反比例函数有关的面积问题
- 格式:doc
- 大小:854.41 KB
- 文档页数:11
反比例函数求面积公式大全《反比例函数求面积公式大全》引言:反比例函数是数学中的一种特殊函数,其特点是当自变量x增加时,因变量y会以相反的趋势减小。
在数学和实际应用中,使用反比例函数可以描述许多重要的关系,尤其是与面积相关的问题。
本文将为读者提供一份反比例函数求面积的公式大全,帮助读者更好地理解和应用反比例函数。
一、长方形1. 长方形的面积与其长度(l)和宽度(w)成反比例关系,即S = k/(l×w),其中k为常数。
二、正方形1. 正方形的面积与其边长(s)的平方成反比例关系,即S = k/s²,其中k为常数。
三、圆1. 圆的面积与其半径(r)的平方成反比例关系,即S = πr²,其中π为圆周率,约等于3.14159。
四、椭圆1. 椭圆的面积与其长轴(2a)和短轴(2b)的乘积成反比例关系,即S = πab,其中a和b分别为长轴和短轴的半长。
五、三角形1. 三角形的面积与其底(b)和高(h)的乘积成反比例关系,即S = (1/2)bh。
六、平行四边形1. 平行四边形的面积与其底(b)和高(h)的乘积成反比例关系,即S = bh。
七、等腰梯形1. 等腰梯形的面积与其上底(a)、下底(b)和高(h)的关系为S = (a + b)h/2。
八、圆环1. 圆环的面积与其外半径(R)、内半径(r)和π的关系为S = π(R² - r²)。
结论:通过反比例函数求面积的公式大全,读者可以更加方便地计算各种几何形状的面积。
这些公式对于数学学习、几何推导以及实际生活中的建模和计算都具有重要意义。
希望读者能够掌握这些公式,并在实际中运用自如,提高数学应用的能力和解决问题的水平。
反比例函数背景下的应用题(面积问题)
反比例函数背景下与面积相关的问题往往围绕着以下三个结论展开:①反比例函数上任意一点与坐标轴围成的矩形面积;②反比例函数上任意一点与坐标轴围成的三角形面积;③反比例函数上任意两点与原点围成的三角形面积.
解法分析:对于平面直角坐标系中三角形面积的求法问题有如下的解法策略:①当三角形的一边在坐标轴上或平行于坐标轴上时,可以直接求三角形面积;②当三角形中的任意一边不在坐标轴或不平行于坐标轴时,利用割补法(补成/分割成规则图形)面积进行求解。
本题中的△ABC的一边AC//x轴,则可以直接求解,需要注意的是当用点表示线段长度时,要加上绝对值。
解法分析:本题可以直接求三角形的面积,△MPQ的底PQ是可求的定值,而高是点M和点P横坐标差的绝对值,要注意M点可能在第二象限,也可能在第四象限,加上绝对值后就可以避免漏解了。
解法分析:本题首先需要联立正比例函数和反比例函数的解析式求出A、B两点的坐标,然后过A、B两点作x轴垂线构造梯形,求梯形面积即可。
解法分析:本题可以用代数法或几何法解决。
综合利用直角三角形的性质,三角形的面积比解决。
同时还要能够利用点的坐标表示线段的长度,灵活运用。
解法分析:本题主要考察了反比例函数上的点与坐标轴围成的矩形面积。
对于第2、3问,需要分类讨论,即P在B左侧或P在B右侧,进行计算。
解法分析:本题是反比例函数和正方形背景下的问题。
△BCE的面积可以直接求解,主要表示出E的坐标,再求出B'E的长度,即可求出△BCE的面积。
反比例函数中与面积有关的问题知识点回顾由于反比例函数解析式及图象的特殊性,很多中考试题都将反比例函数与面积结合起来进行考察。
这种考察方式既能考查函数、反比例函数本身的基础知识内容,又能充分体现数形结合的思想方法,考查的题型广泛,考查方法灵活,可以较好地将知识与能力融合在一起。
下面就反比例函数中与面积有关的问题的几种类型归纳如下:利用反比例函数中|k|的几何意义求解与面积有关的问题设P为双曲线上任意一点,过点P作x轴、y轴的垂线PM、PN,垂足分别为M、N,则两垂线段与坐标轴所围成的的矩形PMON的面积为S=|PM|×|PN|=|y|×|x|=|xy|∴xy=k 故S=|k| 从而得结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k|对于下列三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为:结论2:在直角三角形ABO中,面积S=结论3:在直角三角形ACB中,面积为S=2|k|结论4:在三角形AMB中,面积为S=|k|类型之一 k 与三角形的面积※1、如图,已知双曲线y=xk(k >0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为6,则k=______.最佳答案过D 点作DE⊥x 轴,垂足为E ,由双曲线上点的性质,得S △AOC =S △DOE = 21k, ∵DE⊥x 轴,AB⊥x 轴, ∴DE ∥ AB ,∴△OAB ∽ △OED, 又∵OB=2OD,∴S △OAB =4S △DOE =2k ,由S △OAB -S △OAC =S △OBC ,得2k -21k=6,解得:k=4. 故答案为:4.2、如图1-ZT-1,分别过反比例函数y=x2018(x >0)的图象上任意两点A 、B 作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,,比较它们的大小,可得>S 2 =S 2 <S 2 、S 2大小不确定。
