湖南省2019届中考数学总复习专题训练08二次函数与几何图形综合题练习
- 格式:docx
- 大小:585.67 KB
- 文档页数:17
2019年二次函数综合题专项训练一、面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.备用图2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.二、平行四边形类3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.三、周长类6.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.四、等腰三角形类7.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.A(0,2),点C(1,0),如图所示,抛物线y=ax2﹣ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.五、综合类10.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.11.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P 点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.12.如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.分析与解答1、分析:(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.(3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值.解答:解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.2、分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.(3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.解答:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为(32,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.3、分析:(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n 与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.解答:解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x2﹣2x﹣3.设直线AB的解析式是y=kx+b,把A(3,0)B(0,﹣3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x﹣3;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),因为p在第四象限,所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,当t=﹣=时,二次函数的最大值,即PM最长值为=,则S△ABM=S△BPM+S△APM==.(3)存在,理由如下:∵PM∥OB,∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P点的横坐标是.所以P点的横坐标是或.4、分析:(1)利用旋转的性质得出A′(﹣1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,再假设四边形PB′A′B的面积是△A′B′O面积的4倍,得出一元二次方程,得出P点坐标即可;(3)利用P点坐标以及B点坐标即可得出四边形PB′A′B为等腰梯形,利用等腰梯形性质得出答案即可.解答:解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).方法一:设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.方法二:∵A′(﹣1,0),B′(0,2),B(2,0),设抛物线的解析式为:y=a(x+1)(x﹣2)将B′(0,2)代入得出:2=a(0+1)(0﹣2),解得:a=﹣1,故满足条件的抛物线的解析式为y=﹣(x+1)(x﹣2)=﹣x2+x+2;(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.∵A′O=1,B′O=2,∴△A′B′O面积为:×1×2=1,假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=﹣x2+2x+3,即x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一,下面性质中的任意2个均可.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②P A′=B′B;③B′P∥A′B;④B′A′=PB.(10分)5、分析:(1)先根据抛物线的解析式得出其对称轴,由此得到顶点A的横坐标,然后代入直线l的解析式中即可求出点A的坐标.(2)由A点坐标可确定抛物线的解析式,进而可得到点B的坐标.则AB、AD、BD三边的长可得,然后根据边长确定三角形的形状.(3)若以点P、A、B、D为顶点的四边形是平行四边形,应分①AB为对角线、②AD为对角线两种情况讨论,即①AD PB、②AB PD,然后结合勾股定理以及边长的等量关系列方程求出P点的坐标.解答:解:(1)∵顶点A的横坐标为x=﹣=1,且顶点A在y=x﹣5上,∴当x=1时,y=1﹣5=﹣4,∴A(1,﹣4).(2)△ABD是直角三角形.将A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,∴y=x2﹣2x﹣3,∴B(0,﹣3)当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3∴C(﹣1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即P A∥BD则构成平行四边形只能是P ADB或P ABD,如图,过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.设P(x1,x1﹣5),则G(1,x1﹣5)则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|P A=BD=3由勾股定理得:(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或4∴P(﹣2,﹣7)或P(4,﹣1),存在点P(﹣2,﹣7)或P(4,﹣1)使以点A、B、D、P为顶点的四边形是平行四边形.6、分析:(1)根据抛物线y=经过点B(0,4),以及顶点在直线x=上,得出b,c即可;(2)根据菱形的性质得出C、D两点的坐标分别是(5,4)、(2,0),利用图象上点的性质得出x=5或2时,y的值即可.(3)首先设直线CD对应的函数关系式为y=kx+b,求出解析式,当x=时,求出y即可;(4)利用MN∥BD,得出△OMN∽△OBD,进而得出,得到ON=,进而表示出△PMN的面积,利用二次函数最值求出即可.解答:解:(1)∵抛物线y=经过点B(0,4)∴c=4,∵顶点在直线x=上,∴﹣=﹣=,∴b=﹣;∴所求函数关系式为;(2)在Rt△ABO中,OA=3,OB=4,∴AB=,∵四边形ABCD是菱形,∴BC=CD=DA=AB=5,∴C、D两点的坐标分别是(5,4)、(2,0),当x=5时,y=,当x=2时,y=,∴点C和点D都在所求抛物线上;(3)设CD与对称轴交于点P,则P为所求的点,设直线CD对应的函数关系式为y=kx+b,则,解得:,∴,当x=时,y=,∴P(),(4)∵MN∥BD,∴△OMN∽△OBD,∴即得ON=,设对称轴交x于点F,则(PF+OM)•OF=(+t)×,∵,S△PNF=×NF•PF=×(﹣t)×=,S=(﹣),=﹣(0<t<4),a=﹣<0∴抛物线开口向下,S存在最大值.由S△PMN=﹣t2+t=﹣(t﹣)2+,∴当t=时,S取最大值是,此时,点M的坐标为(0,).7、分析:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP 三种情况分类讨论,然后分辨是否存在符合条件的P点.解答:解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得,解得,∴此抛物线的解析式为y=﹣x2+x(3)存在,如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2),8、分析:(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标;(2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式;(3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案.解答:解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,(1分)又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO,(2分)∴BD=OC=1,CD=OA=2,(3分)∴点B的坐标为(﹣3,1);(4分)(2)抛物线y=ax2+ax﹣2经过点B(﹣3,1),则得到1=9a﹣3a﹣2,(5分)解得a=,所以抛物线的解析式为y=x2+x﹣2;(7分)(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分)过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC.(10分)∴CM=CD=2,P1M=BD=1,可求得点P1(1,﹣1);(11分)②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分)过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分)∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分)经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上.(16分)9、分析:(1)首先过点B作BD⊥x轴,垂足为D,易证得△BDC≌△COA,即可得BD=OC=1,CD=OA=2,则可求得点B的坐标;(2)利用待定系数法即可求得二次函数的解析式;(3)分别从①以AC为直角边,点C为直角顶点,则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,去分析则可求得答案.解答:解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,∴△BDC≌△COA,∴BD=OC=1,CD=OA=2,∴点B的坐标为(3,1);(2)∵抛物线y=ax2﹣ax﹣2过点B(3,1),∴1=9a﹣3a﹣2,解得:a=,∴抛物线的解析式为y=x2﹣x﹣2;(3)假设存在点P,使得△ACP是等腰直角三角形,①若以AC为直角边,点C为直角顶点,则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图(1),∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC,∴CM=CD=2,P1M=BD=1,∴P1(﹣1,﹣1),经检验点P1在抛物线y=x2﹣x﹣2上;②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,如图(2),同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,∴P2(﹣2,1),经检验P2(﹣2,1)也在抛物线y=x2﹣x﹣2上;③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,如图(3),同理可证△AP3H≌△CAO,∴HP3=OA=2,AH=OC=1,∴P3(2,3),经检验P3(2,3)不在抛物线y=x2﹣x﹣2上;故符合条件的点有P1(﹣1,﹣1),P2(﹣2,1)两点.10、分析:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点∑的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出△ABN的面积S2=5,则S1=6S2=30.再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.证明△EBD 为等腰直角三角形,则BE=BD=6,求出E的坐标为(﹣1,0),运用待定系数法求出直线PQ的解析式为y=﹣x﹣1,然后解方程组,即可求出点P的坐标.解答:解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,所以直线BC的解析式为y=﹣x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,得,解得,所以抛物线的解析式为y=x2﹣6x+5;(2)设M(x,x2﹣6x+5)(1<x<5),则N(x,﹣x+5),∵MN=(﹣x+5)﹣(x2﹣6x+5)=﹣x2+5x=﹣(x﹣)2+,∴当x=时,MN有最大值;(3)∵MN取得最大值时,x=2.5,∴﹣x+5=﹣2.5+5=2.5,即N(2.5,2.5).解方程x2﹣6x+5=0,得x=1或5,∴A(1,0),B(5,0),∴AB=5﹣1=4,∴△ABN的面积S2=×4×2.5=5,∴平行四边形CBPQ的面积S1=6S2=30.设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=5,∴BC•BD=30,∴BD=3.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,BE=BD=6,∵B(5,0),∴E(﹣1,0),设直线PQ的解析式为y=﹣x+t,将E(﹣1,0)代入,得1+t=0,解得t=﹣1∴直线PQ的解析式为y=﹣x﹣1.解方程组,得,,∴点P的坐标为P1(2,﹣3)(与点D重合)或P2(3,﹣4).11、分析:(1)利用待定系数法求出直线解析式;(2)利用待定系数法求出抛物线的解析式;(3)关键是证明△CEQ与△CDO均为等腰直角三角形;(4)如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.利用轴对称的性质、两点之间线段最短可以证明此时△PCF的周长最小.如答图③所示,利用勾股定理求出线段C′C″的长度,即△PCF周长的最小值.解答:解:(1)∵C(0,1),OD=OC,∴D点坐标为(1,0).设直线CD的解析式为y=kx+b(k≠0),将C(0,1),D(1,0)代入得:,解得:b=1,k=﹣1,∴直线CD的解析式为:y=﹣x+1.(2)设抛物线的解析式为y=a(x﹣2)2+3,将C(0,1)代入得:1=a×(﹣2)2+3,解得a=.∴y=(x﹣2)2+3=x2+2x+1.(3)证明:由题意可知,∠ECD=45°,∵OC=OD,且OC⊥OD,∴△OCD为等腰直角三角形,∠ODC=45°,∴∠ECD=∠ODC,∴CE∥x轴,则点C、E关于对称轴(直线x=2)对称,∴点E的坐标为(4,1).如答图①所示,设对称轴(直线x=2)与CE交于点M,则M(2,1),∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°.又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°,∴∠QEC=∠QCE=∠ODC=∠OCD=45°,∴△CEQ∽△CDO.(4)存在.如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.(证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′;而F′C″+F′P′+P′C′是点C′,C″之间的折线段,由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″,即△P′CF′的周长大于△PCE的周长.)如答图③所示,连接C′E,∵C,C′关于直线QE对称,△QCE为等腰直角三角形,∴△QC′E为等腰直角三角形,∴△CEC′为等腰直角三角形,∴点C′的坐标为(4,5);∵C,C″关于x轴对称,∴点C″的坐标为(0,﹣1).