薄膜材料的应用与发展
- 格式:pdf
- 大小:261.15 KB
- 文档页数:2
薄膜材料的表征与应用前景薄膜材料是一种厚度较薄的材料,具有广泛的应用领域。
在现代科学技术领域中,薄膜材料正变得越来越重要,例如电子器件、太阳能电池、光伏电池、光电子学、医学、生物传感器、防辐射、保护涂料等领域。
在这些领域中,薄膜材料都有着很重要的作用。
因此,如何进行薄膜材料的表征是非常重要的,下面将从表征方法、薄膜材料技术应用、应用前景三方面进行探讨。
一、薄膜材料的表征方法薄膜材料的表征方法主要有X射线衍射、透射电子显微镜、扫描电子显微镜、原子力显微镜等技术。
其中,X射线衍射属于一种常用的材料分析方法,可以得到薄膜的晶体结构、晶格常数、谱线宽度、拓扑结构等信息。
透射电子显微镜可以得到薄膜的显微组织结构,包括富含结构信息的多晶体薄膜、单晶薄膜以及异质结构。
扫描电子显微镜则可用来分析物质表面形态和组成,并且可对样品的形貌、大小、质量等进行观察和计量。
原子力显微镜则可以对样品的表面形貌进行观察,并能够创造分子层面的逼真图像,是一种非常常用的表征方法。
不同的薄膜材料在表征方法上存在很大的差异,例如,半导体薄膜材料需要更精确的表征技术,而对于金属薄膜材料则主要采用透射电子显微镜进行分析。
在分析时也需要注意用适当的方法。
二、薄膜材料技术应用薄膜材料的技术应用广泛,涉及到电子器件、太阳能电池、光伏电池、光电子学、医学、生物传感器、防辐射、保护涂料等领域。
其中,太阳能电池是薄膜材料的典型应用之一。
采用薄膜材料制造的太阳能电池,不仅可以提高转换效率,而且重量更轻、性能更佳。
此外,薄膜材料还可以用于生物传感器领域。
由于薄膜具有微观尺寸范围,因此具有内在的生物相容性和高灵敏度,并且还可以按照需要设计其结构或功能,如含有肝素和酶等的超薄膜,有利于抑制血栓形成和生物膜。
三、薄膜材料技术应用前景在各种新能源材料中,薄膜材料已经成为研究热点。
太阳能电池、燃料电池等的制造关键是新材料的开发,而在这些中,薄膜材料的开发将成为未来的重要方向。
功能薄膜材料功能薄膜材料是一类具有特殊功能和性能的薄膜材料,广泛应用于电子、光学、医疗、能源等领域。
它们具有优异的光学、电子、磁性、机械、化学等性能,可以实现多种功能,满足不同领域的需求。
功能薄膜材料的研究和应用对于推动科技创新和产业发展具有重要意义。
首先,功能薄膜材料在电子领域具有重要应用。
例如,氧化铟锡(ITO)薄膜广泛应用于液晶显示器、触摸屏等电子产品中,具有优异的导电性和透明性;氧化锌(ZnO)薄膜具有优异的半导体性能,可用于光电器件和传感器中;有机薄膜晶体管(OTFT)是一种新型的柔性电子器件,可实现可弯曲、可卷曲的电子产品。
这些功能薄膜材料的应用,推动了电子产品的不断创新和发展。
其次,功能薄膜材料在光学领域也发挥着重要作用。
例如,光学膜具有反射、透射、吸收等特殊光学性能,可用于激光器、光学镜片、光学滤波器等光学器件中;光学薄膜还可用于制备光学薄膜滤光片、偏振片、分光镜等光学元件,广泛应用于光学仪器、激光设备、光学通信等领域。
这些功能薄膜材料的应用,提高了光学器件的性能和功能。
此外,功能薄膜材料在医疗和生物领域也有重要应用。
例如,生物相容性薄膜可用于医用植入材料、药物缓释系统等医疗器械中,具有良好的生物相容性和药物控释性能;生物传感器薄膜可用于检测生物分子、细胞等生物样品,具有高灵敏度和快速响应特性。
这些功能薄膜材料的应用,促进了医疗器械和生物技术的发展。
最后,功能薄膜材料在能源领域也具有重要意义。
