PICCO的原理及监测
- 格式:ppt
- 大小:1.98 MB
- 文档页数:26
PICCO脉搏指示连续心排血量测定及临床应用脉搏指示连续心排血量(Pulse indicator Continous Cadiac Output,PiCCO)是将经肺热稀释技术与动脉搏动曲线分析技术相结合,采用成熟的热稀释法测量单次心输出量,并通过分析动脉压力波型曲线下面积与心输出量存在的相关关系,获取个体化的每搏量(SV)、心输出量(CCO)和每搏量变异(SVV),以达到多数据联合应用监测血流动力学变化的目的。
第一节、PiCCO原理和方法(一)原理1.经肺热稀释法(Transpulmonary Thermodilution, TPTD)早在1897年,Stewart首先将人造指示剂直接注入血流,然后在其下游测定其平均浓度和平均传输时间,计算出心排血量。
后来1966年Pearse 等在心肺实质容量测定中,进一步在临床上确定了从中心静脉同时注入温度染料两种指示剂,在股动脉除了测定心排血量,可计算出不透过血管壁的血管内染料容量(胸内心血管)和透过血管壁的温度容量。
PiCCO 中单一温度热稀释心排血量技术就是由温度-染料双指示剂稀释心排血量测定技术发展而来。
与传统热稀释导管不同之处为PiCCO从中心静脉导管注射室温水或冰水,在大动脉(通常是主动脉)内测量温度-时间变化曲线(见图1),从热稀释曲线,测定出特定传输时间乘以心排血量,就可计算出特有的容量,这些特定的传输时间包括平均传输时间(MTt)和指数下斜时间(DSt)(见图2)。
图1. 心血管系统混合腔室的示意图注: RAEDV-右房舒张末期容积 RVEDV-右室舒张末期容积 PBV-肺血容量EVLW-血管外肺水LAEDV-左房舒张末期容积LVEDV-左室舒张末期容积图2 指示剂稀释曲线和时间取值图注:In c(1)-浓度自然对数 At-显现时间 DSt-为指数曲线下斜时间MTt-平均传输时间。
平均传输时间容量(MTt volume): 把心肺当作相连的系列混合腔室,股动脉探测的稀释曲线,实际是由所有混合腔室产生的最长衰减曲线所形成的(见图1)。
PICCO原理及应用PICCO(Pulse Indicated Continuous Cardiac Output)即脉冲指示连续心输出量,是一种临床上常用的心排量监测技术。
它基于原理简单、操作简便、无创伤等特点,在重症监护、手术室等临床领域得到广泛应用。
PICCO监测技术包括两个关键参数:脉搏轮延迟时间(PulseContour Cardiac Output,PCCI)和全血容量指示剂稀释法心排量(Transpulmonary Thermodilution Cardiac Output,COTD)。
PCCI通过收集动脉压力波的时间和形态信息,通过算法计算出心排量;COTD使用冷盐水稀释法来测量血液通过肺循环的时间,间接反映心排量。
这两种参数结合起来,能够全面地反映心功能状态和液体代谢情况。
PICCO技术的原理是基于“洛伦兹力”,即当电流通过导电体时,导体周围产生由电流引起的磁场。
心脏内血液也具有一定电导能力,当心脏收缩时,由于心脏内血液的运动,会产生一个微弱的电流,被称为洛伦兹力。
通过监测洛伦兹力的变化,可以得到心排量等参数。
1.重症监护:PICCO技术可以实时、无创地监测患者的心功能状态,包括心排量、心脏负荷、血流动力学变化等。
对于危重病患者,及时监测和调整心功能可以有效地指导治疗方案的制定。
2.术中监测:手术过程中,患者的心功能状态可能会发生剧烈变化,而持续监测心功能参数可以为医生提供关键的生理指导信息。
特别是对于高危手术患者,PICCO技术可以更好地评估和调整液体治疗的方案,预防术后并发症的发生。