过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,在Rt△C′NC″中,由勾股定理得:C′C″===.综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为.12、分析:(1)利用待定系数法即可求得函数的解析式;(2)利用勾股定理求得△BCD的三边的长,然后根据勾股定理的逆定理即可作出判断;(3)分p在x轴和y轴两种情况讨论,舍出P的坐标,根据相似三角形的对应边的比相等即可求解.解答:解:(1)设抛物线的解析式为y=ax2+bx+c由抛物线与y轴交于点C(0,3),可知c=3.即抛物线的解析式为y=ax2+bx+3.把点A(1,0)、点B(﹣3,0)代入,得解得a=﹣1,b=﹣2∴抛物线的解析式为y=﹣x2﹣2x+3.∵y=﹣x2﹣2x+3=﹣(x+1)2+4∴顶点D的坐标为(﹣1,4);(2)△BCD是直角三角形.理由如下:解法一:过点D分别作x轴、y轴的垂线,垂足分别为E、F.∵在Rt△BOC中,OB=3,OC=3,∴BC2=OB2+OC2=18在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1,∴CD2=DF2+CF2=2在Rt△BDE中,DE=4,BE=OB﹣OE=3﹣1=2,∴BD2=DE2+BE2=20∴BC2+CD2=BD2∴△BCD为直角三角形.解法二:过点D作DF⊥y轴于点F.在Rt△BOC中,∵OB=3,OC=3∴OB=OC∴∠OCB=45°∵在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1∴DF=CF∴∠DCF=45°∴∠BCD=180°﹣∠DCF﹣∠OCB=90°∴△BCD为直角三角形.(3)①△BCD的三边,==,又=,故当P是原点O时,△ACP∽△DBC;②当AC是直角边时,若AC与CD是对应边,设P的坐标是(0,a),则PC=3﹣a,=,即=,解得:a=﹣9,则P的坐标是(0,﹣9),三角形ACP不是直角三角形,则△ACP∽△CBD不成立;③当AC是直角边,若AC与BC是对应边时,设P的坐标是(0,b),则PC=3﹣b,则=,即=,解得:b=﹣,故P是(0,﹣)时,则△ACP∽△CBD一定成立;④当P在x轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(d,0).则AP=1﹣d,当AC与CD是对应边时,=,即=,解得:d=1﹣3,此时,两个三角形不相似;⑤当P在x轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(e,0).则AP=1﹣e,当AC与DC是对应边时,=,即=,解得:e=﹣9,符合条件.总之,符合条件的点P的坐标为:.。
二次函数-综合题(二)一.解答题(共40小题)1.(2019•宜昌)在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(﹣2,4),B(﹣2,﹣2),C(4,﹣2),D(4,4).(1)填空:正方形的面积为;当双曲线y=(k≠0)与正方形ABCD有四个交点时,k的取值范围是:;(2)已知抛物线L:y=a(x﹣m)2+n(a>0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线y=(k≠0)与边DC交于点N.①点Q(m,﹣m2﹣2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别切运动过程中点Q在最高位置和最低位置时的坐标;②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求﹣的值;③求证:抛物线L与直线x=1的交点M始终位于x轴下方.2.(2019•东营)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.3.(2019•郴州)已知抛物线y=ax2+bx+3与x轴分别交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设k=,当k为何值时,CF=AD?②如图2,以A,F,O为顶点的三角形是否与△ABC相似?若相似,求出点F的坐标;若不相似,请说明理由.4.(2019•广州)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.5.(2019•广元)如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,过A,B两点的抛物线y=ax2+bx+c与x轴交于点C(﹣1,0).(1)求抛物线的解析式;(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EF∥BC,交AB于点F,当△BEF的面积是时,求点E的坐标;(3)在(2)的结论下,将△BEF绕点F旋转180°得△B′E′F,试判断点E′是否在抛物线上,并说明理由.6.(2019•荆门)已知抛物线y=ax2+bx+c顶点(2,﹣1),经过点(0,3),且与直线y=x ﹣1交于A,B两点.(1)求抛物线的解析式;(2)若在抛物线上恰好存在三点Q,M,N,满足S△QAB=S△MAB=S△NAB=S,求S的值;(3)在A,B之间的抛物线弧上是否存在点P满足∠APB=90°?若存在,求点P的横坐标;若不存在,请说明理由.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)7.(2019•安顺)如图,抛物线y=x2+bx+c与直线y=x+3分别相交于A,B两点,且此抛物线与x轴的一个交点为C,连接AC,BC.已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MC|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接P A,过点P作PQ⊥P A交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.8.(2019•常德)如图,已知二次函数图象的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B点的坐标为(﹣1,0).(1)求二次函数的解析式;(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)当矩形MNHG的周长最大时,能否在二次函数图象上找到一点P,使△PNC的面积是矩形MNHG面积的?若存在,求出该点的横坐标;若不存在,请说明理由.9.(2019•泸州)如图,在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c的图象经过点A(﹣2,0),C(0,﹣6),其对称轴为直线x=2.(1)求该二次函数的解析式;(2)若直线y=﹣x+m将△AOC的面积分成相等的两部分,求m的值;(3)点B是该二次函数图象与x轴的另一个交点,点D是直线x=2上位于x轴下方的动点,点E是第四象限内该二次函数图象上的动点,且位于直线x=2右侧.若以点E为直角顶点的△BED与△AOC相似,求点E的坐标.10.(2019•岳阳)如图1,△AOB的三个顶点A、O、B分别落在抛物线F1:y=x2+x 的图象上,点A的横坐标为﹣4,点B的纵坐标为﹣2.(点A在点B的左侧)(1)求点A、B的坐标;(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线F2:y=ax2+bx+4经过A'、B'两点,已知点M为抛物线F2的对称轴上一定点,且点A'恰好在以OM为直径的圆上,连接OM、A'M,求△OA'M的面积;(3)如图2,延长OB'交抛物线F2于点C,连接A'C,在坐标轴上是否存在点D,使得以A、O、D为顶点的三角形与△OA'C相似.若存在,请求出点D的坐标;若不存在,请说明理由.11.(2019•深圳)如图抛物线经y=ax2+bx+c过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE 的周长的最小值.(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.12.(2019•鄂州)如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若△AOC与△BMN相似,请直接写出t的值;②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.13.(2019•兰州)二次函数y=ax2+bx+2的图象交x轴于点(﹣1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M 作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标;(4)当t=时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.14.(2019•淄博)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求这条抛物线对应的函数表达式;(2)问在y轴上是否存在一点P,使得△P AM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.15.(2019•天水)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0)、B(9,0)和C(0,4),CD垂直于y轴,交抛物线于点D,DE垂直于x轴,垂足为E,直线l是该抛物线的对称轴,点F是抛物线的顶点.(1)求出该二次函数的表达式及点D的坐标;(2)若Rt△AOC沿x轴向右平移,使其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分图形的面积记为S,求S与t之间的函数表达式,并写出自变量t 的取值范围.16.(2019•武汉)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.17.(2019•乐山)如图,已知抛物线y=a(x+2)(x﹣6)与x轴相交于A、B两点,与y轴交于C点,且tan∠CAB=.设抛物线的顶点为M,对称轴交x轴于点N.(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQ⊥PC.①当点P在线段MN(含端点)上运动时,求n的变化范围;②当n取最大值时,求点P到线段CQ的距离;③当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.18.(2019•聊城)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x 轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.19.(2019•资阳)如图,抛物线y=﹣x2+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+P A的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.20.(2019•无锡)已知二次函数y=ax2+bx﹣4(a>0)的图象与x轴交于A、B两点,(A 在B左侧,且OA<OB),与y轴交于点C.(1)求C点坐标,并判断b的正负性;(2)设这个二次函数的图象的对称轴与直线AC相交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接BC.①若△BCE的面积为8,求二次函数的解析式;②若△BCD为锐角三角形,请直接写出OA的取值范围.21.(2019•遂宁)如图,顶点为P(3,3)的二次函数图象与x轴交于点A(6,0),点B 在该图象上,OB交其对称轴l于点M,点M、N关于点P对称,连接BN、ON.(1)求该二次函数的关系式.(2)若点B在对称轴l右侧的二次函数图象上运动,请解答下列问题:①连接OP,当OP=MN时,请判断△NOB的形状,并求出此时点B的坐标.②求证:∠BNM=∠ONM.22.(2019•株洲)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.F A的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.23.(2019•菏泽)如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A 的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.24.(2019•苏州)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.25.(2019•宿迁)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.26.(2019•绵阳)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A 在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+P A的最小值.27.(2019•武威)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y 轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?28.(2019•凉山州)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.△P AM29.(2019•攀枝花)已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,其图象与x轴相交于A,B两点,与y轴相交于点C(0,3).(1)求b,c的值;(2)直线1与x轴相交于点P.①如图1,若l∥y轴,且与线段AC及抛物线分别相交于点E,F,点C关于直线x=1的对称点为点D,求四边形CEDF面积的最大值;②如图2,若直线1与线段BC相交于点Q,当△PCQ∽△CAP时,求直线1的表达式.30.(2019•泰安)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,﹣2),且过点C(2,﹣2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.31.(2019•衡阳)如图,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点N,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接CP,过点P作CP的垂线与y轴交于点E.(1)求该抛物线的函数关系表达式;(2)当点P在线段OB(点P不与O、B重合)上运动至何处时,线段OE的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M,连接MN、MB.请问:△MBN的面积是否存在最大值?若存在,求出此时点M的坐标;若不存在,请说明理由.32.(2019•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y=﹣x2﹣x+2的一个交点为A,且点A的横坐标为2,点P、Q 分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分∠PCR.若OQ∥PR,求出点Q的坐标.33.(2019•怀化)如图,在直角坐标系中有Rt△AOB,O为坐标原点,OB=1,tan∠ABO =3,将此三角形绕原点O顺时针旋转90°,得到Rt△COD,二次函数y=﹣x2+bx+c的图象刚好经过A,B,C三点.(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q的直线l:y=kx﹣k+3与二次函数图象相交于M,N两点.①若S△PMN=2,求k的值;②证明:无论k为何值,△PMN恒为直角三角形;③当直线l绕着定点Q旋转时,△PMN外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.34.(2019•盐城)如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由.35.(2019•广安)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y 轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.36.