例如,太阳能电池中的光伏薄膜可将太阳能转换为电能,具有高效、轻薄、柔性等特点;锂离子电池中的隔膜薄膜可实现电解质的隔离和离子传输,影响电池的安全性和循环寿命。
这些功能薄膜材料的应用,推动了新能源技术的发展和应用。
综上所述,功能薄膜材料具有多种特殊功能和性能,在电子、光学、医疗、能源等领域具有重要应用。
随着科学技术的不断进步和创新,功能薄膜材料的研究和应用将会更加广泛,为人类社会的发展和进步做出更大的贡献。
薄膜技术的发展和应用随着科技的不断进步,薄膜技术也得到了广泛应用和发展。
本文将就薄膜技术的发展和应用进行介绍。
一、薄膜技术的定义和分类薄膜技术是指将材料以极薄的层数覆盖在基材表面上的技术。
薄膜技术因其独特的性质,在电子、医疗、能源、光电和材料领域都有广泛的应用。
薄膜技术按照制备工艺可分为物理气相沉积法、化学气相沉积法、溅射法、离子束沉积法和溶液法等。
其中,物理气相沉积法和化学气相沉积法是基于气相反应制备薄膜,而溅射法和离子束沉积法则是基于固态反应制备薄膜。
二、薄膜技术的应用1、电子领域薄膜技术在电子领域有着广泛的应用,如显示器件中的膜电极和透光薄膜,硅上集成电路中的金属线薄膜和凸点薄膜,以及太阳能电池中的透明导电膜等。
通过不同种类的薄膜组合,可以制造出光电显示器件、光二极管、半导体器件等。
2、医疗领域薄膜技术在医疗领域也有广泛的应用,如人造器官表面的生物相容性薄膜、药物释放薄膜、医用传感器薄膜、隔离膜和过滤膜等。
这些薄膜可以帮助医学界实现更好的医学检测和治疗。
3、能源领域薄膜技术在能源领域也发挥了重要的作用,如太阳能电池和燃料电池中的薄膜。
通过合适的制备工艺可以制造出透明导电膜、锂离子电池隔膜、固体氧化物燃料电池氧离子传输膜等薄膜材料。
4、光电领域光电领域是薄膜技术应用较早的领域之一,尤其是光学涂层和抗反射膜方面的应用。
薄膜技术不仅可以增强光学元件的透过率和强度,还可以制造仿生光学器件等。
5、材料领域薄膜技术还可以制造出纳米微观结构,实现材料性质的精细控制,如金属膜的纳米微结构、高分子复合薄膜、磁性薄膜等,这些材料在生产制造、传感器等领域有广泛的应用。
三、薄膜技术未来的发展趋势随着技术的不断更新,薄膜技术也在不断地发展和创新。
未来薄膜技术的发展趋势将主要集中在以下几个方面:1、多层薄膜技术的发展多层薄膜技术是目前的一个研究热点,它可以实现对于薄膜性质的控制和变化。
通过不同比例的堆叠和改变各种材料的结构和性质,可以制备出更加精细的薄膜材料。
光学薄膜的发展及应用前景光学薄膜是一种通过沉积一层或多层材料形成的具有特定光学性质的薄膜,广泛应用于光学器件、太阳能电池、显示器、激光器等领域。
随着科学技术的发展和对光学性能要求的不断提高,光学薄膜的研究与应用呈现出迅猛发展的趋势。
本文将从光学薄膜的发展历程、主要应用领域以及未来的应用前景等方面进行探讨。
光学薄膜的发展历程可以追溯到20世纪初,当时人们开始使用化学气相沉积法来生长薄膜,开创了现代光学薄膜技术的先河。
20世纪50年代,光学薄膜技术得到了快速发展,特别是在太阳能电池、激光器和光学涂层等方面的应用有了重要突破。
随着薄膜材料和技术的不断进步,光学薄膜的性能和应用范围也得到了大幅提升。
光学薄膜在光学器件领域广泛应用,如反射镜、透镜、窗片等。
通过合理设计和优化光学薄膜的层序和材料组成,可以实现高透射、高反射、准相位匹配等特性。
这些特性成为眼镜、相机镜头、显微镜等光学器件中不可或缺的部分,有效提高了光学系统的性能和成像质量。
此外,光学薄膜在显示器领域也发挥着重要作用。