反比例函数常见的面积类型
反比例函数是数学中的一种基本函数类型。
在实际应用中,反比例函数常常涉及到面积问题。
下面列举一些常见的反比例函数面积类型。
1. 长方形面积
如果一个长方形的宽是固定的,而长度是随着宽的增加而减小的,那么它的面积就可以用反比例函数来表示。
设长方形宽为x,长度为y,则长方形面积为S=xy,即S与x成反比例关系,S=k/x。
其中,k 为比例常数。
2. 圆形面积
圆的半径和面积之间也存在反比例关系。
设圆的半径为r,圆的面积为S,则圆的面积可以表示为S=k/r^2。
其中,k为比例常数。
3. 梯形面积
如果一个梯形的高是固定的,而底边长度是随着高的增加而减小的,那么它的面积也可以用反比例函数来表示。
设梯形的高为h,上底为a,下底为b,则梯形面积为S=(a+b)h/2,即S与h成反比例关系,S=k/h。
其中,k为比例常数。
4. 等腰三角形面积
如果一个等腰三角形的底边长度是固定的,而高是随着底边长度增加而减小的,那么它的面积也可以用反比例函数来表示。
设等腰三角形的底边长度为b,高为h,则等腰三角形面积为S=bh/2,即S与b成反比例关系,S=k/b。
其中,k为比例常数。
综上所述,反比例函数在实际应用中常常涉及到面积问题,这些常见的反比例函数面积类型包括长方形面积、圆形面积、梯形面积和等腰三角形面积。
模型介绍一、反比例函数k 的几何意义1.反比例函数k 的几何意义:如图,在反比例函数图象上任选一点,向两坐标轴作垂线,垂线与坐标轴所围成矩形的面积为k 。
如图二,所围成三角形的面积为2k二、利用k 的几何意义进行面积转化1.如图,直线AB 与反比例函数k y x=(0k ≠)交于A 、B 两点,与x 、y 轴的交点分别为C 、D ,那么OAB OCD OBD OAC S S S S ∆∆∆∆=--,此方法是绝大部分学生选用的方法。
但是,从效率来讲,就比较低2.如图,过点A 、B 作x 轴的垂线,垂足分别为E 、F ,则根据k 的几何意义可得,OBF OAE S S ∆∆=,而OBF OAB OAE ABFE S S S S ∆∆∆+=+梯形,所以OAB ABFE S S ∆=梯形,此方法的好处,在于方便,快捷,不易出错。
【例1】.如图,反比例函数y=在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB的面积是8.过点A作AC⊥y轴于点C,过点B作BD⊥x轴于点D,∴x=2时,y=3;x=6时,y=1,=S△OBD=3,故S△ACOS四边形AODB=×(3+1)×4+3=11,故△AOB的面积是:11﹣3=8.故答案为:8.变式训练【变1-1】.如图,点A在反比例函数(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若,△AOB的面积为12,则k的值为()A.4B.6C.10D.12解:如图,过点A作AD⊥x轴,垂足为D,∵OC∥AD,,∴,∴,k>0,∴k=12,故选:D.【变1-2】.如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,=4,则k的值为16.若E是AB的中点,S△BEF解:设E(a,),则B纵坐标也为,∵E是AB中点,∴F点坐标为(2a,),∴BF=BC﹣FC=﹣=,=4,∵S△BEF∴a•=4,∴k=16.故答案是:16.【例2】.如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为12.解:解法一:过点A作x轴的垂线,交CB的延长线于点E,∵BC∥x轴,∴AE⊥BC,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为6,4,∴A(,6),B(,4),∴AE=2,BE=﹣=,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE===1,∴k=1,∴k=12.解法二:同理知:BE=1,设A(a,6),则B(a+1,4),∴6a=4(a+1),∴a=2,∴k=2×6=12.故答案为12.变式训练【变2-1】.如图,点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是()A.9B.8C.7D.6解:∵点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,=S△BOE=×12=6,∴S△AOD=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,∵S△OAB=(4+2)×(6﹣3)=9,∴S△AOB故选:A.