(2019•宜宾)如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b 都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△P AB面积最大时,求点P的坐标,并求△P AB面积的最大值.37.(2019•重庆)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN ⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD 于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.38.(2019•临沂)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.39.(2019•长沙)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B 三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.40.(2019•南京)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)参考答案与试题解析一.解答题(共40小题)1.(2019•宜昌)在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(﹣2,4),B(﹣2,﹣2),C(4,﹣2),D(4,4).(1)填空:正方形的面积为36;当双曲线y=(k≠0)与正方形ABCD有四个交点时,k的取值范围是:0<k<4或﹣8<k<0;(2)已知抛物线L:y=a(x﹣m)2+n(a>0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线y=(k≠0)与边DC交于点N.①点Q(m,﹣m2﹣2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别切运动过程中点Q在最高位置和最低位置时的坐标;②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求﹣的值;③求证:抛物线L与直线x=1的交点M始终位于x轴下方.【解答】解:(1)由点A(﹣2,4),B(﹣2,﹣2)可知正方形的边长为6,∴正方形面积为36;有四个交点时0<k<4或﹣8<k<0;故答案为36,0<k<4或﹣8<k<0;(2)①由题意可知,﹣2≤m≤4,y Q=﹣m2﹣2m+3=﹣(m+1)2+4,当m=﹣1,y Q最大=4,在运动过程中点Q在最高位置时的坐标为(﹣1,4),当m<﹣1时,y Q随m的增大而增大,当m=﹣2时,y Q最小=3,当m>﹣1时,y Q随m的增大而减小,当m=4时,y Q最小=﹣21,∴3>﹣21,∴y Q最小=﹣21,点Q在最低位置时的坐标(4,﹣21),∴在运动过程中点Q在最高位置时的坐标为(﹣1,4),最低位置时的坐标为(4,﹣21);②当双曲线y=经过点B(﹣2,﹣2)时,k=4,∴N(4,1),∵顶点P(m,n)在边BC上,∴n=﹣2,∴BP=m+2,CP=4﹣m,∵抛物线y=a(x﹣m)2﹣2(a>0)与边AB、DC分别交于点E、F,∴E(﹣2,a(﹣2﹣m)2﹣2),F(4,a(4﹣m)2﹣2),∴BE=a(﹣2﹣m)2,CF=a(4﹣m)2,∴=﹣,∴a(m+2)﹣a(4﹣m)=2am﹣2a=2a(m﹣1),∵AE=NF,点F在点N下方,∴6﹣a(﹣2﹣m)2=3﹣a(4﹣m)2,∴12a(m﹣1)=3,∴a(m﹣1)=,∴=;③由题意得,M(1,a(1﹣m)2﹣2),∴y M=a(1﹣m)2﹣2(﹣2≤m≤4),即y M=a(m﹣1)2﹣2(﹣2≤m≤4),∵a>0,∴对应每一个a(a>0)值,当m=1时,y M最小=﹣2,当m=﹣2或4时,y M最大=9a﹣2,当m=4时,y=a(x﹣4)2﹣2,∴F(4,﹣2),E(﹣2,36a﹣2),∵点E在边AB上,且此时不与B重合,∴﹣2<36a﹣2≤4,∴0<a≤,∴﹣2<9a﹣2≤﹣,∴y M≤﹣,同理m=﹣2时,y=y=a(x+2)2﹣2,∴E(﹣2,﹣2),F(4,36a﹣2),∵点F在边CD上,且此时不与C重合,∴﹣2<36a﹣2≤4,解得0<a≤,∴﹣2<9a﹣2≤﹣,∴y M≤﹣,综上所述,抛物线L与直线x=1的交点M始终位于x轴下方;2.(2019•东营)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax+bx﹣4经过点A(﹣2,0),B(4,0),∴,解得,∴抛物线解析式为y=x2+x﹣4;(2)如图1,连接OP,设点P(x,),其中﹣4<x<0,四边形ABPC的面积为S,由题意得C(0,﹣4),∴S=S△AOC+S△OCP+S△OBP=+,=4﹣2x﹣x2﹣2x+8,=﹣x2﹣4x+12,=﹣(x+2)2+16.∵﹣1<0,开口向下,S有最大值,∴当x=﹣2时,四边形ABPC的面积最大,此时,y=﹣4,即P(﹣2,﹣4).因此当四边形ABPC的面积最大时,点P的坐标为(﹣2,﹣4).(3),∴顶点M(﹣1,﹣).如图2,连接AM交直线DE于点G,此时,△CMG的周长最小.设直线AM的解析式为y=kx+b,且过点A(2,0),M(﹣1,﹣),∴,∴直线AM的解析式为y=﹣3.在Rt△AOC中,=2.∵D为AC的中点,∴,∵△ADE∽△AOC,∴,∴,∴AE=5,∴OE=AE﹣AO=5﹣2=3,∴E(﹣3,0),由图可知D(1,﹣2)设直线DE的函数解析式为y=mx+n,∴,解得:,∴直线DE的解析式为y=﹣﹣.∴,解得:,∴G().3.(2019•郴州)已知抛物线y=ax2+bx+3与x轴分别交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设k=,当k为何值时,CF=AD?②如图2,以A,F,O为顶点的三角形是否与△ABC相似?若相似,求出点F的坐标;若不相似,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得:,∴抛物线解析式为y=﹣x2﹣2x+3;∵y=﹣x2﹣2x+3=﹣(x+1)2+4∴顶点D的坐标为(﹣1,4);(2)①∵在Rt△AOC中,OA=3,OC=3,∴AC2=OA2+OC2=18,∵D(﹣1,4),C(0,3),A(﹣3,0),∴CD2=12+12=2∴AD2=22+42=20∴AC2+CD2=AD2∴△ACD为直角三角形,且∠ACD=90°.∵,∴F为AD的中点,∴,∴.②在Rt△ACD中,tan,在Rt△OBC中,tan,∴∠ACD=∠OCB,∵OA=OC,∴∠OAC=∠OCA=45°,∴∠F AO=∠ACB,若以A,F,O为顶点的三角形与△ABC相似,则可分两种情况考虑:当∠AOF=∠ABC时,△AOF∽△CBA,∴OF∥BC,设直线BC的解析式为y=kx+b,∴,解得:,∴直线BC的解析式为y=﹣3x+3,∴直线OF的解析式为y=﹣3x,设直线AD的解析式为y=mx+n,∴,解得:,∴直线AD的解析式为y=2x+6,∴,解得:,∴F(﹣).当∠AOF=∠CAB=45°时,△AOF∽△CAB,∵∠CAB=45°,∴OF⊥AC,∴直线OF的解析式为y=﹣x,∴,解得:,∴F(﹣2,2).综合以上可得F点的坐标为(﹣)或(﹣2,2).4.(2019•广州)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.【解答】解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1)(3)法一:如图,函数H:y=﹣x﹣2(x>1)图象为射线x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4∴函数H的图象恒过点B(2,﹣4)∵抛物线G:y=m(x﹣1)2﹣m﹣3x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3∴抛物线G恒过点A(2,﹣3)由图象可知,若抛物线与函数H的图象有交点P,则y B<y P<y A∴点P纵坐标的取值范围为﹣4<y P<﹣3法二:整理的:m(x2﹣2x)=1﹣x∵x>1,且x=2时,方程为0=﹣1不成立∴x≠2,即x2﹣2x=x(x﹣2)≠0∴m=>0∵x>1∴1﹣x<0∴x(x﹣2)<0∴x﹣2<0∴x<2即1<x<2∵y P=﹣x﹣2∴﹣4<y P<﹣35.(2019•广元)如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,过A,B两点的抛物线y=ax2+bx+c与x轴交于点C(﹣1,0).(1)求抛物线的解析式;(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EF∥BC,交AB于点F,当△BEF的面积是时,求点E的坐标;(3)在(2)的结论下,将△BEF绕点F旋转180°得△B′E′F,试判断点E′是否在抛物线上,并说明理由.【解答】解:(1)y=﹣x+4…①,令x=0,y=4,令y=0,则x=4,故点A、B的坐标分别为(4,0)、(0,4),抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+3x+4…②;(2)设点E(m,0),直线BC表达式中的k值为4,EF∥BC,则直线EF的表达式为:y=4x+n,将点E坐标代入上式并解得:直线EF的表达式为:y=4x﹣4m…③,联立①③并解得:x=(m+1),则点F(,),S△BEF=S△OAB﹣S△OBE﹣S△AEF=×4×4﹣×4m﹣(4﹣m)×=,解得:m=,故点E(,0)、点F(2,2);(3)△BEF绕点F旋转180°得△B′E′F,则点E′(,4),当x=时,y=﹣x2+3x+4=﹣()2+3×+4≠4,故点E′不在抛物线上.6.(2019•荆门)已知抛物线y=ax2+bx+c顶点(2,﹣1),经过点(0,3),且与直线y=x ﹣1交于A,B两点.(1)求抛物线的解析式;(2)若在抛物线上恰好存在三点Q,M,N,满足S△QAB=S△MAB=S△NAB=S,求S的值;(3)在A,B之间的抛物线弧上是否存在点P满足∠APB=90°?若存在,求点P的横坐标;若不存在,请说明理由.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)【解答】解:(1)∵抛物线的顶点为(2,﹣1)∴顶点式为y=a(x﹣2)2﹣1∵抛物线经过点C(0,3)∴4a﹣1=3解得:a=1∴抛物线的解析式为y=(x﹣2)2﹣1=x2﹣4x+3(2)解得:,∴A(1,0),B(4,3)∴AB=设直线y=x﹣1与y轴交于点E,则E(0,﹣1)∴OA=OE=1∴∠AEO=45°∵S△QAB=S△MAB=S△NAB=S∴点Q、M、N到直线AB的距离相等如图,假设点M、N在直线AB上方,点Q在直线AB下方∴MN∥AB时,总有S△MAB=S△NAB=S要使只有一个点Q在直线AB下方满足S△QAB=S,则Q到AB距离必须最大过点Q作QC∥y轴交AB于点C,QD⊥AB于点D∴∠CDQ=90°,∠DCQ=∠AEO=45°∴△CDQ是等腰直角三角形∴DQ=CQ设Q(t,t2﹣4t+3)(1<t<4),则C(t,t﹣1)∴CQ=t﹣1﹣(t2﹣4t+3)=﹣t2+5t﹣4=﹣(t﹣)2+∴t=时,CQ最大值为∴DQ最大值为∴S=S△QAB=AB•DQ=(3)存在点P满足∠APB=90°.∵∠APB=90°,AB=3∴AP2+BP2=AB2设P(p,p2﹣4p+3)(1<p<4)∴AP2=(p﹣1)2+(p2﹣4p+3)2=p4﹣8p3+23p2﹣26p+10,BP2=(p﹣4)2+(p2﹣4p+3﹣3)2=p4﹣8p3+17p2﹣8p+16∴p4﹣8p3+23p2﹣26p+10+p4﹣8p3+17p2﹣8p+16=(3)2整理得:p4﹣8p3+20p2﹣17p+4=0p2(p2﹣8p+16)+4p2﹣17p+4=0p2(p﹣4)2+(4p﹣1)(p﹣4)=0(p﹣4)[p2(p﹣4)+(4p﹣1)]=0∵p<4∴p﹣4≠0∴p2(p﹣4)+(4p﹣1)=0展开得:p3﹣4p2+4p﹣1=0(p3﹣1)﹣(4p2﹣4p)=0(p﹣1)(p2+p+1)﹣4p(p﹣1)=0(p﹣1)(p2+p+1﹣4p)=0∵p>1∴p﹣1≠0∴p2+p+1﹣4p=0解得:p1=,p2=(舍去)∴点P横坐标为时,满足∠APB=90°.7.(2019•安顺)如图,抛物线y=x2+bx+c与直线y=x+3分别相交于A,B两点,且此抛物线与x轴的一个交点为C,连接AC,BC.已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MC|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接P A,过点P作PQ⊥P A交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)①将A(0,3),C(﹣3,0)代入y=x2+bx+c得:,解得:,∴抛物线的解析式是y=x2+x+3;(2)将直线y=x+3表达式与二次函数表达式联立并解得:x=0或﹣4,∵A(0,3),∴B(﹣4,1)①当点B、C、M三点不共线时,|MB﹣MC|<BC②当点B、C、M三点共线时,|MB﹣MC|=BC∴当点、C、M三点共线时,|MB﹣MC|取最大值,即为BC的长,。
二次函数与几何图形综合题二次函数与几何图形综合题081.[2018·贺州]如图ZT8-1,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A,B两点(A在B的左侧),且OA=3,OB=1,与y轴交于点C(0,3),抛物线的顶点坐标为D(-1,4).(1)求A,B两点的坐标.(2)求抛物线的表达式.(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B,D两点间的一个动点(点P不与B,D两点重合),PA,PB与直线DE分别交于点F,G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.图ZT8-12.[2018·连云港] 如图ZT8-2①,图形ABCD 是由两个二次函数y 1=kx 2+m (k<0)与y 2=ax 2+b (a>0)的部分图象围成的封闭图形,已知A (1,0),B (0,1),D (0,-3). (1)直接写出这两个二次函数的表达式;(2)判断图形ABCD 是否存在内接正方形(正方形的四个顶点在图形ABCD 上),并说明理由;(3)如图②,连接BC ,CD ,AD ,在坐标平面内,求使得△BDC 与△ADE 相似(其中点C 与点E 是对应顶点)的点E 的坐标.图ZT8-23.[2018·益阳] 如图ZT8-3,已知抛物线y=12x 2-32x-n (n>0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C. (1)如图①,若△ABC 为直角三角形,求n 的值;(2)如图①,在(1)的条件下,点P 在抛物线上,点Q 在抛物线的对称轴上,若以BC 为边,以点B ,C ,P ,Q 为顶点的四边形是平行四边形,求点P 的坐标;(3)如图②,过点A 作直线BC 的平行线交抛物线于另一点D ,交y 轴于点E ,若AE ∶ED=1∶4,求n 的值.图ZT8-34.[2018·齐齐哈尔] 综合与探究:如图ZT8-4①所示,直线y=x+c 与x 轴交于点A (-4,0),与y 轴交于点C ,抛物线y=-x 2+bx+c 经过点A ,C. (1)求抛物线的表达式;(2)点E 在抛物线的对称轴上,求CE+OE 的最小值;(3)如图②所示,M 是线段OA 上的一个动点,过点M 且垂直于x 轴的直线与直线AC 和抛物线分别交于点P ,N.①若以C ,P ,N 为顶点的三角形与△APM 相似,则△CPN 的面积为 ;②若点P 恰好是线段MN 的中点,点F 是直线AC 上一个动点,在坐标平面内是否存在点D ,使以点D ,F ,P ,M 为顶点的四边形是菱形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.图ZT8-45.[2018·潍坊] 如图ZT8-5①,抛物线y 1=ax 2-12x+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C 0,34,抛物线y 1的顶点为G ,GM ⊥x 轴于点M.将抛物线y 1平移后得到顶点为B 且对称轴为直线l 的抛物线y 2. (1)求抛物线y 2的解析式.(2)如图②,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由.(3)点P为抛物线y1上一动点,过点P作y轴的平行线,交抛物线y2于点Q,点Q关于直线l的对称点为R.若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.图ZT8-56.