平方根教学案
- 格式:doc
- 大小:197.00 KB
- 文档页数:4
平方根【第一课时】【教学目标】1.了解算术平方根的概念,会用根号表示一个数的算术平方根。
2.会求一个正数的算术平方根。
3.了解算术平方根的性质。
【教学重难点】1.算术平方根的概念、性质,会用根号表示一个正数的算术平方根。
2.算术平方根的概念、性质。
【教学过程】一、问题引入1.教师活动:回顾上节课的拼图活动及探索无理数的过程,提出问题:面积为13的正方形的边长究竟是多少?学生活动:(1)完成填空:a2=_____;b2=_____;c2=_____;d2=_____;e2=_____;f2=_____。
(2)a,b,c,d,e,f中哪些是有理数,哪些是无理数?你能表示它们吗?2.师生互动:集体交流后,说明无理数也需要一种表示方法。
二、讲授新课算术平方根的概念:一般地,如果一个正数的平方等于___,那么,这个正数就叫做___的算术平方根。
记为:“”读做根号。
特别地,0的算术平方根是0。
例1:分别写出下列各数的算术平方根。
(要求一个数的算术平方根,一般的方法是先按平方的概念来找哪个数的平方等于这个数。
)例2:自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6 米高的建筑物上自由下落,到达地面需要多长时间?学生活动:一个同学在黑板上板演,其他同学在练习本上做,然后交流。
三、小结1.内容总结:算术平方根的定义、表示;2.方法归纳:转化的数学方法:即将陌生的问题转化为熟悉的问题解决。
【第二课时】【教学目标】1.了解平方根的概念,会用根号表示一个数的平方根。
2.会求一个正数的平方根。
3.了解平方根和算术平方根的性质。
4.了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。
【教学重难点】1.了解平方根和开平方的概念、性质,会用根号表示一个正数的算术平方根和平方根。
2.平方根和算术平方根的区别。
负数没有平方根,即负数不能进行开平方运算。
【教学过程】一、复习提问1.算术平方根的概念,任何一个有理数都有算术平方根吗?算术平方根有什么性质。
算术平方根教学设计10篇《平方根》教案篇一教学设计示例一.教学目标1.会用计算器求数的平方根;2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。
二.教学重点与难点教学重点:用计算器求一个正数的平方根的程序教学难点:准确用计算器求解一个正数的平方根三.教学方法讲练结合四.教学手段实物投影仪,计算器五.教学过程在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01,等数的平方根,但对于如:2,3,,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。
具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。
熟悉计算器基本键的功能。
现在讲计算器打开,按键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。
解:用计算器求的步骤如下:小结:在求解的过程中,由于要用到这个键上方的功能,这就需要用上方标有“2F”的键来转换。
例2.用计算器求的值。
(保留4个有效数字)解:用计算器求的步骤如下:小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求的'值。
解:用计算器求的步骤如下:因为计算结果要求保留4个有效数字,例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:因为计算结果要求保留4个有效数字,小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
6.2平方根(第2课时)的教学设计一.学习目标知识与技能:1.了解平方根、开平方的概念.2.明确算术平方根与平方根的区别和联系.3.进一步明确平方与开平方是互逆的运算关系.过程与方法:1.经历平方根概念的构成过程,让先生不仅掌握概念,而且进步和巩固所学知识的运用能力.2.培养先生求同与求异的思想,经过比较进步考虑成绩、辨析成绩的能力.情感、态度与价值观1.在学习中互相帮助、交流、合作、培养团队的精神.2.在学习的过程中,培养先生严谨的科学态度.二.教学重点、难点重点:1.了解平方根开、平方根的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.难点:1.平方根与算术平方根的区别和联系.2.负数没有平方根,即负数不能进行平方根的运算.