的面积最大,最大值为l216”,可猜想关于长方体的相应命题为________.答案表面积为定值S的长方体中,正方体的体积最大,最大值为⎝⎛⎭⎪⎫S632解析正方形有4条边,正方体有6个面,正方形的面积为边长的平方,正方体的体积为边长的立方.由正方体的边长为⎝ ⎛⎭⎪⎫S 6 12,通过类比可知,表面积为定值S 的长方体中,正方体的体积最大,最大值为⎝ ⎛⎭⎪⎫S 632.15.若函数f (x )的导函数f ′(x )=x 2-4x +3,则函数f (1+x )的单调递减区间是________.答案 (0,2)解析 由f ′(x )=x 2-4x +3<0得1<x <3,即函数f (x )的单调递减区间为(1,3).又∵函数f (1+x )的图象是由f (x )的图象向左平移1个单位长度得到的,∴函数f (1+x )的单调递减区间为(0,2).16.如图所示的数阵中,第20行第2个数字是________.答案1191解析 设第n (n ≥2且n ∈N *)行的第2个数字为1a n,其中a 1=1,则由数阵可知a n +1-a n=n ,∴a 20=(a 20-a 19)+(a 19-a 18)+…+(a 2-a 1)+a 1=19+18+…+1+1=19×202+1=191,∴1a 20=1191. 三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知复数z 满足|z |=2,z 的虚部为1,且在复平面内表示的点位于第二象限.(1)求复数z ;(2)若m 2+m +mz 2是纯虚数,求实数m 的值. 解 (1)设z =a +b i ,(a ,b ∈R ), 则a 2+b 2=2,b =1.因为在复平面内表示的点位于第二象限,所以a <0,所以a =-1,b =1, 所以z =-1+i. (2)由(1)得z =-1+i , 所以z 2=(-1+i)2=-2i , 所以m 2+m +mz 2=m 2+m -2m i. 又因为m 2+m +mz 2是纯虚数,所以⎩⎪⎨⎪⎧m 2+m =0,-2m ≠0,所以m =-1.18.(本小题满分12分)已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23.(1)求a 的值;(2)求函数f (x )的单调区间. 解 (1)f ′(x )=3x 2+2ax -1,∴f ′(x )=3x 2+2f ′⎝ ⎛⎭⎪⎫23x -1,∴f ′⎝ ⎛⎭⎪⎫23=3×49+2f ′⎝ ⎛⎭⎪⎫23×23-1,∴f ′⎝ ⎛⎭⎪⎫23=-1,∴a =-1.(2)由(1)得f (x )=x 3-x 2-x +c , ∴f ′(x )=3x 2-2x -1=(3x +1)(x -1). 令f ′(x )>0得x <-13或x >1,令f ′(x )<0得-13<x <1,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,-13和(1,+∞);单调递减区间为⎝ ⎛⎭⎪⎫-13,1. 19.(本小题满分12分)求由曲线xy =1及直线x =y ,y =3所围成的平面图形的面积. 解 作出曲线xy =1,直线x =y ,y =3的草图,如图:所求面积为图中阴影部分的面积.由⎩⎪⎨⎪⎧xy =1,y =3,得⎩⎪⎨⎪⎧x =13,y =3,故A ⎝ ⎛⎭⎪⎫13,3;由⎩⎪⎨⎪⎧ xy =1,y =x ,得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1(舍去),故B (1,1);由⎩⎪⎨⎪⎧y =x ,y =3,得⎩⎪⎨⎪⎧x =3,y =3,故C (3,3).20.(本小题满分12分)若函数f(x)=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数的解析式;(2)若方程f (x )=k 有3个不同的根,求实数k 的取值范围. 解 f′(x )=3ax 2-b . (1)由题意得⎩⎪⎨⎪⎧f′=12a -b =0,f =8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13,b =4,故所求函数的解析式为f (x )=13x 3-4x +4.(2)由(1)可得f′(x )=x 2-4=(x -2)(x +2), 令f′(x )=0,得x =2或x =-2.当x 变化时,f′(x ),f (x )的变化情况如下表:因此,当x =-2时,f (x )有极大值3,当x =2时,f (x )有极小值-43,所以函数f (x )=13x 3-4x +4的图象大致如图所示.