[2018·乐山]如图ZT8-6,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A,B两点,交y轴于点C0,-43.,OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=34(1)求抛物线的解析式.(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.①在P,Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似?若存在,求出t的值;若不存在,请说明理由.②在P,Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.图ZT8-6参考答案1.解:(1)由抛物线y=ax 2+bx+c 交x 轴于A ,B 两点(A 在B 的左侧),且OA=3,OB=1,得点A 的坐标为(-3,0),点B 的坐标为(1,0).(2)设抛物线的表达式为y=a (x+3)(x-1). 把点C 的坐标代入函数表达式,得a (0+3)(0-1)=3. 解得a=-1.故抛物线的表达式为y=-(x+3)(x-1)=-x 2-2x+3.(3)EF+EG=8(或EF+EG 是定值).理由如下:过点P 作PQ ∥y 轴,交x 轴于Q ,如图.设P (t ,-t 2-2t+3),则PQ=-t 2-2t+3,AQ=3+t ,QB=1-t.∵PQ ∥EF ,∴△AEF ∽△AQP.∴EE EE =EEEE ,∴EF=EE ·EE EE =(-E 2-2E +3)×23+E =23+E×(-t 2-2t+3)=2(1-t ). ∵PQ ∥EG ,∴△BEG ∽△BQP.∴EE EE =EEEE. ∴EG=EE ·EE EE =(-E 2-2E +3)×21-E=2(t+3).∴EF+EG=2(1-t )+2(t+3)=8.2.解:(1)∵二次函数y 1=kx 2+m 的图象经过点A ,B ,∴{E +E =0,E =1.解得{E =-1,E =1.∴二次函数y 1=kx 2+m 的解析式为:y 1=-x 2+1. ∵二次函数y 2=ax 2+b 的图象经过点A ,D ,∴{E +E =0,E =-3.解得{E =3,E =-3.∴二次函数y 2=ax 2+b 的解析式为y 2=3x 2-3.(2)设M (x ,-x 2+1)为第一象限内的图形ABCD 上一点,M'(x ,3x 2-3)为第四象限内的图形ABCD 上一点, ∴MM'=(1-x 2)-(3x 2-3)=4-4x 2.由抛物线的对称性知,若有内接正方形,则2x=4-4x 2, 即2x 2+x-2=0.解得x=-1+√174或x=-1-√174(舍),∵0<-1+√174<1,∴存在内接正方形,此时其边长为-1+√172.(3)在Rt △AOD 中,OA=1,OD=3,∴AD=√EE 2+EE 2=√10,同理CD=√10.在Rt △BOC 中,OB=OC=1,∴BC=√EE 2+EE 2=√2. ①如图①,当△DBC ∽△DAE 时,∵∠CDB=∠ADO , ∴在y 轴上存在一点E 满足条件.由EE EE =EEEE ,得√10=√10EE. ∴DE=52.∵D (0,-3),∴E 0,-12.由对称性知,在直线DA 右侧还存在一点E'使得△DBC ∽△DAE', 连接EE',交DA 于点F ,作E'M ⊥OD ,垂足为M ,连接E'D.①∵E ,E'关于DA 对称,∴DF 垂直平分EE'.∴△DEF ∽△DAO. ∴EE EE =EE EE =EE EE ,即√10=EE 3=EE1.∴DF=3√104,EF=√104. ∵S △DEE'=12DE ·E'M=EF ·DF=158, ∴E'M=32.又DE'=DE=52,在Rt △DE'M 中,DM=√EE '2-E 'E 2=2,∴OM=1,得E'32,-1.所以,使得△DBC ∽△DAE 的点E 的坐标为0,-12或32,-1.②如图②,当△DBC ∽△ADE 时,有∠BDC=∠DAE ,EE EE =EE EE ,即√10=√10EE,得AE=52.当E 在直线DA 左侧时,设AE 交y 轴于点P ,作EQ ⊥AC ,垂足为Q.②∵∠BDC=∠DAE=∠ODA , ∴PD=PA.设PD=x , 则PO=3-x ,PA=x.在Rt △AOP 中,由PA 2=OA 2+OP 2,得x 2=(3-x )2+1. 解得x=53. ∴PA=53,PO=43. ∵AE=52,∴PE=56.∵OP ∥EQ ,∴EE EE =EEEE . ∴OQ=12.又EE EE =EE EE =23,∴QE=2.∴E -12,-2. 当E'在直线DA 右侧时,∵∠DAE'=∠BDC , 又∠BDC=∠BDA , ∴∠BDA=∠DAE'.∴AE'∥OD.∴E'1,-52.∴使得△DBC ∽△ADE 的点E 的坐标为-12,-2或1,-52.综上,使得△BDC 与△ADE 相似(其中点C 与点E 是对应顶点)的点E 有4个,其坐标为0,-12或32,-1或-12,-2或1,-52.3.解:(1)若△ABC 为直角三角形,则△AOC ∽△COB.∴EE EE =EEEE ,即OC 2=OA ·OB. 由抛物线y=12x 2-32x-n (n>0),可得OC=n ,OA ·OB=2n.∴n 2=2n.解得n 1=2,n 2=0(舍去). ∴n=2.(2)由(1)可知,抛物线的对称轴为直线x=32,抛物线的解析式为y=12x 2-32x-2.令y=0,得12x 2-32x-2=0,解得x 1=-1,x 2=4, ∴A (-1,0),B (4,0).设点P m ,12m 2-32m-2.当直线PQ ∥BC ,点P 在点Q 的左侧时(如图①所示), 当△BOC 平移到△QNP 的位置时,四边形PQBC 为平行四边形, 此时NQ=OB ,即32-m=4,m=-52,12m 2-32m-2=398,此时点P 的坐标为-52,398;当点P 在点Q 的右侧时(如图①所示), 同理可得m-32=4,m=112,12m 2-32m-2=398,此时点P 的坐标为112,398.综上所述,满足条件的点P 的坐标为-52,398,112,398.(3)如图②,过点D 作DF ⊥x 轴,垂足为F ,则AO ∶OF=AE ∶ED=1∶4. 设A (a ,0),B (b ,0), 则AO=-a ,OF=-4a. ∵AD ∥BC , ∴∠OBC=∠DAO. ∵∠BOC=∠AFD=90°, ∴△BOC ∽△AFD.∴EE EE =EE EE, 即E EE =E -4E -E. ∴E EE =E -5E. 由题意,得ab=-2n.∴E E =-E 2. ∴DF=-5a ·E E =-5a ·-E 2=52a 2.∵点A ,D 在抛物线上,∴{12E 2-32E -E =0,12×16E 2-32×(-4E )-E =52E 2. 解得{E =-32,E =278.∴n 的值为278. 4.解:(1)将A (-4,0)代入y=x+c ,得c=4.∴点C 的坐标为(0,4).将(-4,0)和(0,4)代入y=-x 2+bx+c ,得b=-3.∴抛物线的解析式为y=-x 2-3x+4.(2)如图所示,作点C 关于抛物线的对称轴直线l 的对称点C',连接OC'交直线l 于点E ,连接CE ,此时CE+OE 的值最小,且CE+OE=OC'.抛物线的对称轴为直线x=--32×(-1)=-32,则C'C=3,在Rt △C'CO 中,由勾股定理,得OC'=√EE '2+EE 2=5.∴CE+OE 的最小值为5.(3)①由题意易知△APM 为等腰直角三角形.设M (a ,0),则N (a ,-a 2-3a+4),P (a ,a+4).当△AMP ∽△CNP 时,EE EE =EE EE ,得4+E -E =E +4-E 2-3E +4-(E +4),解得a=-4(舍去)或a=-3或a=0(舍去).∴CN=3,PN=3.∴△CPN 的面积为12·CN ·PN=92.当△AMP ∽△NCP 时,EE EE =EE EE , 得√(-E 2-3E +4-4)2+(-E )2=√2(4+E )-E 2-3E +4-(E +4),解得a=0(舍去)或a=-2或a=-4(舍去). ∴CN=CP=2√2.∴△CPN 的面积为12·CN ·PC=4. 故答案为92或4.②存在.D 1-2+3√22,3√22,D 2-2-3√22,-3√22,D 3(-4,3),D 412,32.理由如下:当点P 是线段MN 的中点时,-a 2-3a+4=2(a+4),解得a=-4(舍去)或a=-1.∴M (-1,0),P (-1,3),N (-1,6).设F (f ,f+4),过点M 作AC 的平行线,易知此直线的解析式为y=x+1.易知PM=3,当PM 为菱形的边时,作PF=PM ,过F 作FD ∥PM ,交直线y=x+1于点D , ∴D (f ,f+1).∴32=2(f+1)2,解得f=-2±3√22.则D 1-2+3√22,3√22,D 2-2-3√22,-3√22.∵PM=AM=3,∴当点F 与点A 重合时,过点F 作DF ∥PM (D 在x 轴上方),且DF=PM , 连接DP ,可得出四边形DPMF 为菱形.∴点D 的坐标为(-4,3).当PM 为菱形的对角线时,作PM 的垂直平分线,交直线AC 于点F ,作点F 关于PM 的对称点D ,连接MF ,MD ,PD ,此时四边形DMFP 为菱形.将y=32代入直线AC 的解析式可得x=-52,∴点F 的坐标为-52,32.∵直线PM 的解析式为x=-1,∴点D 的坐标为12,32.综上所述,满足条件的点为D 1-2+3√22,3√22,D 2-2-3√22,-3√22,D 3(-4,3),D 412,32.5.解:(1)将B (1,0)和C 0,34代入抛物线y 1=ax 2-12x+c ,得 {E -12+E =0,E =34.解得{E =-14,E =34.所以抛物线的解析式为y 1=-14x 2-12x+34.由题意可知平移后抛物线y 2的顶点为B (1,0),故抛物线y 2的解析式为y 2=-14(x-1)2,即y 2=-14x 2+12x-14.(2)存在.令y 1=0,解得x=-3或x=1.由题意知B (1,0),故A (-3,0).设T (1,t ),又C 0,34,所以AC 2=32+342=15316,AT 2=(1+3)2+t 2=t 2+16,CT 2=12+t-342=t 2-32t+2516.①若AC=AT ,则t 2+16=15316,方程无解,故此时不存在;②若AC=CT ,则t 2-32t+2516=15316,解得t=3±√1374,此时点T 的坐标为1,3+√1374或1,3-√1374;③若AT=CT ,则t 2-32t+2516=t 2+16,解得t=-778,此时点T 的坐标为1,-778.故点T 的坐标为1,3+√1374或1,3-√1374或1,-778. (3)由题意知G (-1,1),则AM=2,GM=1. 若△PQR 与△AMG 全等,则PQ=1,QR=2或PQ=2,QR=1. 分类一:若QR=2,由抛物线y 2的对称轴为直线x=1,得点Q 的横坐标为0或2. ①当x=0时,y 1=34,y 2=-14,此时PQ=34--14=1,满足题意,则P 0,34,R 2,-14,直线PR 的解析式为y=-12x+34.②当x=2时,y 1=-54,y 2=-14,此时PQ=-14--54=1,满足题意,则P 2,-54,R 0,-14,直线PR 的解析式为y=-12x-14.分类二:若QR=1,由抛物线y 2的对称轴为直线x=1,得点Q 的横坐标为12或32.①当x=12时,y 1=716,y 2=-116,此时PQ=716--116=12≠2,不满足题意.②当x=32时,y 1=-916,y 2=-116,此时PQ=-116--916=12≠2,不满足题意.综上所述,满足题意的直线PR 的解析式为y=-12x+34或y=-12x-14.6.解:(1)∵OA=1,OB=4,∴A (1,0),B (-4,0).设抛物线的解析式为y=a (x+4)(x-1).∵C 0,-43在抛物线上,∴-43=a×4×(-1).解得a=13.∴抛物线的解析式为y=13(x+4)(x-1),即y=13x 2+x-43.(2)①存在t ,使得△ADC 与△PQA 相似.其理由如下: 在Rt △AOC 中,OA=1,OC=43,则AC=53,tan ∠ACO=EE EE =34.又∵tan ∠OAD=34,∴∠OAD=∠ACO.在Rt △AOD 中,tan ∠OAD=34,OA=1,∴OD=34.∴CD=43-34=712.在△AQP 中,AP=AB-PB=5-2t ,AQ=t.由∠PAQ=∠ACD ,要使△ADC 与△PQA 相似,只需EE EE =EE EE 或EE EE =EEEE ,则有5-2E 1E 1=71253或5-2E 2E 2=53712,解得t 1=10047,t 2=3534.∵t 1<2.5,t 2<2.5,∴存在t=10047或3534,使得△ADC 与△PQA 相似.②存在t ,使得△APQ 与△CAQ 的面积之和最大,其理由如下: 作PF ⊥AQ 于点F ,CN ⊥AQ 于点N ,如图所示.在Rt △APF 中,∵tan ∠PAF=34,∴sin ∠PAF=35.∴PF=AP ·sin ∠PAF=35(5-2t ).在Rt △AOD 中,由AD 2=OD 2+OA 2,得AD=54.在△ADC 中,由S △ADC =12AD ·CN=12CD ·OA ,得CN=EE ·EE EE =712×154=715. ∴S △APQ +S △CAQ =12AQ (PF+CN )=12t [35(5-2E )+715]=-35t-1392+169135. ∵0<139<52,∴当t=139时,△APQ 与△CAQ 的面积之和最大.。
备战2019年中考二轮讲练测(精选重点典型题)专题08 二次函数的图象与性质(讲案)一讲考点——考点梳理(一)二次函数的定义形如2y ax bx c =++(其中0a ≠,a 、b 、c 是常数)的式子,称y 是x 的二次函数. (二)二次函数的性质(1)a 决定抛物线的开口方向①0a >⇔开口向上;②0a <⇔开口向下. (2)c 决定抛物线与y 轴交点的位置①0c >⇔图象与y 轴交点在x 轴上方;②0c =⇔图象过原点;③0c <⇔图象与y 轴交点在x 轴下方. (3)a b 、决定抛物线对称轴的位置(对称轴:2bx a=-) ①a b 、同号⇔对称轴在y 轴左侧;②0b =⇔对称轴是y 轴;③a b 、异号⇔对称轴在y 轴右侧,简记为:左同右异中为0.(4)顶点坐标24()24b ac b a a --,.(5)24b ac ∆=-决定抛物线与x 轴的交点情况. ①△>0⇔抛物线与x 轴有两个不同交点; ②△=0⇔抛物线与x 轴有唯一的公共点(相切); ③△<0⇔抛物线与x 轴无公共点.(6)二次函数是否具有最大、最小值由a 判断.①当a>0时,抛物线有最低点,函数有最小值;②当a<0时,抛物线有最高点,函数有最大值. (7)242a b a b c a b c ±±+±+、、 的符号的判定:x yO-112a-b 2a+b①若对称轴在直线x=1的左侧,则2a b +与a 同号,若对称轴在直线x=1的右侧,则2a b +与a 异号,若对称轴为直线x=1,则2a b +=0,简记为:1的两侧判2a b +,左同右异中为0;②若对称轴在直线1x =-的左侧,则2a b -与a 异号,若对称轴在直线1x =-的右侧,则2a b -与a 同号,若对称轴为直线1x =-,则2a b -=0,简记为:-1的两侧判2a b -,左异右同中为0; ③当1x =时,y a b c =++,所以a b c ++的符号由1x =时,对应的函数值y 的符号决定; 当1x =-时,y a b c =-+,所以a b c -+的符号由1x =-时,对应的函数值y 的符号决定; 当2x =时,42y a b c =++,所以42a b c ++的符号由2x =时,对应的函数值y 的符号决定; 当2x =-时,42y a b c =-+,所以42a b c -+的符号由2x =-时,对应的函数值y 的符号决定; 简记为:表达式,请代值,对应y 值定正负; 对称轴,用处多,三种式子a 相约;y 轴两侧判a b 、,左同右异中为0;1的两侧判2a b +,左同右异中为0; 1两侧判2a b -,左异右同中为0. (三)二次函数的解析式①一般式:2y ax bx c =++()0≠a ,用于已知三点,求抛物线的解析式.②顶点式:2()y a x h k =-+,用于已知顶点坐标或最值或对称轴,求抛物线的解析式.③交点式:()()21x x x x a y --=,其中1x 、2x 是二次函数与x 轴的两个交点的横坐标.若已知对称轴和在x 轴上的截距,也可用此式. (四)二次函数的增减性当0a >时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大;当0a <时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少.(五)二次函数图象的平移 方法一:顶点法二次函数的平移实际上是顶点的平移,故可以把原抛物线化为顶点式,通过顶点的平移来寻找答案。
函数与几何综合
1.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.