【变2-2】.如图,在直角坐标系中,O为坐标原点,函数y=与y=(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB=a﹣.(结果用a,b表示)解:设B(m,),A(,n),则P(m,n),∵点P为曲线C1上的任意一点,∴mn=a,=mn﹣b﹣b﹣(m﹣)(n﹣)∴阴影部分的面积S△AOB=mn﹣b﹣(mn﹣b﹣b+)=mn﹣b﹣mn+b﹣=a﹣.故答案为:a﹣.1.如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为()A.3B.2C.D.4解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC=OB,∴OC=BC=×2CE=CE,∵AE∥OD,∴△COD∽△CEA,∴=()2=4,∵△BCD的面积等于1,OC=OB,=S△BCD=,∴S△COD=4×=1,∴S△CEA∵OC=CE,=S△CEA=,∴S△AOC=+1=,∴S△AOE=k(k>0),∵S△AOE∴k=3,故选:A.2.如图,OC交双曲线y=于点A,且OC:OA=5:3,若矩形ABCD的面积是8,且AB ∥x轴,则k的值是()A.18B.50C.12D.解:延长DA、交x轴于E,∵四边形ABCD是矩形,且AB∥x轴,∴∠CAB=∠AOE,∴DE⊥x轴,CB⊥x轴,∴∠AEO=∠ABC∴△AOE∽△CAB,∴=()2,∵矩形ABCD的面积是8,OC:OA=5:3,∴△ABC的面积为4,AC:OA=2:3,∴=()2=,=9,∴S△AOE∵双曲线y=经过点A,=|k|=9,∴S△AOE∵k>0,∴k=18,故选:A.3.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB 的中点,则k的值为()A.﹣8B.8C.﹣2D.﹣4解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故选:A.4.如图,点A(m,n),B(4,)在双曲线y=上,且0<m<n.若△AOB的面积为,则m+n=()A.7B.C.D.3解:∵点A(m,n),B(4,)在双曲线y=上,∴mn=4×=k,∴mn=k=6,∴双曲线为y=,∴n=,作AD⊥x轴于D,BE⊥x轴于E,=S△AOD+S梯形ADEB﹣S△BOE=S梯形ADEB,∵S△AOB∴(+)(4﹣m)=,解得m1=1,m2=﹣16,∵0<m<n.∴m=1,∴n=6,∴m+n=7,故选:A.5.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴=3,则S△于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCDAOC为()A.2B.3C.4D.6解:在Rt△BCD中,∵×CD×BD=3,∴×CD×3=3,∴CD=2,∵C(2,0),∴OC=2,∴OD=4,∴B(4,3),∵点B是反比例函数y=(x>0)图象上的点,∴k=12,∵AC⊥x轴,==6,∴S△AOC故选:D.6.如图,平行于y轴的直线分别交y=与y=的图象(部分)于点A、B,点C是y 轴上的动点,则△ABC的面积为()A.k1﹣k2B.(k1﹣k2)C.k2﹣k1D.(k2﹣k1)解:由题意可知,AB=﹣,AB边上的高为x,=×(﹣)•x=(k1﹣k2),∴S△ABC故选:B.7.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线y=与边BC交于点D、与对角线OB交于中点E,若△OBD的面积为10,则k的值是()A.10B.5C.D.解:设E点的坐标是(x,y),∵E是OB的中点,∴B点的坐标是(2x,2y),则D点的坐标是(,2y),∵△OBD的面积为10,∴×(2x﹣)×2y=10,解得,k=,故选:D.8.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是12,则k=()A.6B.9C.D.解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b)∵D、E在反比例函数的图象上,∴=k,设E的坐标为(a,y),∴ay=k∴E(a,),=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣k﹣k﹣••(b﹣)=12,∵S△ODE∴4k﹣k﹣+=12k=故选:D.9.如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=8.解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y=图象上的点,且AC⊥y轴于点C,∴△AOC的面积=|k|,∴|k|=4,∵k>0,∴k=8.