若f (x )=k 有3个不同的根,则直线y =k 与函数f (x )的图象有3个交点,所以-43<k <283.21.(本小题满分12分)水以20米3/分的速度流入一圆锥形容器,设容器深30米,上底直径12米,试求当水深10米时,水面上升的速度.解 设容器中水的体积在t 分钟时为V ,水深为h ,则V =20t , 又V =13πr 2h ,由图知r h =630,所以r =15h ,所以V =13π·⎝ ⎛⎭⎪⎫152·h 3=π75h 3,所以20t =π75h 3,所以h =31500πt ,于是h ′=31500π·13·t - 23.当h =10时,t =23π,此时h ′=5π,所以当h =10米时,水面上升速度为5π米/分.22.(本小题满分12分)已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n∈N *.(1)求a 1,a 2,a 3;(2)猜想{a n }的通项公式,并用数学归纳法证明.解 (1)a 1=S 1=a 12+1a 1-1,所以a 1=-1± 3.又因为a n >0,所以a 1=3-1.S 2=a 1+a 2=a 22+1a 2-1,所以a 2=5- 3.S 3=a 1+a 2+a 3=a 32+1a 3-1,所以a 3=7- 5.(2)由(1)猜想a n =2n +1-2n -1,n ∈N *. 下面用数学归纳法加以证明:①当n =1时,由(1)知a 1=3-1成立. ②假设n =k (k ∈N *)时,a k =2k +1-2k -1成立.当n =k +1时,a k +1=S k +1-S k =⎝⎛⎭⎪⎫a k +12+1a k +1-1-⎝ ⎛⎭⎪⎫a k 2+1a k -1=a k +12+1a k +1-2k +1,所以a 2k +1+22k +1a k +1-2=0, 所以a k +1=k ++1-k +-1,即当n =k +1时猜想也成立. 综上可知,猜想对一切n ∈N *都成立.。
模块综合测评(教师独具)(满分:150分 时间:120分钟)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若α∥β, a ⊂α, b ⊂β, 则a 与b 的位置关系是( )A .平行或异面B .相交C .异面D .平行A [满足条件的情形如下:]2.直线y =kx 与直线y =2x +1垂直,则k 等于( )A .-2B .2C .-12D .13C [由题意,得2k =-1,∴k =-12.]3.两圆C 1:x 2+y 2=r 2与C 2:(x -3)2+(y +1)2=r 2(r >0)外切,则r 的值为( )A .10-1B .102C .10D .10-1或10+1B [因为两圆外切且半径相等,所以|C 1C 2|=2r .所以r =102.]4.在空间直角坐标系中,O 为坐标原点,设A ⎝ ⎛⎭⎪⎫12,12,12,B ⎝ ⎛⎭⎪⎫12,12,0,C ⎝ ⎛⎭⎪⎫13,13,13, 则( ) A .OA ⊥ABB .AB ⊥AC C .AC ⊥BCD .OB ⊥OCC [|AB |=12,|AC |=36,|BC |=66,因为|AC |2+|BC |2=|AB |2,所以AC ⊥BC .]5.圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( )A .1B .2C . 2D .2 2C [圆心(-1,0),直线x -y +3=0,所以圆心到直线的距离为|-1-0+3|12+(-1)2= 2.] 6.直线2ax +y -2=0与直线x -(a +1)y +2=0互相垂直, 则这两条直线的交点坐标为( ) A .⎝ ⎛⎭⎪⎫-25,-65 B .⎝ ⎛⎭⎪⎫25,-65 C .⎝ ⎛⎭⎪⎫25,65 D .⎝ ⎛⎭⎪⎫-25,65 C [由题意知:2a -(a +1)=0,得a =1,所以2x +y -2=0,x -2y +2=0,解得x =25,y =65.]7.如图, 在长方体ABCD -A 1B 1C 1D 1中, P 为BD 上任意一点,则一定有( )A .PC 1与AA 1异面B .PC 1与A 1A 垂直C .PC 1与平面AB 1D 1相交D .PC 1与平面AB 1D 1平行D [当A ,P ,C 共线时,PC 1与AA 1相交不垂直,所以A ,B 错误;连接BC 1,DC 1(图略),可以证AD 1∥BC 1,AB 1∥DC 1,所以平面AB 1D 1∥平面BDC 1.