(1)求抛物线C2的解析式;
(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;
(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.
2.如图,抛物线y=x2+bx+c与直线y=x+3分别相交于A,B两点,且此抛物线与x轴的一个交点为C,连接AC,BC.已知A(0,3),C(﹣3,0).
(1)求抛物线的解析式;
(2)在抛物线对称轴l上找一点M,使|MB﹣MC|的值最大,并求出这个最大值;
(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
3.如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.(1)求该抛物线的表达式;
(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.。
中考数学总复习《二次函数的实际应用与几何问题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则图中阴影部分的面积为()A.πB.2πC.3πD.4π2.如图,已知抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,以AB为直径的⊙P经过该抛物线的顶点C,直线l⊙x轴,交该抛物线于M、N两点,交⊙P与E、F两点,若EF=2√3,则MN的长为()A.2√6B.4√2C.5D.63.如图,已知⊙ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2B.b<﹣2C.b≥﹣2D.b>﹣24.如图,在⊙ABC中,⊙C=90°,AC=BC=3cm.动点P从点A出发,以√2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC →CB方向运动到点B.设⊙APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.5.长方形的周长为24cm,其中一边为x(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=(12﹣x2)C.y=(12﹣x)•x D.y=2(12﹣x)6.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门。
已知计划中的建筑材料可建围墙(不包括门)的总长度为50m。
设饲养室长为x(m),占地面积为y(m²),则y关于x的函数表达式是()A.y=-x²+50x B.y= −12x²+24xC.y= −12x2+25x D.y= −12x2+26x7.如图,四边形ABCD中,AB=AD,CE⊙BD,CE= 12BD.若⊙ABD的周长为20cm,则⊙BCD的面积S(cm2)与AB的长x(cm)之间的函数关系式可以是()2−10x+100B.S=2x2−40x+200A.S=14xC.S=x2−20x+100D.S=x2+20x+1008.如图,四边形ABCD的两条对角线互相垂直,AC+BD=12,则四边形ABCD的面积最大值是()A.12B.18C.24D.369.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若⊙ABC与⊙ABD的面积比为1:4,则k值为()A.1B.12C.43D.4510.半径是3的圆,如果半径增加2x,那么面积S和x之间的函数关系式是()A.S=2π(x+3)2B.S=9π+xC.S=4πx2+12x+9D.S=4πx2+12πx+9π11.设抛物线y=ax2+bx+c(ab≠0)的顶点为M ,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1 () A.y=−3(x−1)2+1B.y=2(x−0.5)(x+1.5)C.y=13x 2−43x+1D.y=(a2+1)x2−4x+2(a为任意常数)12.已知坐标平面上有两个二次函数y=a(x+1)(x−7),y=b(x+1)(x−15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x−15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠().A.向左平移4单位B.向右平移4单位C.向左平移8单位D.向右平移8单位二、填空题13.如图,点A(0,1),平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=14x2(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE⊙AC,交y2于点E,则DE =.14.用一根长为24cm的绳子围成一个矩形,则围成矩形的最大面积是cm2.15.如图,在平面直角坐标系中,菱形OABC的边长为2,⊙AOC=60°,点D为AB边上的一点,经过O,A,D三点的抛物线与x轴的正半轴交于点E,连结AE交BC于点F,当DF⊙AB时,CE的长为。
二次函数与几何图形综合题二次函数与几何图形综合题081.[xx·贺州]如图ZT8-1,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A,B两点(A在B的左侧),且OA=3,OB=1,与y 轴交于点C(0,3),抛物线的顶点坐标为D(-1,4).(1)求A,B两点的坐标.(2)求抛物线的表达式.(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B,D两点间的一个动点(点P不与B,D两点重合),PA,PB与直线DE分别交于点F,G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.图ZT8-12.[xx·连云港]如图ZT8-2①,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形,已知A(1,0),B(0,1),D(0,-3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图②,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标.图ZT8-23.[xx·益阳]如图ZT8-3,已知抛物线y=x2-x-n(n>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)如图①,若△ABC为直角三角形,求n的值;(2)如图①,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图②,过点A作直线BC的平行线交抛物线于另一点D,交y轴于点E,若AE∶ED=1∶4,求n的值.图ZT8-34.[xx·齐齐哈尔]综合与探究:如图ZT8-4①所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.(1)求抛物线的表达式;(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图②所示,M是线段OA上的一个动点,过点M且垂直于x轴的直线与直线AC和抛物线分别交于点P,N.①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.图ZT8-45.[xx·潍坊]如图ZT8-5①,抛物线y1=ax2-x+c与x轴交于点A和点B(1,0),与y轴交于点C0,,抛物线y1的顶点为G,GM ⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式.(2)如图②,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由.(3)点P为抛物线y1上一动点,过点P作y轴的平行线,交抛物线y2于点Q,点Q关于直线l的对称点为R.若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.图ZT8-56.[xx·乐山]如图ZT8-6,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A,B两点,交y轴于点C0,-,OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式.(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.①在P,Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似?若存在,求出t的值;若不存在,请说明理由.②在P,Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.图ZT8-6参考答案1.解:(1)由抛物线y=ax2+bx+c交x轴于A,B两点(A在B的左侧),且OA=3,OB=1,得点A的坐标为(-3,0),点B的坐标为(1,0).(2)设抛物线的表达式为y=a(x+3)(x-1).把点C的坐标代入函数表达式,得a(0+3)(0-1)=3.解得a=-1.故抛物线的表达式为y=-(x+3)(x-1)=-x2-2x+3.(3)EF+EG=8(或EF+EG是定值).理由如下:过点P作PQ∥y轴,交x轴于Q,如图.设P(t,-t2-2t+3),则PQ=-t2-2t+3,AQ=3+t,QB=1-t.∵PQ∥EF,∴△AEF∽△AQP.∴=,∴EF===×(-t2-2t+3)=2(1-t).∵PQ∥EG,∴△BEG∽△BQP.∴=.∴EG===2(t+3).∴EF+EG=2(1-t)+2(t+3)=8.2.解:(1)∵二次函数y1=kx2+m的图象经过点A,B,∴解得∴二次函数y1=kx2+m的解析式为:y1=-x2+1.∵二次函数y2=ax2+b的图象经过点A,D,∴解得∴二次函数y2=ax2+b的解析式为y2=3x2-3.(2)设M(x,-x2+1)为第一象限内的图形ABCD上一点,M'(x,3x2-3)为第四象限内的图形ABCD上一点,∴MM'=(1-x2)-(3x2-3)=4-4x2.由抛物线的对称性知,若有内接正方形,则2x=4-4x2,即2x2+x-2=0.解得x=或x=(舍),∵0<<1,∴存在内接正方形,此时其边长为.(3)在Rt△AOD中,OA=1,OD=3,∴AD==,同理CD=.在Rt△BOC中,OB=OC=1,∴BC==.①如图①,当△DBC∽△DAE时,∵∠CDB=∠ADO,∴在y轴上存在一点E满足条件.由=,得=.∴DE=.∵D(0,-3),∴E0,-.由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE',连接EE',交DA于点F,作E'M⊥OD,垂足为M,连接E'D.①∵E,E'关于DA对称,∴DF垂直平分EE'.∴△DEF∽△DAO.∴==,即==.∴DF=,EF=.∵S△DEE'=DE·E'M=EF·DF=,∴E'M=.又DE'=DE=,在Rt△DE'M中,DM==2,∴OM=1,得E',-1.所以,使得△DBC∽△DAE的点E的坐标为0,-或,-1.②如图②,当△DBC∽△ADE时,有∠BDC=∠DAE,=,即=,得AE=.当E在直线DA左侧时,设AE交y轴于点P,作EQ⊥AC,垂足为Q.②∵∠BDC=∠DAE=∠ODA,∴PD=PA.设PD=x,则PO=3-x,PA=x.在Rt△AOP中,由PA2=OA2+OP2,得x2=(3-x)2+1.解得x=.∴PA=,PO=.∵AE=,∴PE=.∵OP∥EQ,∴=.∴OQ=.又==,∴QE=2.∴E-,-2.当E'在直线DA右侧时,∵∠DAE'=∠BDC,又∠BDC=∠BDA,∴∠BDA=∠DAE'.∴AE'∥OD.∴E'1,-.∴使得△DBC∽△ADE的点E的坐标为-,-2或1,-.综上,使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E有4个,其坐标为0,-或,-1或-,-2或1,-.3.解:(1)若△ABC为直角三角形,则△AOC∽△COB.∴=,即OC2=OA·OB.由抛物线y=x2-x-n(n>0),可得OC=n,OA·OB=2n.∴n2=2n.解得n1=2,n2=0(舍去).∴n=2.(2)由(1)可知,抛物线的对称轴为直线x=,抛物线的解析式为y=x2-x-2.令y=0,得x2-x-2=0,解得x1=-1,x2=4,∴A(-1,0),B(4,0).设点P m,m2-m-2.当直线PQ∥BC,点P在点Q的左侧时(如图①所示),当△BOC平移到△QNP的位置时,四边形PQBC为平行四边形,此时NQ=OB,即-m=4,m=-,m2-m-2=,此时点P的坐标为-,;当点P在点Q的右侧时(如图①所示),同理可得m-=4,m=,m2-m-2=,此时点P的坐标为,.综上所述,满足条件的点P的坐标为-,,,.(3)如图②,过点D作DF⊥x轴,垂足为F,则AO∶OF=AE∶ED=1∶4.设A(a,0),B(b,0),则AO=-a,OF=-4a.∵AD∥BC,∴∠OBC=∠DAO.∵∠BOC=∠AFD=90°,∴△BOC∽△AFD.∴=,即=.∴=.由题意,得ab=-2n.∴=-.∴DF=-5a·=-5a·-=a2.∵点A,D在抛物线上,∴解得∴n的值为.4.解:(1)将A(-4,0)代入y=x+c,得c=4.∴点C的坐标为(0,4).将(-4,0)和(0,4)代入y=-x2+bx+c,得b=-3.∴抛物线的解析式为y=-x2-3x+4.(2)如图所示,作点C关于抛物线的对称轴直线l的对称点C',连接OC'交直线l于点E,连接CE,此时CE+OE的值最小,且CE+OE=OC'.抛物线的对称轴为直线x=-=-,. 则C'C=3,在Rt△C'CO中,由勾股定理,得OC'==5.∴CE+OE的最小值为5.(3)①由题意易知△APM为等腰直角三角形.设M(a,0),则N(a,-a2-3a+4),P(a,a+4).当△AMP∽△CNP时,=,得=,解得a=-4(舍去)或a=-3或a=0(舍去).∴CN=3,PN=3.