故答案为8.10.如图,若反比例函数y=的图象经过等边三角形POQ的顶点P,则△POQ的边长为2.解:如图,过点P作x轴的垂线于M,∵△POQ为等边三角形,∴OP=OQ,OM=QM=OQ,∵反比例函数的图象经过点P,∴设P(a,)(a>0),则OM=a,OQ=OP=2a,PM=,在Rt△OPM中,PM===a,∴=a,∴a=1(负值舍去),∴OQ=2a=2,故答案为:2.11.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x 轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.则△OAP 的面积为5.解:过P作MN⊥x轴于M,交AB于N,过A作AD⊥x轴于D,∵A(4,3),∴AD=3,OD=4,∴AO==5,∵AB=AO,∴AB=5,∵AB∥x轴,点B的横坐标是4+5=9,纵坐标是3,即点B的坐标是(9,3),设直线OB的解析式是y=ax,把B点的坐标(9,3)代入得:3=9a,解得:a=,即y=x,∵AB∥x轴,∴MN⊥AB,把A(4,3)代入y=,得k=12,即y=,解方程组得:或,∵点P在第一象限,∴点P的坐标是(6,2),∵A(4,3),AB∥x轴,P(6,2),∴MN=AD=3,PN=3﹣2=1,﹣S△APB=3﹣=5,∴△OAP的面积是S△ABO故答案为:5.12.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为6.解:方法一:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.方法二:因为y=x+m斜率为1,且BC∥x轴,AC∥y轴,∴∠ABC=∠BAC=45°,∴△ABC为等腰直角三角形,∴AC=BC=AB,=AC•BC=AB2,∴S△ABC当AB最小时,m=0,直线为y=x,联立方程,解得或,∴A(,),B(﹣,﹣),AB=×2=2,=×4×6=6.∴S△ABC最小故答案为:6.13.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO =AB,点C为斜边OB的中点,反比例函数y=(k>0,x>0)的图象过点C,且交线=6,则k的值为8.段AB于点D,连接CD,OD.若S△OCD解:根据题意设B(m,m),则A(m,0),∵点C为斜边OB的中点,∴C(,),∵反比例函数y=(k>0,x>0)的图象过点C,∴k=•=,∵∠OAB=90°,∴D的横坐标为m,∵反比例函数y=(k>0,x>0)的图象过点D,∴D的纵坐标为,作CE⊥x轴于E,=S△AOD,∵S△COES△OCD=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,S△OCD=6,∴(AD+CE)•AE=6,即(+)•(m﹣m)=6,∴m2=32,∴k==8,故答案为:8.解法二:作CE⊥OA于E,∵C为AB的中点,OA=AB,∠OAB=90°,=S△AOD=k,S△AOB=2k,∴S△OEC=k,∴S△BOD∵C为斜边OB的中点,=S△BCD=S△BOD=6,∴S△OCD∴×k=6,∴k=8.故答案为:8.14.如图,在平面直角坐标系中,▱OABC的顶点A,B在第一象限内,顶点C在y轴上,经过点A的反比例函数y=(x>0)的图象交BC于点D.若CD=2BD,▱OABC的面积为15,则k的值为18.解:过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,设OC=a,CN=2b,MN=b,∵▱OABC的面积为15,∴BM=,∴ND=BM=,∴A,D点坐标分别为(,3b),(,a+2b),∴•3b=(a+2b),∴b=a,∴k=•3b=•3×a=18,故答案为:18.15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,=S△ABD+S△ADC+S△ODC,∵S梯形OBAC∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.16.如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式x+b的解.解:(1)∵反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8)、B(﹣4,m),∴k1=8,B(﹣4,﹣2),解方程组,解得;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),=×6×4+×6×1=15;∴S△AOB(3)﹣4≤x<0或x≥1.17.