又PC 1⊂平面BDC 1,所以PC 1与平面AB 1D 1平行.]8.在长方体ABCD -A 1B 1C 1D 1中, AB =2, BC =4, AA 1=6, 则AC 1和底面ABCD 所成的角为( )A .30°B .45°C .60°D .75°A [如图所示,连接AC ,在长方体ABCD -A 1B 1C 1D 1中,CC 1⊥底面ABCD ,所以∠C 1AC 就是AC 1与底面ABCD 所成的角.因为AB =2,BC =4,AA 1=6,所以CC 1=AA 1=6,AC 1=2 6.所以在Rt △ACC 1中,sin ∠C 1AC =CC 1AC 1=626=12.所以∠C 1AC =30°.] 9.已知点A (-1,1),B (3,1),直线l 过点C (1,3)且与线段AB 相交,则直线l 与圆(x -6)2+y 2=2的位置关系是( )A .相交B .相离C .相交或相切D .相切或相离D [因为k AC =1,k BC =-1,直线l 的斜率的范围是(-∞,-1]∪[1,+∞),直线BC 方程为x +y -4=0,圆(x -6)2+y 2=2的圆心(6,0)到直线BC 的距离为2,因此圆(x -6)2+y 2=2与直线BC 相切,结合图象可知,直线l 与圆(x -6)2+y 2=2的位置关系是相切或相离.]10.设l ,m ,n 表示三条直线,α,β,γ表示三个平面,则下面命题中不成立的是( )A .若l ⊥α,m ⊥α,则l ∥mB .若m ⊂β,m ⊥l ,n 是l 在β内的射影,则m ⊥nC .若m ⊂α,n ⊄α,m ∥n ,则n ∥αD .若α⊥γ,β⊥γ,则α∥βD [若l ⊥α,m ⊥α,则l ∥m ,A 正确;由直线与平面垂直的判定和性质定理,若m ⊂β,m ⊥l ,n 是l 在β内的射影,则m ⊥n ,B 正确;由直线与平面平行的判定定理,若m ⊂α,n ⊄α,m ∥n ,则n ∥α,C 正确;垂直于同一个平面的两个平面平行或相交, 即若α⊥γ,β⊥γ,则α∥β或α∩β=a ,D 不正确.]11.如果圆x 2+(y -1)2=1上任意一点P (x ,y )都能使x +y +c ≥0成立,那么实数c 的取值范围是( )A .c ≥-2-1B .c ≤-2-1C .c ≥2-1D .c ≤2-1C [对任意点P (x ,y )能使x +y +c ≥0成立,等价于c ≥[-(x +y )]max . 设b=-(x +y ),则y =-x -b . 所以圆心(0,1)到直线y =-x -b 的距离d =|1+b |2≤1, 解得-2-1≤b ≤2-1.所以c ≥2-1.] 12.如图, 在△ABC 中, AB =BC =6, ∠ABC =90°, 点D 为AC 的中点,将△ABD 沿BD 折起到△PBD 的位置, 使PC =PD ,连接PC , 得到三棱锥P -BCD , 若该三棱锥的所有顶点都在同一球面上, 则该球的表面积是( )A .πB .3πC .5πD .7πD [由题意得该三棱锥的面PCD 是边长为3的正三角形,且BD ⊥平面PCD, 设三棱锥P -BDC 外接球的球心为O, △PCD 外接圆的圆心为O 1,则OO 1⊥平面PCD ,所以四边形OO 1DB 为直角梯形, 由BD =3,O 1D =1,及OB=OD ,得OB =72, 所以外接球半径为R =72,所以该球的表面积S =4πR 2=4π×74=7π.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若直线(m +1)x -y -(m +5)=0与直线2x -my -6=0平行,则m =________.-2 [由题意知:m +1=2m ,解得m =1或-2. 当m =1时,两直线方程均为2x -y -6=0,两直线重合,不合题意,舍去;当m =-2时,直线分别为x +y +3=0,x +y -3=0,两直线平行.]14.(2018·江苏高考)如图所示, 正方体的棱长为2, 以其所有面的中心为顶点的多面体的体积为________.43 [平面ABCD 将多面体分成了两个以2为底面,边长、高为1的正四棱锥,所以其体积为2×2×1×13×2=43.]15.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.x 2+y 2-2x =0 [设圆的一般方程为x 2+y 2+Dx +Ey +F =0, 又因为圆经过三点(0,0),(1,1),(2,0),所以⎩⎨⎧F =0,1+1+D +E +F =0,22+2D +F =0,解得D =-2,E =0,F =0,所以圆的方程为x 2+y 2-2x =0.]16.