通过在显示器背光板、滤光片和触摸屏等部件上应用光学薄膜,可以增强显示器的颜色饱和度、对比度和亮度等方面的性能。
光学薄膜的应用可以提高显示器的显示效果,提供更好的视觉体验。
光学薄膜在激光器技术中也具有广泛的应用。
激光器的工作原理要求光在谐振腔中的来回传播尽可能多的次数,而光学薄膜通过提供高反射和高透射的特性,增强了激光器的能量转换效率和光束质量。
此外,光学薄膜还可用于激光器输出功率的控制,通过调节薄膜的反射率,实现激光器功率的输出控制。
此外,光学薄膜还具有广阔的太阳能应用前景。
光伏薄膜技术是研究如何将太阳能转化为电能的一项重要技术,它能够实现更高的太阳能电池转换效率。
通过在太阳能电池上应用光学薄膜,可以提高太阳能电池对太阳光的吸收和利用效率,从而提高电池的输出功率。
同时,光学薄膜还可以提高太阳能电池的耐候性和稳定性,延长电池的使用寿命。
薄膜材料的制备和应用领域近年来,薄膜材料在各个领域的应用越来越广泛,如电子、光学、能源等。
薄膜材料的制备技术也在不断发展,以满足不同领域对材料性能与应用需求的不断提高。
一、薄膜材料的制备技术当前,主要有以下几种薄膜制备技术被广泛应用于工业生产和科研实验中。
1. 物理气相沉积(PVD)物理气相沉积技术是将固体材料在真空环境下以蒸发、溅射等方式转化为气体,然后在衬底表面沉积成薄膜。
此技术具有较高的原子沉积速率、较小的晶粒尺寸和良好的附着力,可用于制备金属、合金和多层膜等。
2. 化学气相沉积(CVD)化学气相沉积技术是通过气相反应将气体分解并生成固态产物,从而在衬底表面沉积形成薄膜。
因其制备过程在常压下进行,能够实现批量制备大面积均匀薄膜,因此被广泛应用于硅、氮化硅、氮化铝等材料的制备。
3. 溶液法溶液法是将材料溶解于适当的溶剂中,然后利用溶液的性质,在衬底上形成膜状材料。
溶液法制备工艺简单、成本较低,适用于生物陶瓷、无机膜、有机膜等材料的制备。
4. 凝胶法凝胶法是在溶液中形成胶体颗粒,然后通过凝胶化的方式得到凝胶体系,再经由热处理、晾干等工艺制得薄膜。
凝胶法可制备出具有较高孔隙度和较大比表面积的纳米级多孔膜材料,适用于催化剂、分离膜等领域。
二、薄膜材料在电子领域的应用随着电子领域的快速发展,薄膜材料作为电子器件的关键组成部分,扮演着越来越重要的角色。
薄膜材料在半导体器件中的应用,如金属薄膜作为电极材料、氧化物薄膜作为绝缘层材料、硅薄膜作为基板等,不仅能够提高电子器件的性能,还能够实现器件的微型化和集成化。
此外,薄膜材料在光电显示技术中也有着广泛应用。
以液晶显示技术为例,通过在衬底上沉积液晶薄膜和驱动薄膜,实现了显示器的高清、高亮度、高对比度等特性。
三、薄膜材料在能源领域的应用薄膜材料在能源领域的应用主要体现在太阳能电池和燃料电池方面。
太阳能电池中的薄膜材料主要是用于吸收太阳能并进行光电转换的薄膜层。
新型功能薄膜材料的研究与应用当我们提到薄膜材料时,很多人可能会想到塑料袋或者保鲜膜,这些常见的薄膜材料在日常生活中具有广泛的应用。
然而,随着科技的进步,新型功能薄膜材料的研究与应用正在不断涌现,为各个领域带来了新的可能性。
一种广泛应用于电子产品和太阳能电池等领域的新型功能薄膜材料是透明导电薄膜。
传统的导电材料如金属,虽然导电性好,但是不透明,无法应用于透明电子产品中。
而透明导电薄膜则具有优异的导电性能和透明性,使得其在新型显示器、触摸屏等领域得到了广泛应用。
以柔性显示器为例,透明导电薄膜可以作为电极材料,使得显示器可以具备弯曲,可折叠的特性,更加符合人们对于便携式电子产品的需求。