∴△CPN的面积为·CN·PN=.当△AMP∽△NCP时,=,得=,解得a=0(舍去)或a=-2或a=-4(舍去).∴CN=CP=2.∴△CPN的面积为·CN·PC=4.故答案为或4.②存在.D1,,D2,-,D3(-4,3),D4,.理由如下:当点P是线段MN的中点时,-a2-3a+4=2(a+4),解得a=-4(舍去)或a=-1.∴M(-1,0),P(-1,3),N(-1,6).设F(f,f+4),过点M作AC的平行线,易知此直线的解析式为y=x+1.易知PM=3,当PM为菱形的边时,作PF=PM,过F作FD∥PM,交直线y=x+1于点D,∴D(f,f+1).∴32=2(f+1)2,解得f=.则D1,,D2,-.∵PM=AM=3,∴当点F与点A重合时,过点F作DF∥PM(D在x轴上方),且DF=PM,连接DP,可得出四边形DPMF为菱形.∴点D的坐标为(-4,3).当PM为菱形的对角线时,作PM的垂直平分线,交直线AC于点F,作点F关于PM的对称点D,连接MF,MD,PD,此时四边形DMFP为菱形.将y=代入直线AC的解析式可得x=-,∴点F的坐标为-,.∵直线PM的解析式为x=-1,∴点D的坐标为,.综上所述,满足条件的点为D1,,D2,-,D3(-4,3),D4,.5.解:(1)将B(1,0)和C0,代入抛物线y1=ax2-x+c,得解得所以抛物线的解析式为y1=-x2-x+.由题意可知平移后抛物线y2的顶点为B(1,0),故抛物线y2的解析式为y2=-(x-1)2,即y2=-x2+x-.(2)存在.令y1=0,解得x=-3或x=1.由题意知B(1,0),故A(-3,0).设T(1,t),又C0,,所以AC2=32+2=,AT2=(1+3)2+t2=t2+16,CT2=12+t-2=t2-t+.①若AC=AT,则t2+16=,方程无解,故此时不存在;②若AC=CT,则t2-t+=,解得t=,此时点T的坐标为1,或1,;③若AT=CT,则t2-t+=t2+16,解得t=-,此时点T的坐标为1,-.故点T的坐标为1,或1,或1,-.(3)由题意知G(-1,1),则AM=2,GM=1.若△PQR与△AMG全等,则PQ=1,QR=2或PQ=2,QR=1.分类一:若QR=2,由抛物线y2的对称轴为直线x=1,得点Q的横坐标为0或2.①当x=0时,y1=,y2=-,此时PQ=--=1,满足题意,则P0,,R2,-,直线PR的解析式为y=-x+.②当x=2时,y1=-,y2=-,此时PQ=---=1,满足题意,则P2,-,R0,-,直线PR的解析式为y=-x-.分类二:若QR=1,由抛物线y2的对称轴为直线x=1,得点Q的横坐标为或.①当x=时,y1=,y2=-,此时PQ=--=≠2,不满足题意.②当x=时,y1=-,y2=-,此时PQ=---=≠2,不满足题意.综上所述,满足题意的直线PR的解析式为y=-x+或y=-x-.6.解:(1)∵OA=1,OB=4,∴A(1,0),B(-4,0).设抛物线的解析式为y=a(x+4)(x-1).∵C0,-在抛物线上,∴-=a×4×(-1).解得a=.∴抛物线的解析式为y=(x+4)(x-1),即y=x2+x-.(2)①存在t,使得△ADC与△PQA相似.其理由如下:在Rt△AOC中,OA=1,OC=,则AC=,tan∠ACO==.又∵tan∠OAD=,∴∠OAD=∠ACO.在Rt△AOD中,tan∠OAD=,OA=1,∴OD=.∴CD=-=.在△AQP中,AP=AB-PB=5-2t,AQ=t.由∠PAQ=∠ACD,要使△ADC与△PQA相似,只需=或=,则有=或=,解得t1=,t2=.∵t1<2.5,t2<2.5,∴存在t=或,使得△ADC与△PQA相似.②存在t,使得△APQ与△CAQ的面积之和最大,其理由如下:作PF⊥AQ于点F,CN⊥AQ于点N,如图所示.在Rt△APF中,∵tan∠PAF=,∴sin∠PAF=.∴PF=AP·sin∠PAF=(5-2t).在Rt△AOD中,由AD2=OD2+OA2,得AD=.在△ADC中,由S△ADC=AD·CN=CD·OA,得CN===.∴S△APQ+S△CAQ=AQ(PF+CN)=t=-t-2+.∵0<<,∴当t=时,△APQ与△CAQ的面积之和最大.如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。
1. 如图,抛物线y =c ax ax +-22(a ≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 坐标为(4,0). (1)求抛物线的解析式;(2)抛物线的顶点为N ,在x 轴上找一点K ,使CK +KN 最小,并求出点K 的坐标;(3)已知D 是OA 的中点,点P 在第一象限的抛物线上,过点P 作x 轴的平行线,交直线AC 于点F ,连接OF ,DF .当OF =DF 时,求点P 的坐标.第1题图解:(1)∵抛物线y =ax 2-2ax +c 经过点A (4,0),C (0,4),∴,40816⎩⎨⎧==+-c c a a 解得,421⎪⎩⎪⎨⎧=-=c a ∴抛物线的解析式为y =-12x 2+x +4;(2)y =-12x 2+x +4=-12(x -1)2+92,∴N (1,92),如解图①,作点C 关于x 轴的对称点C ′,则C ′(0,-4),连接C ′N 交x 轴于点K ,则K 点即为使CK +KN 最小的K 点位置.第1题解图①设直线C ′N 的解析式为y =kx +b (k ≠0),将点C ′(0,-4),N (1,92)代入,得,294⎪⎩⎪⎨⎧=+-=b k b 解得⎪⎩⎪⎨⎧-==4217b k ∴直线C ′N 的解析式为y =172x -4, 令y =0,即172x -4=0,解得x =817,∴点K 的坐标为(817,0);(3)如解图②,过F 作FM ⊥x 轴于M , ∵D 是OA 的中点,第1题解图②∴D (2,0), ∵OF =DF , ∴OM =MD ,∴M (1,0),∴点F 的横坐标是1.设直线AC 的解析式为y =mx +n , 将点A (4,0),C (0,4)代入, 得直线AC 的解析式为y =-x +4, ∴点F 的坐标为(1,3), 设P (t ,-122t +t +4),则-122t +t +4=3,解得t =1+3或t =1-3(舍去), ∴点P 的坐标为(1+3,3).2.如图,抛物线cbxaxy++=2与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=-1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当P A⊥NA,且P A=NA时,求此时点P的坐标;②当四边形P ABC的面积最大时,求四边形P ABC面积的最大值及此时点P的坐标.第2题图解:(1)∵抛物线y=ax2+bx+c与x轴交于点B(1,0),与y轴交于点C(0,3),其对称轴l为直线x=-1,∴抛物线的解析式为y=-x2-2x+3=-(x+1)2+4,∴顶点坐标为(-1,4);(2)令y=-x2-2x+3=0,解得x1=-3,x2=1,∴点A(-3,0),如解图,作PD⊥x轴于点D,对称轴l与x轴交于点Q,连接AC、OP,第2题解图∵点P在y=-x2-2x+3上,∴设点P(x,-x2-2x+3),①∵P A ⊥NA ,且P A =NA ,∴∠P AD +∠APD =∠P AD +∠NAQ =90°, ∴∠APD =∠NAQ ,又∵∠PDA =∠AQN =90°, ∴△P AD ≌△ANQ (AAS ), ∴PD =AQ , 即-x 2-2x +3=2,解得x 1=2-1(舍去),x 2=-2-1, ∴P (-2-1,2);②∵△ABC 的面积为定值,∴△APC 面积最大时,四边形P ABC 面积最大, ∵S AOC △=12×3×3=92,S OCP △=32|x |=-32x ,S OAP △=12×3×|y p |=-32x 2-3x +92,∴S APC △=S OAP △+S OCP △-S AOC △ =-32x 2-3x +92-32x -92=-32(x +32)2+278,∴当x =-32时,S APC △取得最大值,最大值为278,此时P (-32,154),∴S PABC 四边形=S ABC △+S APC △=12×4×3+278=758,∴四边形P ABC 面积的最大值为758,此时点P 的坐标为(-32,154).3.在直角坐标系xOy 中,A (0,2)、B (-1,0),将△ABO 经过旋转、平移变化后得到如图所示的△BCD .(1)求经过A ,B ,C 三点的抛物线的解析式;(2)连接AC ,点P 是位于线段BC 上方的抛物线上一动点,若直线PC 将△ABC 的面积分成1∶3两部分,求此时点P 的坐标; (3)现将△ABO 、△BCD 分别向下、向左以1∶2的速度同时平移,求出在此运动过程中△ABO 与△BCD 重叠部分面积的最大值.第3题图解:(1)∵A (0,2)、B (-1,0),将△ABO 经过旋转、平移变化得到△BCD , ∴BD =OA =2,CD =OB =1,∠BDC =∠AOB =90°, ∴C ()1,1,设经过A ,B ,C 三点的抛物线的解析式为y =a 2x +bx +c ,则,210⎪⎩⎪⎨⎧==++=+-c c b a c b a ,解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=22123c b a ,∴经过A 、B 、C 三点的抛物线的解析式为y =-322x +12x +2;(2)如解图①,设直线PC 与AB 交于点E ,∵直线PC 将△ABC 的面积分成1∶3两部分,第3题解图①∴BE AE =13或BEAE=3, 过点E 作EF ⊥OB 于点F ,则EF ∥OA , ∴△BEF ∽△BAO ,∴BO BFBA BE AO EF ==, ∴当BE AE =13时,2EF =34=1BF ,∴EF =32,BF =34,∴点E 的坐标为(-14,32).设直线PC 的解析式为y =mx +n ,由E ,C 两点坐标可求得其解析式为y =-25x +75,∴-32x 2+12x +2=-25x +75,∴x 1=-25,x 2=1(舍去),∴点P 的坐标为(-25,3925),当BEAE =3时,同理可得点P 的坐标为(-67,2349);(3)设△ABO 平移的距离为t ,△111O B A 与△112D C B 重叠部分的面积为S , 可由已知求出直线A 1B 1的解析式为y =2x +2-t ,11B A 与x 轴的交点坐标为(22-t ,0). 直线21B C 的解析式为y =12x +t +12,21B C 与y 轴交点坐标为(0,t +12).①如解图②所示,当0<t <35时,△111O B A 与△112D C B 重叠部分为四边形.第3题解图②设11B A 与x 轴交于点M ,21B C 与y 轴交于点N ,11B A 与21B C 交于点Q ,连接OQ ,由⎪⎩⎪⎨⎧++=-+=t x y t x y 212122,得⎪⎪⎩⎪⎪⎨⎧=-=35334t y t x , ∴点Q 的坐标为(334-t ,35t), ∴S =S QMO △+S QNO △ =343)21(21352221tt t t -⨯+⨯+⨯-⨯=-1312t 2+t +14,∵-1312<0,∴S 最大值=ab ac 442-=2552;②如解图③所示,当35≤t<45时,△111O B A 与△112D C B 重叠部分为直角三角形.第3题解图③设11B A 与x 轴交于点H , 11B A 与11D C 交于点G , 则G (1-2t ,4-5t ),1D H =22t -+1-2t =254t -,1D G =4-5t , ∴S =121D H ·1D G =25421t -⨯(4-5t )=14(4-5t )2,∴当35≤t<45时,S 的最大值为14,综上所述,在此运动过程中△ABO 与△BCD 重叠部分面积的最大值为2552.4.如图,抛物线c bx ax y ++=2的图象与x 轴分别交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0)、C (0,5)、D (1,8)在抛物线上,M 为抛物线的顶点. (1)求抛物线的解析式; (2)求△MCB 的面积;(3)在抛物线上是否存在点P ,使△P AB 的面积等于△MCB 的面积?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.第4题图解:(1)∵A (-1,0),C (0,5),D (1,8)三点在抛物线y =c bx x ++2a 上,∴,850⎪⎩⎪⎨⎧++==+-=c b a cc b a 解得,541⎪⎩⎪⎨⎧==-=c b a , ∴抛物线的解析式为y =-2x +4x +5; (2)如解图,过点M 作MN ∥y 轴交BC 于点N ,第4题解图∴S MCB △=S MCN △+S MNB △=12MN ·OB .∵y =-2x +4x +5 =-(x -5)(x +1) =-(x -2)2+9,∴M (2,9),B (5,0),由B ,C 两点的坐标易求得直线BC 的解析式为:y =-x +5, 当x =2时,y =-2+5=3,则N (2,3), 则MN =9-3=6, 则S MCB △=12×6×5=15;(3)在抛物线上存在点P ,使△P AB 的面积等于△MCB 的面积. ∵A (-1,0),B (5,0), ∴AB =6,∵S PAB △=S MCB △,∴12×6×|p y |=15, ∴|p y |=5,即p y =±5. 当p y =5时,-2x +4x +5=5, 解得1x =0,2x =4;当p y =-5时,-2x +4x +5=-5, 解得3x =2+14,4x =2-14.故在抛物线上存在点1P (0,5),2P (4,5),3P (2+14,-5),4P (2-14, -5),使△P AB 的面积等于△MCB 的面积.5.如图,已知抛物线y =ax 2+bx +4(a ≠0)的对称轴为直线x =3,抛物线与x 轴相交于A ,B 两点,与y 轴相交于点C ,已知B 点的坐标为(8,0).(1)求抛物线的解析式;(2)点M 为线段BC 上方抛物线上的一点,点N 为线段BC 上的一点,若MN ∥y 轴,求MN 的最大值;(3)在抛物线的对称轴上是否存在点Q ,使△ACQ 为等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.