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为m 的正方形,PD ⊥底面ABCD ,且PD =m ,P A =PC =2m ,若在这个四棱锥内放一个球,则此球的最大半径是________.12(2-2)m [由PD ⊥底面ABCD ,得PD ⊥AD .又PD =m ,P A =2m ,则AD =m .设内切球的球心为O ,半径为R ,连接OA ,OB ,OC ,OD ,OP (图略),易知V P ABCD =V O ABCD +V O P AD +V O P AB +V O PBC +V O PCD ,即13·m 2·m =13·m 2×R +13×12·m 2·R +13×12·2m 2·R +13×12·2 m 2·R +13·12·m 2·R , 解得R =12(2-2)m ,所以此球的最大半径是12(2-2)m .]三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知直线l 的方程为3x +4y -12=0,分别求下列直线l ′的方程,l ′满足:(1)过点(-1,3),且与l 平行;(2)与直线l 关于y 轴对称.[解] (1)因为l ∥l ′, 所以l ′的斜率为-34,所以直线l ′的方程为:y -3=-34(x +1),即3x +4y -9=0.(2) l 与y 轴交于点(0,3),该点也在直线l ′上,在直线l 上取一点A (4,0),则点A 关于y 轴的对称点A ′(-4,0)在直线l ′上,所以直线l ′经过(0,3)和(-4,0)两点,故直线l ′的方程为3x -4y +12=0.18.(本小题满分12分)已知圆C :x 2+y 2-8y +12=0,直线l 经过点D (-2,0),且斜率为k .(1)求以线段CD 为直径的圆E 的方程;(2)若直线l 与圆C 相离, 求k 的取值范围.[解] (1)将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为C (0,4),半径为2.所以CD 的中点E (-1,2),|CD |=22+42=25,所以r =5,故所求圆E 的方程为(x +1)2+(y -2)2=5.(2)直线l 的方程为y -0=k (x +2),即kx -y +2k =0.若直线l 与圆C 相离,则有圆心C 到直线l 的距离|0-4+2k |k 2+1>2, 解得k <34.所以k 的取值范围为⎝ ⎛⎭⎪⎫-∞,34. 19.(本小题满分12分)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.[解] (1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ⊂平面ABC ,AC ⊂平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,OP ⊂平面POM ,OM ⊂平面POM ,OP ∩OM =O ,所以CH ⊥平面POM .故C H 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°.所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455. 所以点C 到平面POM 的距离为455.20.(本小题满分12分)在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y =x 相切于坐标原点O .(1)求圆C 的方程;(2)试探求圆C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长?若存在,请求出点Q 的坐标;若不存在,请说明理由.[解] (1)设圆心为C (a ,b ),由OC 与直线y =x 垂直,知斜率k OC =b a =-1,故b =-a .又|OC |=22,即a 2+b 2=22,可解得a =-2,b =2或a =2,b =-2,结合点C (a ,b )位于第二象限知a =-2,b =2.故圆C 的方程为(x +2)2+(y -2)2=8.(2)假设存在点Q (m ,n )符合题意,则(m -4)2+n 2=16,m 2+n 2≠0, (m +2)2+(n -2)2=8,解得m =45,n =125,故圆C 上存在异于原点的点Q ⎝ ⎛⎭⎪⎫45,125符合题意. 21.