如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB=,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;.(3)求S△OEB解:(1)∵A点的坐标为(a,6),AB⊥x轴,∴AB=6,∵cos∠OAB==,∴,∴OA=10,由勾股定理得:OB=8,∴A(8,6),∴D(8,),∵点D在反比例函数的图象上,∴k=8×=12,∴反比例函数的解析式为:y=;(2)设直线OA的解析式为:y=bx,∵A(8,6),∴8b=6,b=,∴直线OA的解析式为:y=x,则,x=±4,∴E(﹣4,﹣3),设直线BE的解式为:y=mx+n,把B(8,0),E(﹣4,﹣3)代入得:,解得:,∴直线BE的解式为:y=x﹣2;=OB•|y E|=×8×3=12.(3)S△OEB18.如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求反比例函数的解析式;(2)求点B的坐标;.(3)求S△OAB解:(1)∵直线y=x与反比例函数的图象交于点A(3,a),∴a=×3=4,∴点A的坐标为(3,4),∴k=3×4=12,∴反比例函数解析式y=.(2)∵点B在这个反比例函数图象上,设点B坐标为(x,),∵tanα=,∴=,解得:x=±6,∵点B在第一象限,∴x=6,∴点B的坐标为(6,2).(3)设直线OB为y=kx,(k≠0),将点B(6,2)代入得:2=6k,解得:k=,∴OB直线解析式为:y=x.过A点做AC⊥x轴,交OB于点C,如图所示:则点C坐标为(3,1),∴AC=3.S△OAB的面积=S△OAC的面积+S△ACB的面积=×|AC|×6=9.∴△OAB的面积为9.19.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比=4.例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB (1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与双曲线的另一交点为D点,求△ODB的面积.=•|x A|•y B,解:(1)由题意得:S△AOB即×2×y B=4,y B=4,∴B(2,4),设反比例函数的解析式为:y=,把点B的坐标代入得:k=2×4=8,∴y=,设直线AB的解析式为:y=ax+b,把A(﹣2,0)、B(2,4)代入得:,解得:,∴y=x+2;(2)由题意得:x+2=,解得:x1=﹣4,x2=2,∴D(﹣4,﹣2),=S△OAD+S△OAB=×2×2+4=6.∴S△ODB20.如图,在平行四边形OABC中,,点A在x轴上,点D是AB 的中点,反比例函数的图象经过C,D两点.(1)求k的值;(2)求四边形OABC的面积.解:(1)过点C作CE⊥x轴于E,∵∠AOC=45°,∴OE=CE,∴OE2+CE2=OC2∵OC=2,∴OE=CE=2,∴C(2,2),∵反比例函数的图象经过点C点,∴k=2×2=4;(2)过点D作DF⊥x轴于F,∵四边形OABC是平行四边形,∴AB=OC=2,∠DAF=∠AOC=45°,又∵点D是AB的中点,∴AD=,AF=DF,∴AF2+DF2=AD2,∴AF=DF=1,∴D点的纵坐标为1,∵反比例函数的图象过点D点,∴D(4,1),∴OF=4,OA=OF﹣AF=4﹣1=3,∴平行四边形OABC的面积S=OA•CE=3×2=6.21.如图,直线y=6x与双曲线y=(k≠0,且x>0)交于点A,点A的横坐标为2.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上的点,且点B的纵坐标是6,连接OB,AB,求△AOB的面积.解:(1)将x=2代入y=6x,得:y=12,∴点A的坐标为(2,12),将A(2,12)代入y=,得:k=24,∴反比例函数的解析式为y=;(2)在y=中y=6时,x=4,∴点B(4,6),而A(2,12),如图,过A作AC⊥y轴,BD⊥x轴,交于点E,则OD=4,OC=12,BD=6,AC=2,AE=2,BE=6,=S矩形OCED﹣S△AOC﹣S△BOD﹣S△ABE∴S△AOB=4×12﹣×2×12﹣×4×6﹣×2×6=48﹣12﹣12﹣6=18.22.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)若D(x,0)是x轴上原点左侧的一点,且满足,求x的取值范围.解:(1)∵B(2,﹣4)在反比例函数y=的图象上,∴m=﹣8,∴反比例函数的表达式为y=﹣.∵A(﹣4,n)在y=﹣的图象上,∴n=2,∴A(﹣4,2).∵y=kx+b经过A(﹣4,2)和B(2,﹣4),∴,解得∴一次函数的表达式为y=﹣x﹣2.(2)当y=﹣x﹣2=0时,解得x=﹣2.∴点C(﹣2,0),∴OC=2,=S△AOC+S△COB∴S△AOB=×2×2+×2×4=6.(3)根据函数的图象可知:若D(x,0)是x轴上原点左侧的一点,当﹣4<x<0时,满足kx+b﹣<0.23.