此外,新型功能薄膜材料还应用于能源领域。
随着对可再生能源利用的追求,太阳能电池成为了一种重要的能源转换设备。
而透明导电薄膜的应用使得太阳能电池不再受限于面积和材料选择。
传统的太阳能电池需要使用银等材料作为电极,而透明导电薄膜可以取代银作为电极材料,不仅能够提高太阳能电池的光吸收效率,还能够减少材料成本和环境污染。
除了透明导电薄膜之外,还有其他一些新型功能薄膜材料在科技领域得到了广泛应用。
石墨烯是目前研究最热门的材料之一,它是由碳原子按照二维晶格排列形成的单层薄膜。
石墨烯具有极高的导电性和热导性,同时也具备优异的机械性能和化学稳定性。
这使得石墨烯在电子器件、传感器、储能装置等领域具有广泛的应用前景。
此外,具有光学功能的薄膜材料也受到了科学家们的关注。
光学薄膜是一种能够改变光的传播性质的材料。
通过调整薄膜的厚度和折射率,可以实现对光的反射、透射和吸收的控制,进而实现各种光学器件的设计和制备。
光学薄膜在激光加工、光学传感、显示技术等领域具有广泛应用,为光学领域的发展提供了新的思路。
综上所述,新型功能薄膜材料的研究与应用给各个领域带来了新的可能性。
透明导电薄膜在电子产品和能源领域发挥着重要作用,石墨烯等材料也成为了科研热点。
光学薄膜则为光学领域的发展提供了新的思路。
薄膜材料有哪些
薄膜材料是一种在工业和科技领域中应用广泛的材料,它具有轻薄、柔韧、透明、耐腐蚀等特点,在电子、光学、医疗、包装等领域有着重要的应用。
薄膜材料的种类繁多,下面将介绍一些常见的薄膜材料及其应用。
首先,聚酯薄膜是一种常见的薄膜材料,它具有优异的机械性能和化学稳定性,适用于印刷、包装、电子等领域。
在包装领域,聚酯薄膜常用于食品包装、药品包装等,其优异的透明性和耐热性能使得产品更加吸引人。
在电子领域,聚酯薄膜常用于制备电子元件、电池等,其优异的绝缘性能和耐高温性能使得电子产品更加稳定可靠。
其次,聚乙烯薄膜是另一种常见的薄膜材料,它具有良好的柔韧性和耐磨性,
适用于包装、农业覆盖、建筑防水等领域。
在包装领域,聚乙烯薄膜常用于塑料袋、保鲜膜等,其良好的密封性和抗拉伸性能使得产品更加实用。
在农业领域,聚乙烯薄膜常用于大棚覆盖、地膜覆盖等,其良好的透光性和抗老化性能使得作物更加茁壮生长。
此外,聚丙烯薄膜也是一种常见的薄膜材料,它具有良好的耐高温性和耐化学
腐蚀性,适用于医疗、包装、建筑等领域。
在医疗领域,聚丙烯薄膜常用于制备医用器械、医用包装等,其良好的无菌性和透明性能使得医疗产品更加安全可靠。
在包装领域,聚丙烯薄膜常用于制备各种包装袋、包装盒等,其良好的耐磨性和耐高温性能使得产品更加耐用。
总的来说,薄膜材料在现代社会中有着广泛的应用,不仅提高了产品的质量和
性能,也为人们的生活带来了便利。
随着科技的不断进步,薄膜材料的种类和应用领域还会不断扩展,相信在未来会有更多新型薄膜材料的涌现,为人类社会的发展做出更大的贡献。
薄膜材料及其在光电领域中的应用引言:随着科技的飞速发展,光电领域在各个领域中扮演着至关重要的角色。
薄膜材料是光电领域中的重要组成部分,具有广泛的应用前景。
本文将深入探讨薄膜材料的特性以及在光电领域中的应用,并探究其未来发展的趋势。
1. 薄膜材料的特性薄膜材料是一种厚度在纳米到微米的材料,具有以下特性:1.1 良好的光学性能:薄膜材料具有独特的光学性质,如高透射率、低反射率和高折射率。
这些性能使其成为制备高效光电器件的理想选择。
1.2 高比表面积:薄膜材料具有大比表面积,这使得其在吸附分子、电化学催化和光催化反应中具有显著的优势。