三.学习方法:自主 合作 探求四.学习过程设计检查先生完成情况(:教师经行抽查,找出典型的成绩经行讲解)(一).自学范围:请自学教材第3页至第5页;(二).知识回顾:1. 64.0的算术平方根是 ;16 的算术平方根是 ;2. =-2)6( ;=971(二)算术平方根的平方:(1) 的平方等于3; (2)比较大小:32与23;平方根与算术平方根的联系与区别:联系:1.平方根包含算术平方根,算术平方根是平方根的一种.2.只需非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别:1.个数不同:一个正数有两个平方根,但只需一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a1 .以下说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.以下说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根必然大于这个数的相反数3. 已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是().(C) a2+14. 指出以下各数的算术平方根:(1)0.04 (2)1645. 面积为9的正方形,边长=;面积为7的正方形,边长=;6.比较大小:8313-与81本节小结先生自主总结,先生畅谈本人的学习播种。
平方根教学设计教案第一章:平方根的概念介绍1.1 平方根的定义平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a 的二次方根。
例如:4的平方根是2,因为2^2 = 4。
1.2 平方根的性质正数的平方根有两个,它们互为相反数。
0的平方根是0。
负数的平方根不存在。
第二章:平方根的计算方法2.1 估算平方根使用平方根表格或计算器来估算一个数的平方根。
例如:估算9的平方根,可以找到接近9的平方数,如49和64,它们的平方根分别是7和8,9的平方根大约在7和8之间。
2.2 精确计算平方根使用平方根的定义和性质来精确计算一个数的平方根。
例如:计算36的平方根,可以找到一个数的平方等于36,即6^2 = 36,36的平方根是6。
第三章:平方根的应用3.1 求解平方根的问题求解形如“求x的平方根”的问题。
例如:求解x^2 = 64的平方根,可以得到x = ±8,因为8^2 = 64且(-8)^2 = 64。
3.2 求解平方根的方程求解形如“求解x^2 = a”的方程的平方根。
例如:求解x^2 = 9的平方根,可以得到x = ±3,因为3^2 = 9且(-3)^2 = 9。
第四章:平方根的性质和运算规则4.1 平方根的性质平方根的性质:如果a和b都是正数,a的平方根和b的平方根的乘积等于(ab)的平方根。
例如:如果a = 2和b = 3,2的平方根和3的平方根的乘积等于(23)的平方根,即2√2 3√3 = √(23)^2 = √36 = 6。
4.2 平方根的运算规则平方根的运算规则:如果a和b都是正数,a的平方根加上b的平方根等于(a+b)的平方根。
例如:如果a = 2和b = 3,2的平方根加上3的平方根等于(2+3)的平方根,即√2 + √3 = √5。
第五章:平方根的综合应用5.1 求解平方根的复合问题求解形如“求解x^2 = a且y^2 = b”的复合问题的平方根。
七年级数学下《平方根》教案一、教学目标1.知识与技能:学生能够理解平方根的概念,掌握平方根的基本性质,能够进行简单的平方根运算。
2.过程与方法:通过观察、思考和探究,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的好奇心和探究欲,培养他们认真思考、勇于探索的精神。
二、教学内容与过程1.导入:通过回顾正方形的面积,引出平方根的概念。
教师可提出一些问题,如:“如果一个正方形的面积为8平方米,那么它的边长是多少?”引导学生思考并引出平方根的概念。
2.知识讲解:详细讲解平方根的定义、性质和运算方法。
通过实例进行解释,帮助学生深入理解平方根的概念。
同时,强调平方根与算术平方根的区别与联系。
3.探究活动:设计探究活动,让学生自己动手操作,探索平方根的基本性质和运算方法。
探究活动可以包括求一些数的平方根、比较不同数的平方根的大小等。
4.应用实践:设计实际问题,让学生运用所学知识解决,如求一些实际问题中的平方根等。
同时,可以引导学生探索平方根在实际生活中的应用。
5.总结与提升:总结平方根的主要知识点,强调重点和难点。
通过综合性题目,提升学生运用知识解决实际问题的能力。
同时,可以引导学生思考平方根与其他数学知识的联系,为后续学习打下基础。