3. 液体管理:PICCO技术可以提供全血容量指标,如血容量指数(Cardiac Index,CI)和全血容量指数(Global End-diastolic VolumeIndex,GEDVI),用于评估患者的液体状态。
准确监测液体代谢情况可以避免缺液和过载的风险,提高患者的治疗效果。
4. 血流动力学评估:PICCO技术可以提供详细的血流动力学参数,如动脉阻力指数(Systemic Vascular Resistance Index,SVRI)和心脏指数(Cardiac Index,CI),能够全面评估心脏的泵血功能、外周血管的阻力等。
picco原理摘要:一、Picco原理简介1.Picco是什么2.Picco的原理二、Picco在医学领域的应用1.临床监测2.疾病诊断三、Picco在科学研究中的应用1.神经科学2.生理学四、Picco的优缺点1.优点2.缺点五、结论正文:Picco原理简介Picco(脉搏血氧饱和度持续监测)是一种用于监测人体血氧饱和度的设备,广泛应用于医学和科学研究领域。
它通过红外线和绿色LED光源,测量皮肤中的脉搏波,从而获取血氧饱和度数据。
Picco具有小巧便携、操作简单、测量准确等优点,为临床诊断和科学研究提供了便利。
Picco的原理Picco利用的是光体积描记法(Photoplethysmography,简称PPG),这是一种通过测量皮肤微小血管中的脉搏波来获取血氧饱和度的技术。
Picco 设备内部包含一个红外线LED和一个绿色LED,红外线LED发出红外光,绿色LED发出绿光。
绿光和红外光分别穿透皮肤的浅层和深层组织,绿光被皮肤中的血红蛋白吸收,而红外光则被皮肤中的水分吸收。
通过测量绿光和红外光在皮肤中传播速度的差异,可以计算出血氧饱和度。
Picco在医学领域的应用Picco在医学领域的应用非常广泛,主要用于临床监测和疾病诊断。
通过持续监测患者的血氧饱和度,医护人员可以及时了解患者的病情,调整治疗方案。
Picco在新生儿的监测、外科手术、危重病人监护等方面具有显著的优势。
Picco在科学研究中的应用Picco在科学研究领域也发挥着重要作用。
例如,在神经科学研究中,可以通过Picco监测脑血氧饱和度,了解大脑的氧供需关系;在生理学研究中,可以利用Picco研究运动生理、高原生理等领域的血氧饱和度变化。
Picco的优缺点Picco的优点包括:小巧便携,方便携带和使用;操作简单,医护人员和科研人员可以快速上手;测量准确,能提供较为可靠的血氧饱和度数据。
然而,Picco也存在一定的缺点,如:测量范围有限,对于血氧饱和度极低的患者,可能无法提供准确的监测结果;受皮肤条件影响较大,皮肤厚度过大或油脂分泌过多可能会影响测量结果。
PICCO的原理及监测PICCO(Pulsion Continuous Cardiac Output)是一种通过血流动力学监测技术来评估患者的心脏功能和液体管理的方法。
它可以提供有关心脏指标(心脏指数、心脏输入指数)以及其他与循环系统有关的数据,如血管内容量、循环血量变化等。
PICCO的原理是基于热稀释法和袖带法的组合。
热稀释法通过在中心静脉导管中注入标记物(通常是冷盐水)来评估心脏输出量。
PICCO系统会测量标记物在动脉中的稀释程度,进而计算出心脏输出量。
袖带法则是通过压缩动脉来测量心脏输出量。
这两种方法结合使用可以提供更准确的心脏输出量测量结果。
1. 心脏指数(CI):它是血流动力学中最重要的参数之一,可评估心脏泵功能的有效性。
CI表示每分钟每平方米体表面积的心脏输出量。
正常范围是2.5-4.2L/min/m²。
2.冠状动脉血流量(CaBF):它是评估心脏血液供应情况的指标。