同时,高比表面积也提高了薄膜材料的光敏度,使其在光电器件中具有更高的效率。
1.3 可控的化学性质:薄膜材料的制备过程可以通过控制反应条件来精确调控其化学性质。
这种可控性使得薄膜材料能够适应不同的应用需求,并提供定制化的解决方案。
2. 薄膜材料在太阳能电池中的应用由于其出色的光学性能和可控的化学性质,薄膜材料在太阳能电池中有着广泛的应用。
2.1 透明导电膜:透明导电膜是太阳能电池中的关键组件之一,用于实现电荷的收集和传输。
氧化铟锡(ITO)薄膜是目前最常用的透明导电膜,但其成本较高且含有稀有金属。
近年来,氧化铟锌(IZO)薄膜和导电聚合物薄膜逐渐成为替代品,具有更好的导电性能和成本效益。
2.2 光吸收层:在太阳能电池中,薄膜材料可以用作光吸收层,用于吸收太阳能并转化为电能。
硒化镉(CdTe)和硫化铜铟镓(CIGS)是常用的光吸收层材料,具有较高的光电转换效率和较低的制造成本。
2.3 保护层:薄膜材料还可以作为太阳能电池的保护层,用于保护光吸收层免受外界环境的损害,如氧化、湿氧化和光热等。
二氧化硅(SiO2)和聚合物薄膜是常用的保护层材料,具有良好的化学稳定性和机械强度。
3. 薄膜材料在光电显示器件中的应用薄膜材料在光电显示器件中具有广泛的应用,其中最具代表性的是液晶显示器(LCD)和有机发光二极管显示器(OLED)。
薄膜材料与薄膜技术薄膜材料是一种在工业和科学领域中广泛应用的材料,其厚度通常在纳米至微米级别。
薄膜技术则是制备、处理和应用薄膜材料的技术,涉及物理、化学、材料科学等多个领域。
薄膜材料的研究和应用已经深入到电子、光学、能源、生物医学等各个领域,成为现代科技发展的重要组成部分。
一、薄膜材料的分类根据材料的性质和制备方法,薄膜材料可以分为多种类型。
常见的薄膜材料包括金属薄膜、半导体薄膜、聚合物薄膜等。
金属薄膜通常具有良好的导电性和热导性,常用于电子器件的制备;半导体薄膜则是制备光电器件的重要材料;而聚合物薄膜则具有良好的柔韧性和可塑性,被广泛应用于包装材料、传感器等领域。
二、薄膜技术的发展随着科学技术的不断进步,薄膜技术也在不断发展。
目前,常见的薄膜制备技术包括物理气相沉积、化学气相沉积、溅射、溶液法等。
这些技术各有特点,可以制备不同性质的薄膜材料,满足不同领域的需求。
同时,随着纳米技术的发展,越来越多的纳米薄膜材料被制备出来,开拓了新的应用领域。
三、薄膜材料的应用薄膜材料在电子、光学、能源、生物医学等领域都有着重要的应用。
在电子领域,薄膜材料被广泛应用于集成电路、平板显示器、太阳能电池等器件中,发挥着重要作用;在光学领域,薄膜材料被用于制备光学薄膜、反射镜等光学器件;在能源领域,薄膜太阳能电池、燃料电池等也在逐渐成为发展的热点;在生物医学领域,生物传感器、药物传递系统等也离不开薄膜材料的支持。
四、薄膜技术的未来发展随着科技的不断进步,薄膜技术也在不断创新。
未来,随着人工智能、大数据、物联网等新兴技术的发展,薄膜材料的应用领域将会更加广泛,薄膜技术也将迎来新的发展机遇。
同时,随着环境保护意识的增强,绿色环保的薄膜材料和技术也将得到更多关注和应用。
薄膜材料与薄膜技术作为现代科技的重要组成部分,对于推动科技进步、促进产业发展、改善人类生活质量都起着重要作用。
我们期待着薄膜材料与薄膜技术在未来能够取得更大的突破和发展,为人类社会的发展作出更大的贡献。
薄膜材料的应用与发展.罗斌(扬州工业职业技术学院,江苏扬州225127)摘要:薄膜材料的发展以及应用,薄膜材料的分类,如金刚石薄膜、铁电薄膜、氮化碳薄膜、半导体薄膜复合材料、超晶格薄膜材料、多层薄膜材料等。