三、教学方法与手段1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。
同时,注重实例教学,通过实例帮助学生理解抽象的数学概念。
2.教学手段:利用实物模型、PPT演示、数学软件等辅助教学工具,帮助学生更好地理解平方根的概念和性质。
同时,鼓励学生动手操作,培养他们的实践能力。
四、教学评价与反馈1.课堂互动:通过课堂提问、小组讨论等方式,及时了解学生的学习情况,调整教学策略。
同时,鼓励学生积极参与课堂活动,发表自己的观点和见解。
2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈。
同时,关注学生的作业完成情况,对有困难的学生进行个别辅导。
平方根教学设计平方根教学设计篇一教材分析:《算术平方根》是人教版七年级下第六章第一节,本节通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。
通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性,将为学生学习算术平方根奠定基础。
引入算术平方根的知识,要借助具体的生活情境,这样才能加深对引入平方根知识必要性的认识。
注意引导学生发现被开方数与对应的算术平方根之间的关系。
本节课的开始就设置了一个问题情境,把这个问题情境抽象成数学问题就是已知正方形的面积求正方形的边长,这是典型的求算术平方根的问题。
由于所选数字简单,可见其设计目的,并不着眼于计算,而在于巩固概念。
因此本节课的关键是抓住算术平方根概念的本质特征,逐层深入,多个角度展示。
课标要求:在实际情境中理解算术平方根的概念及求法,并能解决简单的问题,体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
本节突出概念形成过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。
同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。
在本节课中,我利用学生的已有经验,通过思考、讨论、探究等活动,使学生感受到做数学、用数学的价值。
策略分析:根据教材内容和编排特点,为了更有效地突出重点、突破难点、抓住关键,本节课按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的原则,采用“自主探究法”和“引导发现法”为主,并根据学法指导自主性和差异性要求,让学生在探究过程中理解理解算术平方根的概念。
教学目标:1、经历算术平方根概念的形成过程,会用根号表示算术平方根,并了解算术平方根的非负性。
2、会用平方运算求非负数的算术平方根,包括完全平方数的算术平方根和部分非完全平方数的算术平方根。
浙教版(2024)数学七年级上册《平方根》教案及反思一、教学目标:【知识与技能目标】:1.了解平方根的概念,会用符号表示一个数的平方根。
2.掌握平方根的性质。
【过程与方法目标】:1.通过对平方根概念的学习,培养学生的抽象思维能力和逻辑推理能力。
2.通过求一个数的平方根的练习,提高学生的计算能力和解决问题的能力。
【情感价值观目标】:1.让学生在学习过程中体会数学的严谨性和逻辑性,培养学生对数学的兴趣和热爱。
2.通过小组合作学习,培养学生的合作意识和团队精神。
二、教材分析:《平方根》是浙教版(2024)数学七年级上册的内容。
主要讲述了学生学习了有理数、无理数、算术平方根等知识的基础上进行教学的,平方根的学习为后续学习实数、二次根式等知识奠定了基础,同时也为解决实际问题提供了重要的数学工具。
教材首先通过实际问题引入平方根的概念,让学生体会平方根在实际生活中的应用,接着介绍了平方根的性质和表示方法,以及如何求一个数的平方根;最后还安排了一些例题和练习题,帮助学生巩固所学知识。
三、学情分析:七年级的学生已经学习了有理数、无理数和算术平方根等知识,为学习平方根奠定了基础;七年级的学生抽象思维能力和逻辑推理能力还比较弱,需要通过具体的实例和直观的图形来帮助他们理解抽象的数学概念,同时学生在学习过程中可能会出现对平方根概念理解不透彻、计算错误等问题,需要教师及时给予指导和纠正。
四、教学重难点:【教学重点】:1.平方根的概念和性质。
2.求一个数的平方根。
【教学难点】:1.对平方根概念的理解。
2.负数没有平方根的理解。
五、教学方法和策略:【教学方法】:1.讲授法:讲解平方根的概念、性质和求法。
2.演示法:通过实例演示,帮助学生理解平方根的概念和求法。
3.练习法:通过练习题的训练,巩固学生所学知识。
4.小组合作学习法:组织学生进行小组合作学习,培养学生的合作意识和团队精神。