第5题图解:(1)根据题意得,ab2 =3, 即b =-6a ,则抛物线的解析式为y =ax 2-6ax +4,将B (8,0)代入得,0=64a -48a +4,解得a =-14,b =32,∴抛物线的解析式为y =-14x 2+32x +4;(2)设直线BC 的解析式为y =kx +d ,由抛物线解析式可知:当x =0时,y =4,即点C (0,4), 将B (8,0),C (0,4)代入得,48⎩⎨⎧==+d d k 解得,421⎪⎩⎪⎨⎧=-=d k ∴直线BC 的解析式为y =-12x +4,设点M 的横坐标为x (0<x <8),则点M 的纵坐标为-14x 2+32x +4,点N 的纵坐标为-12x +4,∵点M 在抛物线上,点N 在线段BC 上,MN ∥y 轴, ∴MN =-14x 2+32x +4-(-12x +4)=-14x 2+32x +4+12x -4=-14x 2+2x=-14(x -4)2+4,∴当x =4时,MN 的值最大,最大值为4;(3)存在.如解图,过点C 作CD ⊥对称轴于点D ,连接AC . 令-14x 2+32x +4=0,解得x 1=-2,x 2=8, ∴A (-2,0), 又∵C (0,4),由勾股定理得,AC =2242+=25,第5题解图∵抛物线对称轴为直线x =3, 则CD =3,D (3,4). ①当AC =CQ 时,DQ =22CD CQ -=223)52(-=11,当点Q 在点D 的上方时,点Q 到x 轴的距离为4+11, 此时,点Q 1(3,4+11),当点Q 在点D 的下方时,点Q 到x 轴的距离为4-11, 此时,点Q 2(3,4-11);②当AQ =CQ 时,点Q 为对称轴与x 轴的交点,AQ =5,CQ =2243+=5, 此时,点Q 3(3,0); ③当AC =AQ 时,∵AC =25,点A 到对称轴的距离为5,25<5, ∴不可能在对称轴上存在Q 点使AC =AQ ,综上所述,当点Q 的坐标为(3,4+11)或(3,4-11)或(3,0)时,△ACQ 为等腰三角形.6.如图,一次函数y =23x -4与x 轴交于点B ,与y 轴交于点C .经过点B 、C 的抛物线c bx ax y ++=2也经过点A (-2,0). (1)求抛物线的解析式;(2)点M 是线段AB 上的一个动点,过点M 作MN ∥BC ,交AC 于点N ,连接CM ,当△CMN 的面积最大时,求点M 的坐标;(3)点D (4,k )在抛物线上,点F 为抛物线上一动点,在y 轴上是否存在点E ,使以A 、D 、E 、F 为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点E ,F 的坐标;若不存在,请说明理由.第6题图解:(1)由y =23x -4可知B (6,0),C (0,-4),设抛物线的解析式为y =a (x +2)(x -6), 将点C 的坐标代入,求得a =13,∴抛物线的解析式为y =132x -43x -4;(2)设点M 的坐标为(m ,0),过点N 作NH ⊥x 轴于点H ,如解图①,第6题解图①∵点A 的坐标为(-2,0),点B 的坐标为(6,0), ∴AB =8,AM =m +2, ∵MN ∥BC ,∴△AMN ∽△ABC , ∴AB AM CO NH = ∴824+=m NH , ∴NH =22+m , ∴S CMN △=S ACM △-S AMN △=12AM ·CO -12AM ·NH=12(m +2)(4-22+m ) =-14m 2+m +3=-14(m -2)2+4,∴当m =2时,S CMN △有最大值为4, 此时,点M 的坐标为(2,0); (3)∵点D (4,k )在抛物线 y =13x 2-43x -4上, ∴当x =4时,y =-4, ∴D (4,-4),设点F 的坐标为(m ,n ),点E 的坐标为(0,t ),由题意得:①若AF 为平行四边形的边,如解图②,则有:第6题解图②,⎩⎨⎧-=--=-A E F D AE F D x x x x y y y y 即,24-4-⎩⎨⎧=-=m t n∵n =13m 2-43m -4,∴,2443431-4-2⎪⎩⎪⎨⎧=-=++m t m m 解得:m =2,n =-163,t =43.∴1E (0,43),1F (2,-163);②若AF 为平行四边形的对角线,如解图③,则有:第6题解图③,⎩⎨⎧-=--=-AE DF AE DF x x x x y y y y 即,244⎩⎨⎧=-=+m tn∵n =13m 2-43m -4,∴,244434312⎪⎩⎪⎨⎧=-=+--m t m m 解得m =6,n =0,t =4, ∴2E (0,4),2F (6,0),综上所述,存在1E (0,43),1F (2,-163)或2E (0,4),2F (6,0)使得以A 、D 、E 、F 为顶点的四边形为平行四边形.7.如图,抛物线y =-x 2+bx +c 经过A (-1,0),B (3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连接BD .(1)求经过A ,B ,C 三点的抛物线的函数表达式;(2)点P 是线段BD 上一点,当PE =PC 时,求点P 的坐标; (3)在(2)的条件下,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F 、M 、N 、G 为顶点的四边形是正方形时,请求出点M 的坐标.第7题图解:(1)∵抛物线y =-x 2+bx +c 经过A (-1,0),B (3,0)两点,∴,0390-1-⎩⎨⎧=++-=+c b c b 解得,32⎩⎨⎧==c b∴经过A ,B ,C 三点的抛物线的函数表达式为y =-x 2+2x +3; (2)如解图①,连接PC 、PE.第7题解图①∵抛物线对称轴为直线 x =-a b 2=)(1-22⨯-=1, ∴当x =1时,y =-1+2+3=4, ∴点D 的坐标为(1,4),设直线BD 的解析式为:y =mx +n (m ≠0), 将B (3,0)和D (1,4)分别代入,得,⎩⎨⎧+=+=n m n m 430解得⎩⎨⎧=-=62n m , 则y =-2m +6,设点P 坐标为(m ,-2m +6), ∵C (0,3),E (1,0), ∴由勾股定理可得:PC 2=m 2+[3-(-2m +6)]2, PE 2=(m -1)2+(-2m +6)2, 又∵PC =PE ,∴m 2+(3+2m -6)2=(m -1)2+(-2m +6)2, 解得m =2,则-2m+6=-2×2+6=2, ∴点P 坐标为(2,2);(3)依题意可设点M 坐标为(a ,0),则点G 坐标为(a ,-a 2+2a +3). 如解图②,以F 、M 、N 、G 为顶点的四边形是正方形时,必有FM =MG ,第7题解图②|2-a |=|-a 2+2a +3|, ①2-a =-(-a 2+2a +3),解得a =1±212,②2-a =-a 2+2a +3, 解得a =3±132,∴M 点的坐标为(1-212,0),(1+212,0),(3-132,0),(3+132,0).8.如图①,经过原点O 的抛物线y =ax 2+bx (a ≠0)与x 轴交于另一个点A (32,0),在第一象限内与直线y =x 交于点B (2,t ).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C ,满足以B ,O ,C 为顶点的三角形的面积为2,求点C 的坐标;(3)如图②,若点M 在这条抛物线上,且∠MBO =∠ABO ,在(2)的条件下,是否存在点P ,使得△POC ∽△MOB ?若存在,求出点P 的坐标;若不存在,请说明理由.第8题图解:(1)把B (2,t )代入y =x 得t =2, ∴B (2,2),把A (32,0),B (2,2)代入y =bx ax +2得:⎪⎩⎪⎨⎧=+=+22402349b a b a , 解得⎩⎨⎧-==32b a ,∴抛物线的表达式为y =22x -3x ; (2)设点C 坐标为(x ,2x 2-3x ),如解图①,过点C 作CQ ⊥y 轴于点Q ,过点B 作BF ⊥y 轴于点F ,第8题解图①则S BOC △=S CQFB 四边形-S BOF △-S COQ △,即2)]32(2)[2(2x x x --+-12×2×2-12x (-2x 2+3x )=2,解得x =1.把x =1代入y =2x 2-3x ,得y =2-3=-1, ∴C (1,-1);(3)如解图②,连接OM ,AB ,设MB 交y 轴于点N ,第8题解图②∵B (2,2),∴∠AOB =∠NOB =45°, 在△AOB 和△NOB 中, ⎪⎩⎪⎨⎧∠=∠=∠=∠NBO ABO OBOB NOB AOB , ∴△AOB ≌△NOB (ASA ), ∴ON =OA =32,∴N (0,32),设直线BN 表达式为y =kx +32,把B 点坐标代入可得2=2k +32,解得k =14,∴直线BN 的表达式为y =14x +32,联立直线BN 和抛物线表达式可得⎪⎩⎪⎨⎧-=+=x x y x y 3223412,解得⎩⎨⎧==22y x 或⎪⎪⎩⎪⎪⎨⎧=-=324583y x , ∴M (-38,4532),∵C (1,-1),∴∠COA =∠AOB =45°,且B (2,2), ∴OB =22,OC =2, ∵△POC ∽△MOB ,∴OCOB OPOM ==2,∠POC =∠BOM ,当点P 在第一象限时,如解图③,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥x 轴于点H ,第8题解图③∵∠COA =∠BOG =45°,∠POC =∠BOM , ∴∠MOG =∠POH ,且∠PHO =∠MGO , ∴△MOG ∽△POH , ∴OH OG PH MG OP OM ===2, ∵M (-38,4532),∴MG =38,OG =4532,∴PH =12MG =316,OH =12OG =4564,∴P (4564,316);当点P 在第三象限时,如解图④,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥y 轴于点H ,第8题解图④同理可求得PH =12MG =316,OH =12OG =4564,∴P (-316,-4564);综上,存在满足条件的点P ,其坐标为(4564,316)或(-316,-4564).9.如图,直线y =-x +3与x 轴,y 轴分别相交于点B 、C ,经过B 、C 两点的抛物线y =ax 2+bx +c 与x 轴的另一个交点为A ,顶点为P ,且对称轴为直线x =2. (1)求该抛物线的解析式;(2)连接PB 、PC ,求△PBC 的面积;(3)连接AC ,在x 轴上是否存在一点Q ,使得以点P 、B 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标;若不存在,请说明理由.第9题图解:(1)∵y =-x +3与x 轴、y 轴相交于B 、C 两点,∴C (0,3),B (3,0),∵抛物线的对称轴为:x =2,∴可设二次函数的解析式为:y =a (x -2)2+k (a ≠0),把B (3,0)、C (0,3)两点代入,得340a k a k =+⎧⎨=+⎩,解得,11a k =⎧⎨=-⎩,∴抛物线的解析式为:y =(x -2)2-1,即y =x 2-4x +3. (2)∵y =x 2-4x +3=(x -2)2-1, ∴P (2,-1),又∵B (3,0)、C (0,3),∴PC =2242+=52,PB =212-322=+)(,BC =23183322==+,又∵PB 2+BC 2=2+18=20,PC 2=20, ∴PB 2+BC 2=PC 2, ∴△PBC 是直角三角形.∴S PBC △=12PB ·BC =12×2×23=3.(3)设存在点Q (m ,0),使得以点P 、B 、Q 为顶点的三角形与△ABC 相似,易证∠ABC =∠ABP =45°,∴Q 点在B 点左边,则m <3, 于是AB =2,BC =23,BQ =3-m ,BP =2, ①当BQBABP BC =时,△QBP ∽△ABC , 则m-=32223,解得,m =73, ∴Q (73,0);②当BP BA BQ BC =时,△PBQ ∽△ABC ,则22323=-m ,解得,m =0, ∴Q (0,0),综上所述,存在点Q ,使得以点P 、B 、Q 为顶点的三角形与△ABC 相似.Q 点的坐标为Q (73,0)或Q (0,0).10.如图,已知抛物线与x 轴交于A (-1,0),B (4,0),与y 轴交于C (0,-2).(1)求抛物线的解析式;(2)H 是C 关于x 轴的对称点,P 是抛物线上的一点,当△PBH 与△AOC 相似时,求符合条件的P 点的坐标(求出两点即可);(3)过点C 作CD ∥AB ,CD 交抛物线于点D ,点M 是线段CD 上的一动点,作直线MN 与线段AC 交于点N ,与x 轴交于点E ,且∠BME =∠BDC ,当CN 的值最大时,求点E 的坐标.第10题图解:(1)根据题意设抛物线的解析式为y =a (x +1)(x -4)(a ≠0),将C (0,-2)代入得:-2=-4a ,解得a =12, ∴抛物线的解析式为y =12(x +1)(x -4),即y =12x 2-32x -2; (2)∵C (0,-2),H 是C 关于x 轴的对称点,∴H (0,2),又∵A (-1,0),B (4,0),∴OA =1,OC =OH =2,AC =AH =5,OB =4,BH =52,AB =5, ∴AB AC HB OC AH AO ===51, ∴△AOC ∽△AHB ,∴P 1(-1,0),即P 1点与A 点重合;如解图所示作C 点关于抛物线对称轴的对称点D ,连接HD 、BD ,则D (3,-2),BD =AC =AH =5,CD =3,根据勾股定理得:HD =22CD HC +=53422=+ ∴DH ACBH OC BD OA ===51,∴△AOC ∽△DBH ,∴P 2(3,-2),即P 2点与D 点重合.第10题解图(3)∵CD ∥AB ,∴∠OEM =∠CMN ,∠BMD =∠EBM , 又∵∠BME =∠BDC ,∴∠CMN =∠OEM =180°-∠BME -∠BMD , ∠DBM =180°-∠BMD -∠BDM ,∴∠CMN =∠DBM ,根据抛物线的对称性可知:∠BDM =∠MCN ,∴△MNC ∽△BMD , ∴BD CMDM CN=,设CM =n ,则M 点坐标为(n ,-2),又∵B (4,0),C (0,-2),D (3,-2), 则CN =BD DM CM ⋅= 5209)23(555535522+--=+-n n n (0<n <3)∴当n =32,即M 为CD 中点时,CN 的值最大, ∴M (32,-2),∴2BM =414,∵∠OEM =∠CMN =∠DBM ,∠BME =∠BDC , ∴△BME ∽△MDB , ∴BM BEDM BM =,∴BE =DM BM 2=41432=416,∴OE =BE -OB =416-4=176, ∴E (-176,0).。