各类薄膜在生产与生活中的运用以及展望。
关键词:薄膜;金刚石;铁电;氮化碳;半导体;超晶格1膜材料的发展在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。
自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。
生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。
生物体生命现象的重要过程就是在这些表面上进行的。
细胞膜是由两层两亲分子~脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。
膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。
细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、C1一通道等等。
细胞膜的这些结构和功能带来了生命,带来了神奇。
2膜材料的应用人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。
它的一个很重要的应用就是海水的淡化。
虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的2.5%一3%,随着人口增长和工业发展,当今世界几乎处于水荒之中。
因此将浩瀚的海水转为可以饮用的淡水迫在眉睫。
淡化海水的技术主要有反渗透法和蒸馏法,反渗透法用到的是具有选择性的高分子渗透膜,在膜的一边给海水施加高压,使水分子透过渗透膜,达到膜的另一边,而把各种盐类离子留下来,就得到了淡水。
反渗透法的关键就是渗透膜的性能,目前常用有醋酸纤维素类、聚酰胺类、聚苯砜对苯二甲酰胺类等膜材料.这种淡化过程比起蒸法法,是一种清洁高效的绿色方法。
利用膜两边的浓度羞不仅可以淡化海水,还可以提取多种有机物质。
工业生产中,可用膜法过滤含酚、苯胺、有机磺酸盐等工业废水,膜法过滤大大节约j.成本,有利于我们的生存环境。
膜的应用还体现在表面化学上面。
在日常生活中溅们会发现在树叶表面,水滴总是呈圆形,是因为水不能在叶面铺展。
喷洒农药时,如果在农药中加入少量的润湿剂(_一种表面活性剂),农药就能够在叶面铺展,提高杀虫效果,降低农药用量。
更重要的,研究人员还将膜材料用于血液透析,透析膜的主要功能是移除体内多余水份和清除尿毒症毒素,大大降低了肾功能衰竭患者的病死掣IJ3膜材料的分类近年来,随着成膜技术的飞速发展,各种材料的薄膜化已经成为一种普遍趋势。
薄膜材料种类繁多,应用广泛,目前常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。
目前很受人们注目的主要有一下几种薄膜。
3.1金刚石薄膜金刚白.薄膜的禁带宽,电阻率和热导率大,载流子迁移率高。
介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔Ⅲ。
近年来,随着科技的发展,人们发展了多种金刚石薄膜的制备方法,比如离子束沉积法、磁控溅射法、热致化学气相沉积法、等离子化学气相沉积法等.成功获得了生长速度快、具有较高质器就会因为处理不过来而导致数据溢出,最终表现为客户端接收不到数据,网络时通时断。
由此可见,我们在组网的时候最好使用同一品牌、同一规格的产品,以免发生同类故障。