CaBF是通过检测心肌对冠状动脉灌注的利用程度来计算的。
3. 血管内容量(Preload):它指的是血管系统中的血液量。
监测血管内容量可以帮助评估循环血量变化和液体管理的有效性。
4.心脏射血分数(EF):它是评估心室收缩性的指标。
心脏射血分数表示每搏输出量与舒张末期容积之间的比率。
5.血管阻力(SVR):它是评估外周血管阻力的指标。
SVR表示心脏在抵抗经外周动脉的血流流动时所产生的压力。
6.肺动脉楔压(PAWP):它是评估左心室充盈压的指标。
PAWP可用于判断肺水肿、左心衰竭等病情。
PICCO监测一般通过放置在肺动脉、中心静脉或外周动脉的导管来完成。
这些导管与PICCO定量心输出量分析系统连通,以实时获取血流动力学数据。
通过监测这些参数,医生可以对患者的心脏功能进行评估,并调整液体治疗方案以达到最佳的治疗效果。
尽管PICCO可以提供较为详细的心血管数据,但其使用仍然具有一定的局限性。
操作复杂、有创入侵、费用高昂是PICCO监测的一些缺点。
PiCCO技术工作原理及参数解读PiCCO技术最早问世于1997年,至今已有25年历史。
PiCCO技术已经在超过60个国家开展,每年使用超过14万次。
在过去15年里,全世界已经有超过1000篇文献论证了PiCCO技术的准确性和临床价值。
PiCCO技术的工作原理有两部分:经肺热稀释法和脉搏轮廓分析法。
经肺热稀释法经肺热稀释操作时,对于成人会在5秒内从中心静脉导管注射15ml低于8摄氏度的冰盐水,冰盐水随着血液,经过【中心静脉】→【右心房】→【右心室】→【肺】→【左心房】→【左心室】→【股动脉】,被PiCCO动脉导管监测到血液温度改变。
建议10分钟内进行3次打冰盐水操作,取平均值对脉搏轮廓分析法进行校准。
经肺热稀释法和肺漂浮动脉导管一样,都是通过Stewart-Hamilton公式得出的心输出量,临床研究显示,经肺热稀释法测得的心输出量和肺动脉漂浮导管有良好的一致性。
经肺热稀释法原理经肺热稀释法获得的参数有:•心输出量指数 CITD•全心舒张末期容积指数 GEDI•心功能指数 CFI•全心射血分数 GEF•血管外肺水指数 ELWI•肺血管通透性指数 PVPI经肺热稀释法获得的参数是间断参数,在重新打冰盐水后会更新,因此建议每8小时,或当患者病情及治疗发生重大变化以后,打冰盐水进行新的校准。
经肺热稀释曲线经肺热稀释法和肺动脉热稀释漂浮导管对比文献。
临床研究显示,经肺热稀释法测得的心输出量准确性与肺动脉漂浮导管具有良好的一致性。
脉搏轮廓分析法动脉脉搏压力收缩压的曲线下面积,即是每搏量SV,再乘以心率HR即可获得持续的心输出量PCCO。
动脉压力波形和曲线下面积不仅仅受到每搏量的影响,还受到每个患者个体不同血管顺应性的影响。
因此,脉搏轮廓分析法测得的心输出量与真实心输出量之间,还需要一个准确的校准因子。
经肺热稀释法即可为脉搏轮廓分析法提供这个校准因子。
脉搏轮廓分析法原理PiCCO的脉搏轮廓分析法和肺动脉热稀释漂浮导管对比文献。
picco基本原理和参数解读在理解picco的基本原理和参数之前,首先需要了解picco的定义与作用。
picco,全称为PICCO(Pulse Induced Continuous Cardiac Output),是一种基于动脉压力波形测量心输出量(Cardiac Output,CO)的监测技术。
它通过连续地监测动脉血压波形和脉搏血压波形,来评估患者的心血管功能和循环容量状态,从而引导临床治疗和监测疾病进展。
picco的基本原理主要包括两个方面:血流动力学参数和心输出参数。