二次函数与几何图形综合题二次函数与几何图形综合题081.[2018·贺州]如图ZT8-1,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A,B两点(A在B的左侧),且OA=3,OB=1,与y轴交于点C(0,3),抛物线的顶点坐标为D(-1,4).(1)求A,B两点的坐标.(2)求抛物线的表达式.(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B,D两点间的一个动点(点P不与B,D两点重合),PA,PB与直线DE分别交于点F,G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.图ZT8-12.[2018·连云港]如图ZT8-2①,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形,已知A(1,0),B(0,1),D(0,-3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图②,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标.图ZT8-23.[2018·益阳]如图ZT8-3,已知抛物线y=x2-x-n(n>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)如图①,若△ABC为直角三角形,求n的值;(2)如图①,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图②,过点A作直线BC的平行线交抛物线于另一点D,交y轴于点E,若AE∶ED=1∶4,求n的值.图ZT8-34.[2018·齐齐哈尔]综合与探究:如图ZT8-4①所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.(1)求抛物线的表达式;(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图②所示,M是线段OA上的一个动点,过点M且垂直于x轴的直线与直线AC和抛物线分别交于点P,N.①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.图ZT8-45.[2018·潍坊]如图ZT8-5①,抛物线y1=ax2-x+c与x轴交于点A和点B(1,0),与y轴交于点C0,,抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式.(2)如图②,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由.(3)点P为抛物线y1上一动点,过点P作y轴的平行线,交抛物线y2于点Q,点Q关于直线l的对称点为R.若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.图ZT8-56.[2018·乐山]如图ZT8-6,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A,B两点,交y轴于点C0,-,OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式.(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.①在P,Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似?若存在,求出t的值;若不存在,请说明理由.②在P,Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.图ZT8-6参考答案1.解:(1)由抛物线y=ax2+bx+c交x轴于A,B两点(A在B的左侧),且OA=3,OB=1,得点A的坐标为(-3,0),点B的坐标为(1,0).(2)设抛物线的表达式为y=a(x+3)(x-1).把点C的坐标代入函数表达式,得a(0+3)(0-1)=3.解得a=-1.故抛物线的表达式为y=-(x+3)(x-1)=-x2-2x+3.(3)EF+EG=8(或EF+EG是定值).理由如下:过点P作PQ∥y轴,交x轴于Q,如图.设P(t,-t2-2t+3),则PQ=-t2-2t+3,AQ=3+t,QB=1-t.∵PQ∥EF,∴△AEF∽△AQP.∴=,∴EF=·=--=×(-t2-2t+3)=2(1-t).∵PQ∥EG,∴△BEG∽△BQP.∴=.∴EG=·=---=2(t+3).∴EF+EG=2(1-t)+2(t+3)=8.2.解:(1)∵二次函数y1=kx2+m的图象经过点A,B, ∴解得-∴二次函数y1=kx2+m的解析式为:y1=-x2+1.∵二次函数y2=ax2+b的图象经过点A,D,∴-解得-∴二次函数y2=ax2+b的解析式为y2=3x2-3.(2)设M(x,-x2+1)为第一象限内的图形ABCD上一点,M'(x,3x2-3)为第四象限内的图形ABCD上一点, ∴MM'=(1-x2)-(3x2-3)=4-4x2.由抛物线的对称性知,若有内接正方形,则2x=4-4x2,即2x2+x-2=0.解得x=-或x=--(舍),∵0<-<1,∴存在内接正方形,此时其边长为-.(3)在Rt△AOD中,OA=1,OD=3,∴AD==,同理CD=.在Rt△BOC中,OB=OC=1,∴BC==.①如图①,当△DBC∽△DAE时,∵∠CDB=∠ADO,∴在y轴上存在一点E满足条件.由=,得=.∴DE=.∵D(0,-3),∴E0,-.由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE', 连接EE',交DA于点F,作E'M⊥OD,垂足为M,连接E'D.①∵E,E'关于DA对称,∴DF垂直平分EE'.∴△DEF∽△DAO.∴==,即==.∴DF=,EF=.∵S△DEE'=DE·E'M=EF·DF=,∴E'M=.又DE'=DE=,在Rt△DE'M中,DM=-=2,∴OM=1,得E',-1.所以,使得△DBC∽△DAE的点E的坐标为0,-或,-1.②如图②,当△DBC∽△ADE时,有∠BDC=∠DAE,=,即=,得AE=.当E在直线DA左侧时,设AE交y轴于点P,作EQ⊥AC,垂足为Q.②∵∠BDC=∠DAE=∠ODA,∴PD=PA.设PD=x,则PO=3-x,PA=x.在Rt△AOP中,由PA2=OA2+OP2,得x2=(3-x)2+1.解得x=.∴PA=,PO=.∵AE=,∴PE=.∵OP∥EQ,∴=.∴OQ=.又==,∴QE=2.∴E-,-2.当E'在直线DA右侧时,∵∠DAE'=∠BDC,又∠BDC=∠BDA,∴∠BDA=∠DAE'.∴AE'∥OD.∴E'1,-.∴使得△DBC∽△ADE的点E的坐标为-,-2或1,-.综上,使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E有4个,其坐标为0,-或,-1或-,-2或1,-.3.解:(1)若△ABC为直角三角形,则△AOC∽△COB.∴=,即OC2=OA·OB.由抛物线y=x2-x-n(n>0),可得OC=n,OA·OB=2n.∴n2=2n.解得n1=2,n2=0(舍去).∴n=2.(2)由(1)可知,抛物线的对称轴为直线x=,抛物线的解析式为y=x2-x-2.令y=0,得x2-x-2=0,解得x1=-1,x2=4,∴A(-1,0),B(4,0).设点P m,m2-m-2.当直线PQ∥BC,点P在点Q的左侧时(如图①所示),当△BOC平移到△QNP的位置时,四边形PQBC为平行四边形,此时NQ=OB,即-m=4,m=-,m2-m-2=,此时点P的坐标为-,;当点P在点Q的右侧时(如图①所示),同理可得m-=4,m=,m2-m-2=,此时点P的坐标为,.综上所述,满足条件的点P的坐标为-,,,.(3)如图②,过点D作DF⊥x轴,垂足为F,则AO∶OF=AE∶ED=1∶4.设A(a,0),B(b,0),则AO=-a,OF=-4a.∵AD∥BC,∴∠OBC=∠DAO.∵∠BOC=∠AFD= °∴△BOC∽△AFD.∴=,即=--.∴=-.由题意,得ab=-2n.∴=-.∴DF=-5a·=-5a·-=a2.∵点A,D在抛物线上,∴-----解得-∴n的值为.4.解:(1)将A(-4,0)代入y=x+c,得c=4.∴点C的坐标为(0,4).将(-4,0)和(0,4)代入y=-x2+bx+c,得b=-3.∴抛物线的解析式为y=-x2-3x+4.(2)如图所示,作点C关于抛物线的对称轴直线l的对称点C',连接OC'交直线l于点E,连接CE,此时CE+OE的值最小,且CE+OE=OC'.抛物线的对称轴为直线x=---=-,则C'C=3,在Rt△C'CO中,由勾股定理,得OC'==5.∴CE+OE的最小值为5.(3)①由题意易知△APM为等腰直角三角形.设M(a,0),则N(a,-a2-3a+4),P(a,a+4).当△AMP∽△CNP时,=,得-=---,解得a=-4(舍去)或a=-3或a=0(舍去).∴CN=3,PN=3.∴△CPN的面积为·CN·PN=.当△AMP∽△NCP时,=,得----=---,解得a=0(舍去)或a=-2或a=-4(舍去).∴CN=CP=2.∴△CPN的面积为·CN·PC=4.故答案为或4.②存在.D1-,,D2--,-, D3(-4,3),D4,.理由如下:当点P是线段MN的中点时,-a2-3a+4=2(a+4),解得a=-4(舍去)或a=-1.∴M(-1,0),P(-1,3),N(-1,6).设F(f,f+4),过点M作AC的平行线,易知此直线的解析式为y=x+1.易知PM=3,当PM为菱形的边时,作PF=PM,过F作FD∥PM,交直线y=x+1于点D, ∴D(f,f+1).∴32=2(f+1)2,解得f=-.则D1-,,D2--,-.∵PM=AM=3,∴当点F与点A重合时,过点F作DF∥PM(D在x轴上方),且DF=PM,连接DP,可得出四边形DPMF为菱形.∴点D的坐标为(-4,3).当PM为菱形的对角线时,作PM的垂直平分线,交直线AC于点F,作点F关于PM的对称点D,连接MF,MD,PD,此时四边形DMFP为菱形.将y=代入直线AC的解析式可得x=-,∴点F的坐标为-,.∵直线PM的解析式为x=-1,∴点D的坐标为,.综上所述,满足条件的点为D1-,,D2--,-,D3(-4,3),D4,.5.解:(1)将B(1,0)和C0,代入抛物线y1=ax2-x+c,得--解得所以抛物线的解析式为y1=-x2-x+.由题意可知平移后抛物线y2的顶点为B(1,0),故抛物线y2的解析式为y2=-(x-1)2,即y2=-x2+x-.(2)存在.令y1=0,解得x=-3或x=1.由题意知B(1,0),故A(-3,0).设T(1,t),又C0,,所以AC2=32+2=,AT2=(1+3)2+t2=t2+16,CT2=12+t-2=t2-t+.①若AC=AT,则t2+16=,方程无解,故此时不存在;②若AC=CT,则t2-t+=,解得t=,此时点T的坐标为1,或1,-;③若AT=CT,则t2-t+=t2+16,解得t=-,此时点T的坐标为1,-.故点T的坐标为1,或1,-或1,-.(3)由题意知G(-1,1),则AM=2,GM=1.若△PQR与△AMG全等,则PQ=1,QR=2或PQ=2,QR=1.分类一:若QR=2,由抛物线y2的对称轴为直线x=1,得点Q的横坐标为0或2.①当x=0时,y1=,y2=-,此时PQ=--=1,满足题意,则P0,,R2,-,直线PR的解析式为y=-x+.②当x=2时,y1=-,y2=-,此时PQ=---=1,满足题意,则P2,-,R0,-,直线PR的解析式为y=-x-.分类二:若QR=1,由抛物线y2的对称轴为直线x=1,得点Q的横坐标为或.①当x=时,y1=,y2=-,此时PQ=--=≠2,不满足题意.②当x=时,y1=-,y2=-,此时PQ=---=≠2,不满足题意.综上所述,满足题意的直线PR的解析式为y=-x+或y=-x-.6.解:(1)∵OA=1,OB=4,∴A(1,0),B(-4,0).设抛物线的解析式为y=a(x+4)(x-1).∵C0,-在抛物线上,∴-=a×4×(-1).解得a=.∴抛物线的解析式为y=(x+4)(x-1),即y=x2+x-. (2)①存在t,使得△ADC与△PQA相似.其理由如下: 在Rt△AOC中,OA=1,OC=,则AC=,tan∠ACO==.又∵tan∠OAD=,∴∠OAD=∠ACO.在Rt△AOD中,tan∠OAD=,OA=1,∴OD=.∴CD=-=.在△AQP中,AP=AB-PB=5-2t,AQ=t.由∠PAQ=∠ACD,要使△ADC与△PQA相似,只需=或=, 则有-=或-=,解得t1=,t2=.∵t1<2.5,t2<2.5,∴存在t=或,使得△ADC与△PQA相似.②存在t,使得△APQ与△CAQ的面积之和最大,其理由如下: 作PF⊥AQ于点F,CN⊥AQ于点N,如图所示.在Rt△APF中,∵tan∠PAF=,∴sin∠PAF=.∴PF=AP·sin∠PAF=(5-2t).在Rt△AOD中,由AD2=OD2+OA2,得AD=.在△ADC中,由S△ADC=AD·CN=CD·OA,得CN=·==.∴S△APQ+S△CAQ=AQ(PF+CN)=t-=-t-2+.∵0<<,∴当t=时,△APQ与△CAQ的面积之和最大.。