当然,现在已有百兆十兆自适应产品上市,它很好地解决了这个问题,例如,百兆十兆自适应交换机,它可以与百兆网卡连接,也可以与十兆网卡连接,它们都能正常通信,而不会出现数据溢出的错误。
第九步。
检查网络设备工作模式是否匹配交换机是局域嘲中的一个重要的数据通讯设备,正确合理地使用交换机也能很好地改善网络中的数据传输性能。
一个例子,交换机的端口配置为100M全双工,而服务器上安装了一块型号为I nt eI IO O MEISA网卡,安装以后一切正常,但在大流量负荷数据传输时。
速度变得极慢,最后发现这款网卡不支持伞双工。
将交换机端口改为半双工以后,故障消失了。
这说明交换机的端口与网卡的速率和双工方式必须一致。
目前有许多自适应的网卡和交换机,按照原理,应能正确适应速率和双工方式,但实际上,由于品牌的不一致.往往不能正确实现全双工式。
明明服务器网卡设为全双工,但交换机的双工灯就是不亮,只有手14工强制设定才能解决。
因此,我们在设置网络设备参数时,一定要参考服务器或者其他工作站上的网络设备参数,尽量能使各个设备匹配工作第十步.检查服务器硬盘设置是否合理使用局域网办公的用户.经常会使用网络来打印材料和访问文件。
由于某种原因,网络访问的速度可能会不正常,这时我们往往会错误地认为导致网速降低的原因可能是网络中的某些设备发生了瓶颈.例如网卡、交换机、集线器等,其实对网速影响最大的还是服务器硬盘的速度。
因此正确地配置好局域网中服务器的硬盘,将对整个局域网中的网络性能有很大的改善。
第十一步.网络自身问题当以上项目检查都正常时,但是网络传输速率仍然很慢,我们就要考虑可能是目标网站所在的服务器带宽不足或访问人数过多、负载过大。
处理办法很简单,换个时间段再上或者换个目标网站。
现在,通过这十一步,你已经给你的电脑做了一个全面的检查,相信你的网速已经恢复畅通,让我们一起连上互联网,尽情享受I nt em et带来的丰富资源吧12008年第9期量的膜,从而使金刚石膜具备了商业应用的可能。
金刚石薄膜属于立方晶系,面心立方晶胞,每个晶胞含有8个c原子,每个C原子采取即’杂化与周围4个C原子形成共价键,牢固的共价键和空间网状结构是金刚石硬度很高的原因.金刚石薄膜有很多优异的性质:硬度高、耐磨性好、摩擦系数效、化学稳定性高、热导率高、热膨胀系数小,是优良的绝缘体。
利用它的高导热率,可将它直接积在硅材料上成为既散热又绝缘的薄层,是高频微波器件、超大规模集成电路最理想的散热材料。
利用它的电阻率大,可以制成高温工作的二极管,微波振荡器件和耐高温高压的晶体管以及毫米波功率器件等。
金刚石薄膜的许多优良性能有待进一步开拓,我国也将金刚石薄膜纳入863新材料专题进行跟踪研究并取得了很大进展、金刚石薄膜制备的基本原理是:在衬底保持在800—10000C的温度范嗣内,化学气相沉积的石墨是热力学稳定相,而金刚石是热力学不稳定相,利用原子态氢刻蚀石墨的速率远大于金刚石的动力学原理,将石墨去除,这样最终在衬底上沉积的是金刚石薄膜。
3.2铁电薄膜铁电薄膜的制备技术和半导体集成技术的快速发展,推动了铁电薄膜及其集成器件的实用化。
铁电材料已经应用于铁电动态随机存储器(FD R A M)、铁电场效应晶体管(FEE T)、铁电随机存储器(FFR A M)、I C卡、红外探测与成像器件、超声与声表面波器件以及光电子器件等十分广阔的领域Ij J。
铁电薄膜的制作方法一般采用溶胶一凌胶法、离子束溅射法、磁控溅射法、有机金属化学蒸汽沉积法、准分子激光烧蚀技术等.已经制成的晶态薄膜有铌酸锂、铌酸钾、钛酸铅、钛酸钡、钛酸锶、氧化铌和锆钛酸铅等,以及大量的铁电陶瓷薄膜材料。