【教学策略】:1.创设情境:通过实际问题创设情境,激发学生的学习兴趣。
平方根(第一课时)教学设计一、教学目标1.理解平方根的概念2.掌握平方根的计算方法3.运用平方根解决实际问题二、教学重点1.平方根的概念和计算方法2.平方根的应用三、教学内容和方法1. 平方根的概念和计算方法1.1 通过定义引入平方根的概念•定义:如果一个数的平方等于另一个数,那么这个数就叫做这个数的平方根。
•举例:如果a² = b,那么a就是b的平方根。
1.2 计算平方根的方法•平方根的符号:√•计算方法:1.列举并观察完全平方数的特点2.借助观察结果计算非完全平方数的近似值2. 平方根的应用2.1 使用平方根解决实际问题•示例:小明要把一个方形园地的面积分成两个等面积的部分,他应该如何划分?–步骤:1.设园地的边长为x,则该园地的面积为x²2.根据题目要求,将x²分成两个等面积的部分3.求解方程x²/2 = x4.解得x = 2的平方根5.将x带回原方程,得到园地的边长四、教学步骤1.引入平方根的概念和计算方法。
通过生活中的例子和学生的实际体验,引导学生理解平方根的含义,并介绍计算平方根的方法。
2.带领学生观察完全平方数的特点,引导学生发现非完全平方数的计算方法。
3.给学生提供一些练习题,让学生进一步熟悉平方根的计算。
4.引入平方根的应用。
通过实际问题的解决过程,让学生理解平方根的实际应用价值。
5.继续给学生提供一些应用题,让学生运用所学知识解决问题。
6.对学生进行巩固练习,检验他们对平方根的理解和应用能力。
五、教学评价1.在引入概念和计算方法环节,观察学生的反应,确保学生理解平方根的概念和计算方法。
2.在应用环节,检查学生对平方根应用的理解和解题能力。
3.给学生一定的巩固练习,检验他们的掌握情况。
六、教学反思1.教学重点和难点:平方根的计算方法和应用,需要通过引导学生观察、思考和实际运用,培养学生的分析解决问题的能力。
2.教学步骤:教学过程设计合理,能够引导学生逐步理解和掌握平方根的概念和应用。
《平方根》教案.doc一、教学内容本次教学我们探讨数学中的平方根概念及其运算。
主要内容包括:平方根的定义、平方根的性质、平方根的计算和应用。
二、教学目标1.了解平方根的概念及其性质,能根据概念解答有关问题。
2.掌握平方根的计算方法,能计算简单数的平方根。
3.培养学生分析解决问题的思维能力,使他们能够理解平方根在实际生活中的运用。
三、教学重点3.平方根在实际生活中的应用。
四、教学方法1.情境教学法。
通过具体的实例,引导学生理解平方根的概念及其性质。
2.导入问题法。
引导学生思考问题,鼓励他们动手解决问题。
3.讲授法。
采取问题式讲授,将知识点和实例结合起来进行讲解。
4.练习和讨论。
及时引导学生进行练习和思考,通过讨论加深对知识点的理解。
五、教学过程1.导入问题如果一个数的平方等于16,那么这个数是多少?2.引出平方根学完上面的问题,我们会很容易想到,这个数是4。
我们称4是16的平方根。
平方根用符号√表示,可以写成√16 = 4。
同样的,√25 = 5,√36 = 6,√49 = 7,√64 = 8。
请大家发现它们之间的特征。
3.解读平方根(1)平方根是一个数。
因此,√16 = 4,中的4是16的平方根。
注意:平方根不一定是整数。
比如,√2就不是整数。
√4=2,-2 , √36 =6,-6说明:因为正数的平方和负数的平方都相同,所以一个数的平方根可以有两个,一个是正数,一个是负数。
但在数学中只有一个正数的平方根称为该数的正平方根。
所以,√16 = 4,它的负平方根是-4。
但在我们的日常生活中,我们通常说“16 的平方根是4”,不加说明的话,一般指正平方根。
(3)两个数的差的平方根,称作这两个数之间的距离。
任意两个数a和b之间的距离,等于它们之间的差的绝对值,即|a - b|。
这可以从两数间的距离公式中得出:两点(x1,y1)和(x2,y2)之间的距离= √[(x2 - x1)² + (y2 - y1)²](4)奇数的平方一定是奇数,偶数的平方仍然是偶数。
平方根教学设计(教案)第一章:平方根的引入1.1 平方根的概念解释平方根的定义通过实际例子说明平方根的概念1.2 平方根的性质探讨平方根的性质,如正数的平方根有两个等通过图形和实际例子来展示平方根的性质第二章:平方根的计算方法2.1 手算法介绍手算法计算平方根的方法通过实际例子演示手算法计算平方根的过程2.2 计算器法介绍如何使用计算器计算平方根通过实际例子演示计算器法计算平方根的过程第三章:平方根的应用3.1 实际问题解决通过实际问题引入平方根的应用引导学生运用平方根的性质和计算方法解决问题3.2 平方根在科学和工程中的应用介绍平方根在科学和工程中的常见应用通过实际例子展示平方根在科学和工程中的重要性第四章:平方根的性质和判定4.1 