如图,一次函数y=k1x+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣1,2)、点B(﹣4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△PAB的周长最小,求点P的坐标.解:(1)∵反比例函数y=(x<0)的图象经过点A(﹣1,2),∴k2=﹣1×2=﹣2,∴反比例函数表达式为:y=﹣,∵反比例y=﹣的图象经过点B(﹣4,n),∴﹣4n=﹣2,解得n=,∴B点坐标为(﹣4,),∵直线y=k1x+b经过点A(﹣1,2),点B(﹣4,),∴,解得:,∴一次函数表达式为:y=+.(2)设直线AB与x轴的交点为C,如图1,当y=0时,x+=0,x=﹣5;∴C点坐标(﹣5,0),∴OC=5.S△AOC=•OC•|y A|=×5×2=5.S△BOC=•OC•|y B|=×5×=.S△AOB=S△AOC﹣S△BOC=5﹣=;(3)如图2,作点A关于x轴的对称点A′,连接A′B,交x轴于点P,此时△PAB的周长最小,∵点A′和A(﹣1,2)关于x轴对称,∴点A′的坐标为(﹣1,﹣2),设直线A′B的表达式为y=ax+c,∵经过点A′(﹣1,﹣2),点B(﹣4,)∴,解得:,∴直线A′B的表达式为:y=﹣x﹣,当y=0时,则x=﹣,∴P点坐标为(﹣,0).24.如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x>0)的图象经过线段OC的中点A(3,2),交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x+b>0的解集.解:(1)∵四边形DOBC是矩形,且D(0,4),B(6,0),∴C点坐标为(6,4),∵A点坐标为(3,2),∴k1=3×2=6,∴反比例函数解析式为y=;把x=6代入y=得x=1,则F点的坐标为(6,1);把y=4代入y=得x=,则E点坐标为(,4),把F(6,1)、E(,4)代入y=k2x+b,得,解得,,∴直线EF的解析式为y=﹣x+5;﹣S△ODE﹣S△OBF﹣S△CEF(2)△OEF的面积=S矩形BCDO=4×6﹣×4×﹣×6×1﹣×(6﹣)×(4﹣1)=;(3)由图象得:不等式k2x+b﹣>0的解集为<x<6.25.如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P,连结OP、OQ.求△OPQ的面积.解:(1)反比例函数y=(m≠0)的图象经过点(1,4),解得m=4,故反比例函数的表达式为y=.一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),所以,解得n=﹣1,b=﹣5.∴一次函数的表达式y=﹣x﹣5;(2)由,解得或.∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OP A﹣S△OAQ=×5×4−×5×1=7.5.26.如图,在平面直角坐标系中,边长为4的等边△OAB的边OB在x轴的负半轴上,反比例函数y=(x<0)的图象经过AB边的中点C,且与OA边交于点D.(1)求k的值;(2)连接OC,CD,求△OCD的面积;(3)若直线y=mx+n与直线CD平行,且与△OAB的边有交点,直接写出n的取值范围.解:(1)∵等边△OAB,∴AB=BO=AO=4,∠ABO=∠BOA=∠OAB=60°,∵点C是AB的中点,∴BC=AC=2,过点C作CM⊥OB,垂足为M,在Rt△BCM中,∠BCM=90°﹣60°=30°,BC=2,∴BM=1,CM=,∴OM=4﹣1=3,∴点C 的坐标为(﹣3,),代入y =得:k =﹣3答:k 的值为﹣3;(2)过点A 作AN ⊥OB ,垂足为N ,由题意得:AN =2CM =2,ON =OB =2,∴A (﹣2,2),设直线OA 的关系式为y =kx ,将A 的坐标代入得:k =﹣,∴直线OA 的关系式为:y =﹣x ,由题意得:,解得:舍去,,∴D (﹣,3)过D 作DE ⊥OB ,垂足为E ,S △OCD =S CMED +S △DOE ﹣S △COM =S CMED =(+3)×(3﹣)=3,答:△OCD 的面积为3.(3)①当与直线CD 平行的直线y =mx +n 过点O 时,此时y =mx +n 的n =0,②当与直线CD 平行的直线y =mx +n 经过点A 时,设直线CD 的关系式为y =ax +b ,把C 、D 坐标代入得:,解得:a =1,b =3+∴直线CD 的关系式为y =x +3+,∵y =mx +n 与直线y =x +3+平行,∴m =1,把A (﹣2,2)代入y =x +n 得:n =2+2因此:0≤n ≤2+2且n .答:n 的取值范围为:0≤n ≤2+2且n ≠3+.。