3.3氮化碳薄膜1985年美国伯克利大学物理系的M.L.C ohen教授以b—Si3N4晶体结构为出发点,预言了一种新的C—N化合物b—C3N4.C ohen计算出b—C3N4是一种晶体结构类似于b—Si3N4,具有非常短的共价键结合的C—N化合物,其理论模量为4.27M bars,接近于金刚石的模量4.43M bar s.随后,不同的计算方法显示h-C3N4具有比金刚石还高的硬度,不仅如此,b—C3N4还具有一系列特殊的性质,引起了科学界的高度重视,目前世界上许多著名的研究机构都集中研究这一新型物质.b-C3N4的制备方法只要有激光烧蚀法、溅射法、高压合成、等离子增强化学气相沉积、真空电弧沉积、离子注入法等多种方法。
在C N x膜的诸多性能中。
最吸引人的当属其可能超过金刚石的硬度,尽管现在还没有制备出可以直接测量其硬度的C N x 晶体,但对C N x膜硬度的研究已有许多报道。
3.4半导体薄膜复合材料20世纪80年代科学家们研制成功了在绝缘层上形成半导体(如硅)单晶层组成复合薄膜材料的技术。
这一新技术的实现,使材料器件的研制一气呵成,不但大大节省了单晶材料.更重要的是使半导体集成电路达到高速化、高密度化,也提高了可靠性,同时为微电子工业中的三维集成电路的设想提供了实施的2008年第9期可能性。
这类半导体薄膜复合材料,特别使硅薄膜复合材料已开始用于低功耗、低噪声的大规模集成电路中,以减小误差,提高电路的抗辐射能力。
3.5超晶格薄膜材料随着半导体薄膜层制备技术的提高,当前半导体超晶格材料的种类已由原来的砷化镓、镓铝砷扩展到铟砷、镓锑、铟铝砷、铟镓砷、碲镉、碲汞、锑铁、锑锡碲等多种。
组成材料的种类也由半导体扩展到锗、硅等元素半导体,特别是今年来发展起来的硅、锗硅应变超品格,由于它可与当前硅的前面工艺相容和集成,格外受到重视,其至被誉为新一代硅材料。
半导体超晶格结构不仅给材料物理带来了新面貌,而且促进了新一代半导体器件的产生,除上面提到的可制备高电子迁移率晶体管、高效激光器、红外探测器外,还能制备调制掺杂的场效应管、先进的雪崩型光电探测器和实空间的电子转移器件,并正在设计微分负阻效应器件、隧道热电子效应器件等,它们将被广泛应用于雷达、电子对抗、空间技术等领域。
3.6多层薄膜材料多层薄膜材料已成为新材料领域中一支新军。
所谓多层薄膜材料,就是在一层厚度只有钠米级的材料上,再铺上一层或多层性质不同的其他薄层材料,最后形成多层固态涂层。
由于各层材料的电、磁及化学性质各不相同,多层薄膜材料会用有一些奇异的特性。
目前,这种制造工艺简单的新型材料正受到各国关注,已从实验室研究进入商业化阶段,可以广泛应用于防腐涂层、燃料电池及生物医学移植等领域。
1991年,法目特拉斯.博斯卡大学的D eeher首先提出由带正电的聚合物和带负电的聚合物组成两层薄膜材料的设想,由于静电的作用,在一层材料上添加另外一层材料非常容易,此后,多层薄膜的研究工作进展很快。
通常,研究人员将带负电的天然衬材如玻璃片等,浸入含有大分子的带正电物质的溶液,然后冲洗、干燥,再采用含有带负电物质的溶液,不断重复上述过程,每一次产生的薄膜材料厚度仅有几钠米或更薄。
由于多层薄膜材料的制造百r采用重复性工艺,人们可利用机器人来完成,因此这种自动化T艺很容易实现商业化。
目前,研究人员已经或即将开发的多层薄膜材料主要有以下几种:①制造具有珍珠母强度的材料。
②新型防腐蚀材料。
③可使燃料电池在高温条件下工作的多层薄膜材料14j。