(本小题满分12分)如图,矩形ABCD 所在平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故B C ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:如图,连接AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点.连接OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .22.(本小题满分12分)已知直线l :y =kx +b (0<b <1)和圆O :x 2+y 2=1相交于A ,B 两点.(1)当k =0时,过点A ,B 分别作圆O 的两条切线,求两切线的交点坐标;(2)对于任意的实数k ,在y 轴上是否存在一点N ,满足∠ONA =∠ONB ?若存在,请求出此点坐标;若不存在,说明理由.[解] (1)联立直线l :y =b 与圆O :x 2+y 2=1的方程,得A ,B 两点坐标为A (-1-b 2,b ),B (1-b 2,b ).设过圆O 上点A 的切线l 1的方程是y -b =kl 1(x +1-b 2),由于k AO ·kl 1=-1,即-b 1-b 2·kl 1=-1,也就是kl 1=1-b 2b . 所以l 1的方程是y -b =1-b 2b (x +1-b 2).化简得l 1的方程为-1-b 2x +by =1.同理得,过圆O 上点B 的切线l 2的方程为1-b 2x +by =1.联立l 1与l 2的方程得交点的坐标为⎝ ⎛⎭⎪⎫0,1b . 因此,当k =0时,两切线的交点坐标为⎝ ⎛⎭⎪⎫0,1b . (2)假设在y 轴上存在一点N (0,t ),满足∠ONA =∠ONB ,则直线NA ,NB 的斜率k NA ,k NB 互为相反数,即k NA +k NB =0.设A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),则y 1-t x 1+y 2-tx 2 =0, 即x 2(kx 1+b -t )+x 1(kx 2+b -t )=0.化简得2kx 1x 2+(b -t )(x 1+x 2)=0.① 联立直线l :y =kx +b 与圆O :x 2+y 2=1的方程, 得(k 2+1)x 2+2kbx +b 2-1=0.所以x 1+x 2=-2kb k 2+1,x 1x 2=b 2-1k 2+1.② 将②代入①整理得-2k +2kbt =0.③因为③式对于任意的实数k 都成立,因此,t =1b .故在y 轴上存在一点N ⎝ ⎛⎭⎪⎫0,1b ,满足∠ONA =∠ONB .。
模块综合检测(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则z =i1-2i 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B.z =i1-2i =i (1+2i )1-(2i )2=-2+i 5=-25+15i , 其对应的点⎝ ⎛⎭⎪⎫-25,15位于第二象限. 2.(2019·高考全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面解析:选B.对于A ,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A 不正确;对于B ,根据两平面平行的判定定理与性质知,B 正确;对于C ,平行于同一条直线的两个平面可能相交,也可能平行,所以C 不正确;对于D ,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D 不正确.综上可知选B .3.如图所示的直观图,其平面图形的面积为( )A .3B .6C .3 2D.322解析:选B.由直观图可得,该平面图形是直角边边长分别为4,3的直角三角形,其面积为S =12×4×3=6.4.在120个零件中,一级品24个,二级品36个,三级品60个,用分层随机抽样法从中抽取容量为20的样本,则在一级品中抽取的比例为( )A.124B.136C.15D.16解析:选D.由题意知抽取的比例为20120=16,故选D.5.从某校高三年级随机抽取一个班,对该班50名学生在普通高校招生体验中的视力情况进行统计,其结果的频率分布直方图如图所示,若某专业对视力要求在0.9及以上,则该班学生中能报该专业的人数为( )A.10 B.20C.8 D.16解析:选B.