APOy xAPOyx反比例函数面积基本模型:如图1,过双曲线()0ky k x=≠上的任一点(),P x y ,作x 轴(或y 轴)的垂线,则122AOPk S x y ∆=⋅=.如图2,过双曲线()0ky k x=≠上的 任一点(),P x y ,作x 轴、y 轴的垂线, 则AOBP S x y k =⋅=矩形.以上是反比例函数图象的一个重要性质,在解比例函数图象有关的面积问题时,有广泛的应用. 利用以上结论我们可以解决以下一系列的问题.【例1】如图3,在平面直角坐标系中,点A 、B 在反比例函数xk y =的 图象上,AC ∥y 轴,BD ∥x 轴,设△AOC 和△BOD 的面积分别 是S 1、S 2,比较它们的大小,可得( ) (A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定【例2】如图4,点A 、B 是双曲线()0ky k x=>上的点,过点 A 作AC 垂直于x 轴,垂足为C ,过点B 作BD 垂直于x 轴,垂足为D ,设△AOE 和四边形ECDB 的面积分别是S 1、S 2, 比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定(图1)B APO yx(图2)DCOBAyx(图3)E DC OBA yx(图反比例函数与面积问题【例3】如图5,函数()0y mx m =≠与()0ky k x=≠交于A 、B 两点,过点A 作AC 垂直于x 轴,垂足为C ,则 ABC △的面积为.【例4】如图6-1,函数()0y mx m =≠与()0ky k x=≠垂直y 轴(亦可向x 轴作垂线图6-2)于点C 、D ,则四边形ACBD 的面积为 .【例5】如图7,函数()0y mx m =≠与()0ky k x =≠的图象交于A 、B 两点,AC 、BD 分别垂直x 与y 轴于点C 、D ,连结CD ,则四边形ACBD 的面积为. 【例6】如图8,函数()0y mx m =≠与()0ky k x=≠的图象交于A 、B 两点,AC 、BF 分别垂直x 于点C 、F , AE 、BD 分别垂直y 于点E 、D , 连结CD ,则六边形AEFBDC 的面积为 . 【例7】如图9,已知一次函数b kx y +=的图像与反比例函数12y x=的图像交于A 、B 两点,且点A 的横坐标是1,点B 的纵坐标是-1 , 求(1)一次函数的解析式; (2)△AOB 的面积.(图6-1)(图6-2) (图7)(图8)【例8】如图10-1,函数()0y mx n m =+≠与()0ky k x=≠的图象交于A 、B 两点,则AOB △的面积为 .【例9】如图11-1,双曲线y =xk经过矩形BDCO 的边CD 的中点A ,交BD 于点M,四边形OMDA 面积为2,则k 的值为( )(A )1 (B )2(C ) 4 (D ) 6【例10】如图12-1,双曲线y =xk交矩形BDCO 边BD 于点M ,交边CD 于点A ,且()1BD nBM n =>,四边形OMDA 面积为2,则k =_ _.(用含n 的代数式表示)ky x=当堂练习【练习1】(2009年钦州市)如图14是反比例函数y =kx在第二象限内的图象,若图中的矩形OABC 的面积为2,则k =_ _.【练习2】(2009年常德市) 如图15-1,在平面直角坐标系中,矩形ABCD 的中心在原点,顶点A 、C 在反比例函数xky =的图象上,AB ∥y 轴,AD ∥x 轴,若ABCD 的面积为8,则k =( )(A )-2 (B )2 (C )-4 (D )4 【练习3】(2009年河池市) 如图17-1,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )(A )2S = (B ) 4S = (C )24S << (D )4S >【练习4】(2009年青海省)如图18,函数y x =与4y x=的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为C ,则ABC △的面积为 .【练习5】(2009年青海省)如图19-1,已知双曲线 经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________.OB x yC A (图17-1)(图17-2)x y A B C O y A B CD Ox(图14) (图15-1) (图15-2)OAC B xy (图18) (0)ky k x=>(图19-1)AB CDy xOAB CDEy xO(图19-2)()20y x x=>【练习6】(2009年宁德市)如图20,已知点A 、B 在双曲线上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3,则k = .【练习7】(2009年莆田市)如图21,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数 的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、, 则5S 的值为 .