血流动力学参数包括心输出量(Cardiac Output,CO)、心指数(Cardiac Index,CI)、全身血管阻力(Systemic Vascular Resistance,SVR)等;心输出参数包括血浆体积(Intrathoracic Blood Volume,ITBV)、肺血容量(Global End-Diastolic Volume,GEDV)等。
picco通过对这些参数进行监测和分析,可以提供医生全面的心血管功能和循环容量状态信息。
在picco监测中,有几个关键参数需要特别关注。
首先是心输出量(CO),它是指心脏每分钟向全身重要器官输送的血液量。
CO的正常范围是每分钟4到8升,对于循环功能的评估至关重要。
其次是心脏指数(CI),它是CO与体表面积的比值,可以更客观地评估患者的心脏功能。
全身血管阻力(SVR)也是一个重要参数,它反映了全身血管对血液流动的阻力,对判断循环功能和平衡状态至关重要。
在实际应用中,picco技术可以帮助医生更准确地评估患者的心血管功能和循环容量状态,指导治疗方案的制定和调整。
对于心脏手术、危重患者、感染性休克等需要密切监测心血管功能的病情,picco技术可以发挥重要作用。
picco还可以帮助医生更及时地发现患者的心血管功能异常,减少不必要的治疗误区。
总结回顾起来,picco技术通过连续监测动脉血压波形和脉搏血压波形,评估患者的心血管功能和循环容量状态,为临床治疗提供重要参考。
PICC。
监测技术一、P ICCO的定义PICCO , pulse indicator continuous cardiac output 或Pulse index continuous cardiac output 的缩写,即脉波轮廓温度稀释连续心排血量监测技术,是结合经肺热稀释方法和动脉脉波轮廓分析法,对血液动力学参数进行监测的一种微创技术,已经广泛应用于临床,特别是危重症及手术病人。
二、技术原理:PiCCO采用对患者的2根置管:1根中心静脉导管和1根大动脉导管,通过“经肺热稀释法”测出CO数值,用来校准通过“动脉脉波轮廓”分析方法导出的连续心输出量。
下面分别对“经肺热稀释法” 及“脉波轮廓分析法”进行诠释。
(一)温度稀释法将容量与温度已知的液体,经中心静脉插管处快速注入体内,在体循环的大动脉处,热敏电阻感知血液温度在注射前后的变化,描绘出温度-时间变化曲线,计算机根据曲线下面积通过公式计算出心排血量。
所有的容量参数都是对热稀释曲线的更深入分析得到的:计算容积需知道:MTt:平均传输时间,大约一半指示剂通过动脉测量点的时间,其长短代表了指示剂通过系统需要的时间,如果将心输出量与MTt相乘,得到的结果就是从注入点和探测点之间指示剂分布的容量。
DSt:下降时间,热稀释曲线的指数下降时间,当为稳定指示剂时,如果将其与流经系统的流量相乘,得到的结果就是肺温度容量(PTV胸腔内相关容积的组成:PTV=M内热容积,在一系列混合腔室内中具有最大的热容积(DSt- 容积)ITTV^W腔内总热容积,从注射点到测量的热容积之和(MTt-容积)GED怪心舒张末期容积,舒张末心脏4个腔室的容积之和=ITTV-PTV ITBV=^腔内血容积=心舒张末期容积(GEDV) +肺血管内血液容积(PBVEVLWft管外肺水,是反映肺间质内含有的水量=ITTV-ITBV肺血管通透性指数(PVPI),是指血管外肺水与肺内血容积的比值(EVLWPBV反映了肺水肿的类型;全心射血分数(GEF ,与每搏输出量和舒张末期容积相关。
PICCO监测参数及其原理PICCO(Pulse index Continuous Cardiac Output)是一种非侵入式的血流动力学监测技术,可以实时、连续地监测患者的心输出量(CO),心搏指数(CI),血流动力学状态等参数。
该技术通过动脉导管将气囊置入患者的体内,通过侵入式的方法测量气囊内压力的相应变化,以推算心输出量等血流动力学参数,进而指导临床医生实施相应的治疗措施。