由频率分布直方图,可得视力在0.9及以上的频率为(1.00+0.75+0.25)×0.2=0.4,人数为0.4×50=20.故选B.6.一组数据的平均数、众数和方差都是2,则这组数可以是( )A.2,2,3,1 B.2,3,-1,2,4C.2,2,2,2,2,2 D.2,4,0,2解析:选D.易得这四组数据的平均数和众数都是2,所以只需计算它们的方差就可以.第一组数据的方差是0.5;第二组数据的方差是2.8;第三组数据的方差是0;第四组数据的方差是2.7.已知a=(1,0),b=(1,1),且(a+λb)⊥a,则λ=( )A.2 B.0C.1 D.-1解析:选D.因为a+λb=(1,0)+(λ,λ)=(1+λ,λ),所以(a+λb)·a=(1+λ,λ)·(1,0)=1+λ.由(a+λb)⊥a得1+λ=0,得λ=-1,故选D.8.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.19解析:选D.个位数与十位数之和为奇数,则个位数与十位数中必有一个奇数一个偶数,所以可以分两类:(1)当个位为奇数时,有5×4=20个,符合条件的两位数. (2)当个位为偶数时,有5×5=25个,符合条件的两位数.因此共有20+25=45个符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P =545=19.9.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能得到冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.12B.35C.23D.34解析:选D.设A i (i =1,2)表示继续比赛时,甲在第i 局获胜,B 事件表示甲队获得冠军. 法一:B =A 1+A -1A 2,故P (B )=P (A 1)+P (A -1)P (A 2)=12+12×12=34.法二:P (B )=1-P (A -1A -2)=1-P (A -1)P (A -2)=1-12×12=34.10.如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λμ的值为( )A .-3B .3C .2D .-2解析:选B.因为AD →=23AC →,所以BP →=13BD →=13(AD →-AB →)=29AC →-13AB →.所以AP →=AB →+BP →=23AB →+29AC →,又AP →=λAB →+μAC →,所以λ=23,μ=29,从而λμ=3,故选B.11.如图是由16个边长为1的菱形构成的图形,菱形中的锐角大小为π3,a =AB →,b =CD →,则a ·b =( )A .-5B .-1C .-3D .-6解析:选B.设菱形中过A 点的两邻边对应的向量分别表示为i ,j ,且i 的方向水平向右,则|i |=|j |=1,〈i ,j 〉=60°,从而i ·j =12.因此a =i +2j ,b =-3i +2j ,所以a ·b =(i +2j )·(-3i +2j )=-3i 2-4i ·j +4j 2=-3×12-4×1×1×12+4×12=-1,故选B.12.如图,在矩形ABCD 中,EF ∥AD ,GH ∥BC ,BC =2,AF =FG =BG =1.现分别沿EF ,GH 将矩形折叠使得AD 与BC 重合,则折叠后的几何体的外接球的表面积为( )A .24πB .6π C.163π D.83π 解析:选C.由题意可知,折叠后的几何体是底面为等边三角形的三棱柱,底面等边三角形外接圆的半径为23×12-⎝ ⎛⎭⎪⎫122=33.因为三棱柱的高BC =2,所以其外接球的球心与底面外接圆圆心的距离为1,则三棱柱外接球的半径为R = ⎝ ⎛⎭⎪⎫332+12=233,所以三棱柱外接球的表面积S =4πR 2=163π.故选C.二、填空题:本题共4小题,每小题5分.13.4,4,6,7,7,8,9,9,10,10的30%分位数为________,75%分位数为________. 解析:因为10×30%=3,10×75%=7.5, 所以30%分位数为x 3+x 42=6+72=6.5,75%分位数为x 8=9. 答案:6.5 914.同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是________.