【练习8】(2009年成都市) 如图16-1,正方形OABC 的面积是4,点B 在反比例函数(00)ky k x x=><,的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则当S =m (m 为常数,且0<m <4)时, 点R 的坐标是________________________(用含m 的代数式表示)(图20)(图21)2ky x=【练习9】(2009年济南市)已知:如图23,正比例函数y ax =的图象与反比例函数的图象交于点()32A ,.(1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值? (3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.(图23)武汉市中考、调考题集锦1.( 2012武汉中考)如图,点A 在双曲线y=k/x 的第一象限的那一支上,AB 垂直于x 轴与点B ,点C 在x 轴正半轴上,且OC=2AB ,点E 在线段AC 上,且AE=3EC,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为________.2.(2011武汉中考)如图,□ABCD 的顶点A ,B 的坐标分别是)2,0(),0,1(--B A ,顶点C ,D 在双曲线xky =上,边AD 交y 轴于点E ,且四边形BCDE 的面积是ABE∆面积的5倍,则=k 。
3.(2011武汉4月考)反比例函数)0(>=x xk y 的图象如图,原点0与图象上的点之间的距离的最小值为3,则=k 。
4.(2010武汉中考)如图,直线b x y +-=33与y 轴交于点A ,与双曲线xky =在第一象限交于B 、C 两点,且4=⋅AC AB ,则=k 。
5.(2010武汉4月调考)如图,B 为双曲线)0(>=x xky 上一点,直线AB平行于y 轴交直线xy =于点A,若422=-AB OB ,则=k 。
6.(2010武汉5月调考)如图,A 、M 是反比例函数图象上的两点,过点M 作直线x MB //轴,交y 轴于点B ;过点A 作直线y AC //轴交x轴于点C,交直线MB 于点D .9:8=DM BM :, 当四边形OADM 的面积为427时,=k 。
7.(2009武汉4月调考)如图,直线xy =向右平移6个单位后得到直线l ,l 与函数)0(6>=x xy 相交于点A ,x 轴相交于点B,则=-22OB OA 。
8.(2008武汉4月调考)如图,直线3+=x y 与x 轴、y 轴分别交于A 、B 点,与)0(<=x xky 的图象交于C 、D 两点,点E 是点C 关于A 的中心对称点,OA EF ⊥于F 点.若AOD ∆的面积与AEF∆的面积之和为27时,则=k 。
9.(2008武汉5月调考)如图,正方形ABCD 的边BC 在x 轴负半轴上,),6(n E -是对角线AC 的中点,函数)0(<=x xky 的图象过D 、E 两点,则=k 。
10.(2007武汉4月调考)如图,直线bx y +-=与双曲线)0(1>=x xy 交于A 、B 两点,与x轴、y 轴分别交于E 、F 两点,x AC ⊥轴于C ,y BD ⊥轴于D ,求当b 的值为多少时, BDFACE ∆∆,与ABO ∆面积的和等于EFO ∆面积的43。
面积问题11、如图,已知双曲线)0(>=x xk y 经过矩形OABC 的边AB 、BC 的中点F 、E ,且四边形OEBF 的面积为2,则=k 。
12、如图,已知直线221+=x y 与坐标轴交于A 、B 两点,与双曲线xky =交于点C ,A 、D 关于y 轴对称,若6S =OBCD 四,则=k 。
13如图,双曲线xy 4-=交OAB Rt ∆的斜边OB 于E ,AB EF ⊥于F,21S =∆BEF ,则AF OA⋅= 。
14如图,直线82+-=x y 与x 轴交于A 点,与双曲线交于B 、C 两点,y CD ⊥轴于D ,若,1=-∆∆OCD OAB S S 则=k 。
15.如图,已知双曲线)0(>=k xky 经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若OBC ∆的面积为3,则=k 。
16如图,在直角梯形OABC 中,.//OC AB过B 点的双曲线)0(>=k xky 恰好过BC 的中点D ,且ABCOS 梯形=6,则=k 。
17如图,直线221+=x y 分别交x轴,y 轴于A 、C 两点,点P 是该直线与反比例函数xky =在第一象限内的一个交点,x PB ⊥轴于点B 且,9=∆ABPS 则=k18如图,直线bkx y +=与x 轴、y 轴交于点A 、B ,与双曲线xy 10=交于C ,若AB BC 2=,则AOB S ∆= 。