平方根的性质探讨平方根的性质,如正数的平方根有两个等通过图形和实际例子来展示平方根的性质4.2 平方根的判定介绍如何判定一个数的平方根通过实际例子演示如何判定一个数的平方根第五章:平方根的综合练习5.1 练习题提供一些有关平方根的练习题引导学生通过运用平方根的性质和计算方法来解决练习题5.2 应用题提供一些有关平方根应用的题目引导学生通过运用平方根的性质和计算方法来解决应用题第六章:平方根的图像6.1 平方根的图像特点解释平方根函数的图像特点通过图形展示平方根函数的图像特点6.2 利用图像求解平方根介绍如何利用平方根函数的图像来求解平方根通过实际例子演示如何利用图像求解平方根第七章:平方根的性质和定理7.1 平方根的性质探讨平方根的性质,如正数的平方根有两个等通过图形和实际例子来展示平方根的性质7.2 平方根的定理介绍与平方根相关的定理,如平方根的乘积等于原数的乘积等通过实际例子来展示平方根的定理第八章:平方根在代数中的应用8.1 平方根在解方程中的应用介绍平方根在解方程中的应用通过实际例子演示如何利用平方根来解方程8.2 平方根在证明中的应用介绍平方根在证明中的应用通过实际例子演示如何利用平方根来证明代数式第九章:平方根在实际生活中的应用9.1 平方根在几何中的应用介绍平方根在几何中的应用,如求解三角形的面积等通过实际例子展示平方根在几何中的应用9.2 平方根在其他领域中的应用介绍平方根在其他领域中的应用,如物理学、经济学等通过实际例子展示平方根在其他领域中的应用第十章:平方根的综合练习与拓展10.1 综合练习题提供一些有关平方根的综合练习题引导学生通过运用平方根的性质、计算方法和图像来解决练习题10.2 拓展题目提供一些有关平方根的拓展题目引导学生通过运用平方根的知识来解决拓展题目,提高学生的思维能力重点和难点解析六、平方根的图像:理解平方根函数的图像特点对于学生来说是一个难点,因为它涉及到函数图像的直观理解和数学概念的结合。
七年级上学期数学学科教学案系列编号713 班级:姓名:
课题:平方根
执笔漆君秀年级审核张裕红学校审核蔡孝生时间:2013 年3 月第周
学习目标:1、知道平方根的意义及表示方法,会求某些非负数的平方根。
2、知道平方根与算术平方根的区别与联系,理解平方与开平方互为
逆运算。
学习重点:平方根与算术平方根的概念和性质。
学习难点:平方根与算术平方根的区别与联系。
一、预习导学
解决下列问题:
(1)一个正方形桌面的边长是3m,求这个桌面的面积是多少平方米?
(2)已知一个正方形的面积是9cm2,求它的边长。
(3)如果一个正方形展厅的地面面积为50平方米,求它的边长。
二、合作探究
活动(1)平方根的概念
练习1 计算:
(1)
2
2(2)29.0(3)24-)
(
(4)243⎪⎭⎫ ⎝⎛ (5)243-⎪⎭
⎫ ⎝⎛ (6)20 练习2、填空:
(1)(
)42= (2)()81.02= (3)()1692= (4)()02=
(5)( )2=0
观察,前者是 运算,后者是平方运算的 运算。
归纳:(1)平方根的概念-----------一般地,如果一个数的平方等于a ,那么
这个数叫做a 的 或二次方根,•即若a x =2,则x 叫做a 的 。
(2)开平方运算:求一个数a 的平方根的运算,叫做开平方。
活动(2)平方根的性质
练习3 求x :
(1)812=x (2)02=x (3)42-=x
(4)36.02=x (5)492-=x (6)1212=x
⇒(一个正数a 的平方根有两个,他们互为相反数,记作:a ±; 0 的平方根是0; 没有平方根。
)
活动(3)平方根和算术平方根的区别与联系
1、一个非负数a 的平方根用符号表示为 ( )
2、你知道它们的读法和各自的意义吗,说说看 “
a a a -±、、、”
三、学习体会
对自己说,你有什么收获?对同学说,你有什么温馨提示?对老师说,你还有什么困惑?
四、随堂检测
A 级
1、判断
(1)4是16的算术平方根。
( )
(2)32是9
4的一个平方根。
( ) (3)(-5)2 的平方根是-5。
( )
(4)0的算术平方根是0。
( )
2、下列各式是否有意义,说明道理:
(1)3-; (2)3-; (3)23-)
( ; (4)0 。
B 级
1.求下列各式的值:
(1)64 (2)-21.1 (3)±4
12
2.求下列各式中的x
(1)1822
=x (2)27)1(312=-x
3.如果一个正数的两个平方根为1a +和27a -,请你求出这个正数.
五、拓展延伸
1、、计算: ⑴9144
144
49⋅ = ⑵494 = ⑶8116- =
2、若
01822=-+-b a ,求a 、b 的值。
3、 已知a ,b-1是400的算术平方根,.
4、若一个数a 的平方根等于它本身,数b 的算术平方根也等于它本身,试求a b +的平方根。