解析:设“同学甲答对第i 个题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.6,P (A 3)=0.5,且A 1,A 2,A 3相互独立,同学甲得分不低于300分对应于事件A 1A 2A 3∪A 1A -2A 3∪A-1A 2A 3发生,故所求概率为P =P (A 1A 2A 3∪A 1A -2A 3∪A -1A 2A 3)=P (A 1A 2A 3)+P (A 1A -2A 3)+P (A -1A 2A 3)=P (A 1)P (A 2)P (A 3)+P (A 1)P (A -2)·P (A 3)+P (A -1)P (A 2)P (A 3)=0.8×0.6×0.5+0.8×0.4×0.5+0.2×0.6×0.5=0.46.答案:0.4615.如图,在三棱柱ABC A 1B 1C 1中,AA 1⊥底面ABC ,AB ⊥BC ,AA 1=AC =2,直线A 1C 与侧面AA 1B 1B 所成的角为30°,则该三棱柱的侧面积为________.解析:连接A 1B .因为AA 1⊥底面ABC ,则AA 1⊥BC ,又AB ⊥BC ,AA 1∩AB =A ,所以BC ⊥平面AA 1B 1B ,所以直线A 1C 与侧面AA 1B 1B 所成的角为∠CA 1B =30°.又AA 1=AC =2,所以A 1C =22,BC = 2.又AB ⊥BC ,则AB =2,则该三棱柱的侧面积为22×2+2×2=4+4 2.答案:4+4 216.在矩形ABCD 中,AB =2,AD =1.边DC 上的动点P (包含点D ,C )与CB 延长线上的动点Q (包含点B )满足|DP →|=|BQ →|,则PA →·PQ →的最小值为________.解析:以点A 为坐标原点,分别以AB ,AD 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设P (x ,1),Q (2,y ),由题意知0≤x ≤2,-2≤y ≤0.因为|DP →|=|BQ →|, 所以|x |=|y |,所以x =-y .因为PA →=(-x ,-1),PQ →=(2-x ,y -1),所以PA →·PQ →=-x (2-x )-(y -1)=x 2-2x -y +1=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,所以当x =12时,PA →·PQ →取得最小值为34.答案:34三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知a ,b ,c 是同一平面的三个向量,其中a =(1,3). (1)若|c |=4,且c ∥a ,求c 的坐标;(2)若|b |=1,且(a +b )⊥⎝ ⎛⎭⎪⎫a -52b ,求a 与b 的夹角θ. 解:(1)因为c ∥a ,所以存在实数λ(λ∈R ),使得c =λa =(λ,3λ), 又|c |=4,即λ2+3λ2=4,解得λ=±2. 所以c =(2,23)或c =(-2,-23).(2)因为(a +b )⊥⎝ ⎛⎭⎪⎫a -52b ,所以(a +b )·⎝ ⎛⎭⎪⎫a -52b =0,即a 2-32a ·b -52b 2=0,所以4-32×2×1×cos θ-52=0,所以cos θ=12,因为θ∈[0,π],所以θ=π3.18.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知C =π6,a =2,△ABC 的面积为3,F 为边AC 上一点.(1)求c ;(2)若CF =2BF ,求sin ∠BFC .解:(1)因为S △ABC =12ab sin C =12×2b ×sin π6=3,所以b =2 3.由余弦定理可得c2=a 2+b 2-2ab cos C =4+12-2×2×23×cos π6=4,所以c =2.(2)由(1)得a =c =2,所以A =C =π6,∠ABC =π-A -C =2π3.在△BCF 中由正弦定理得CF sin ∠CBF =BFsin ∠BCF,所以sin ∠CBF =sin π6·CFBF.又因为CF=2BF ,所以sin ∠CBF =22, 又因为∠CBF ≤2π3,所以∠CBF =π4,所以sin ∠BFC =sin (∠CBF +∠BCF )= sin ⎝ ⎛⎭⎪⎫π4+π6=2+64. 19.(本小题满分12分)如图所示,凸多面体ABCED 中,AD ⊥平面ABC ,CE ⊥平面ABC ,AC =AD =AB =1,BC =2,CE =2,F 为BC 的中点.