心输出量血流指标监测:1.气囊压力传感器:通过动脉导管连接患者的动脉,气囊内置有压力传感器,可以测量气囊的膨胀和收缩压力,进而反映心脏的搏动和舒张。
2.血流速度传感器:通过导管连接患者的股动脉,可以实时监测动脉内血流的速度和方向,从而计算心输出量指标。
3.中心静脉压力监测:通过中心静脉置管测量中心静脉压力,用于衡量血容量和心脏前负荷等。
血流动力学参数计算:1.心输出量(CO):通过监测气囊压力和血流速度,根据弗兰克-斯塔林法则计算,即CO=SV×HR(心输出量等于每搏输出量乘以心率)。
2.心搏指数(CI):是CO与患者体表面积的比值,可以更好地判断患者的循环状态。
3.心率(HR):通过监测心搏周期,计算出每分钟的心跳次数。
4.全身血管阻力(SVR):根据中心静脉压差和CO计算,可以反映血管的阻力水平。
5.血容量指数(GEDI):是静脉血容量指数与心脏前负荷的指标,通过计算中心静脉压差、肺动脉搏动压和肺动脉嵌顿压计算。
1. 根据费克定律,心输出量(CO)与每搏输出量(SV)和心搏周期(heart rate,HR)有关,CO = SV × HR。
2.每搏输出量(SV)可以通过气囊压力的变化计算,气囊内的膨胀和收缩压力与左室容量和收缩力有关。
气囊内膨胀时,压力上升,代表收缩期;气囊内收缩时,压力下降,代表舒张期。
3. 肺动脉搏动压(pulmonary artery pulse pressure,PAPP)可以通过肺动脉搏动波的特征来计算,它与心搏指数(CI)和外周血管阻力(systemic vascular resistance,SVR)有关。
picco原理Picco原理。
Picco原理是一种基于声学原理的高精度测量技术,主要用于测量微小振动和位移。
它通过利用声波的特性,实现对微小振动信号的高灵敏度检测,广泛应用于精密仪器、生物医学、材料科学等领域。
Picco原理的核心是利用声波的传播特性来实现微小振动的测量,具有非接触、高精度、高灵敏度等优点,是一种非常重要的测量技术。
Picco原理的基本原理是利用声波的传播特性来实现微小振动的测量。
声波是一种机械波,它可以在固体、液体、气体中传播,具有传播速度快、波长短、频率高等特点。
当物体发生微小振动时,会产生声波,而这些微小的声波信号可以被高灵敏度的传感器所检测到。
传感器接收到声波信号后,可以将其转换成电信号进行处理,从而实现对微小振动的测量。
Picco原理的应用非常广泛,其中在精密仪器领域,Picco原理常常用于测量微小振动和位移。
在精密仪器中,微小振动和位移往往会对仪器的性能产生影响,因此需要对其进行精确的测量和监测。
Picco原理的高精度和高灵敏度可以满足这一需求,能够实现对微小振动和位移的准确测量,从而保证了精密仪器的正常运行。
除此之外,在生物医学领域,Picco原理也被广泛应用于细胞生物力学研究中。
细胞是生物体的基本单位,其微小的振动和变形对于细胞功能和生物过程具有重要意义。
利用Picco原理可以实现对细胞微小振动和变形的高精度测量,为细胞生物力学研究提供了重要的技术手段。
在材料科学领域,Picco原理也被应用于材料的微观结构和性能研究中。
材料的微小振动和变形往往会反映其内部结构和性能特点,因此需要对其进行精确的测量和分析。
Picco原理的高精度和非接触特性使其成为了研究材料微小振动和变形的重要工具,为材料科学研究提供了有力支持。
综上所述,Picco原理是一种基于声学原理的高精度测量技术,具有非接触、高灵敏度等优点,广泛应用于精密仪器、生物医学、材料科学等领域。
它通过利用声波的传播特性来实现微小振动的测量,为相关领域的研究和应用提供了重要的技术支持。