(1)求证:AF ∥平面BDE ; (2)求证:平面BDE ⊥平面BCE .证明:(1)取BE 的中点G ,连接GF ,GD ,因为AD ⊥平面ABC ,CE ⊥平面ABC ,所以AD ∥EC ,且平面ABC ⊥平面ACED .因为GF 为三角形BCE 的中位线,所以GF ∥EC ∥DA ,GF =12CE =DA =1.所以四边形GFAD 为平行四边形,所以AF ∥GD ,又GD ⊂平面BDE ,AF ⊄平面BDE ,所以AF ∥平面BDE .(2)因为AC =AB =1,BC =2, 所以AC 2+AB 2=BC 2, 所以AB ⊥AC .所以F 为BC 的中点,所以AF ⊥BC .又GF ⊥AF ,BC ∩GF =F ,所以AF ⊥平面BCE .因为AF ∥GD ,所以GD ⊥平面BCE .又GD ⊂平面BDE , 所以平面BDE ⊥平面BCE .20.(本小题满分12分)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)法一:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以如果顾客购买了甲,则该顾客同时购买丙的可能性最大.法二:从统计表可以看出,同时购买了甲和乙的顾客,也都购买了丙;同时购买了甲和丁的顾客,也都购买了丙;有些顾客同时购买了甲和丙,却没有购买乙或丁.所以,如果顾客购买了甲,那么该顾客同时购买丙的可能性最大.21.(本小题满分12分)为增强市民的环境保护意识,某市面向全市征召n 名义务宣传志愿者,成立环境保护宣传组织,现把该组织的成员按年龄分成5组,第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示,已知第1组有5人.(1)分别求出第3,4,5组志愿者的人数,若在第3,4,5组中用分层随机抽样的方法抽取6名志愿者参加某社区的宣传活动,应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该组织决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有1名志愿者被抽中的概率.解:(1)由题意,因为第1组有5人,则0.01×5n =5,n =100, 所以第3组有0.06×5×100=30(人), 第4组有0.04×5×100=20(人), 第5组有0.02×5×100=10(人).所以利用分层随机抽样在第3,第4,第5组中分别抽取3人,2人,1人.(2)记第3组的3名志愿者为A 1,A 2,A 3,第4组的2名志愿者为B 1,B 2,第5组的1名志愿者为C 1,则从6名志愿者中抽取2名志愿者有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1),(A 3,B 2),(A 3,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1),共15种.其中第3组的3名志愿者A 1,A 2,A 3至少有一名志愿者被抽中的有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1),(A 3,B 2),(A 3,C 1),共12种.则第3组至少有1名志愿者被抽中的概率为1215=45.22.(本小题满分12分)如图,四棱锥S ABCD 中,底面ABCD 是菱形,其对角线的交点为O ,且SA =SC ,SA ⊥BD .(1)求证:SO ⊥平面ABCD ;(2)设∠BAD =60°,AB =SD =2,P 是侧棱SD 上的一点,且SB ∥平面APC ,求三棱锥A PCD 的体积.解:(1)证明:因为底面ABCD 是菱形,所以AC ⊥BD .又因为BD ⊥SA ,SA ∩AC =A ,所以BD ⊥平面SAC ,又因为SO ⊂平面SAC .所以BD ⊥SO .因为SA =SC ,AO =OC ,所以SO ⊥AC .又因为AC ∩BD =O ,所以SO ⊥平面ABCD .(2)连接OP .因为SB ∥平面APC ,SB ⊂平面SBD ,平面SBD ∩平面APC =OP ,所以SB ∥OP .又因为O 是BD 的中点,所以P 是SD 的中点.由题意知△ABD 为正三角形,所以OD =1.由(1)知SO ⊥平面ABCD ,所以SO ⊥OD .又因为SD =2,所以在Rt △SOD 中,SO = 3.所以P 到平面ABCD 的距离为32, 所以V A PCD =V P ACD =13×⎝ ⎛⎭⎪⎫12×2×2sin 120°×32=1 2.。