第七章催化剂表征
- 格式:ppt
- 大小:7.31 MB
- 文档页数:10
1.2比表面测试单位重量催化剂所具有的表面积称为比表面,其中具有活性的表面称活性比表面,也称有效比表面。
尽管催化剂的活性、选择性以及稳定性等主要取决于催化剂的化学结构,但其在很大程度上也受到催化剂的某些物理性质如催化剂的表面积的影响。
一般认为,催化剂表面积越大,其上所含有的活性中心越多,催化剂的活性也越高。
因此,测定、表征催化剂的比表面对考察催化剂的活性等性能具有很大的意义和实际应用价值。
催化剂的表面积针对反应来说可以分为总比表面和活性比表面,总比表面可用物理吸附的方法测定,而活性比表面则可采用化学吸附的方法测定。
催化剂的比表面积的常见表征方法见表2。
1.2.1 总表面积的测定催化剂总表面积的测定目前所采用的方法基本上均为低温物理吸附法,而其中的BET法则更是推崇为催化剂表面积测定的标准方法。
有关BET法的具体介绍见第二章,在此不展开讨论。
1.2.2 有效表面积的测定BET法测定的是催化剂的总表面积。
但是在实际应用中,催化剂的表面中通常只是其中的一部分才具有活性,这部分称为活性表面。
活性表面的面积测定通常采用“选择化学吸附”进行测定。
如附载型金属催化剂,其上暴露的金属表面是催化活性的,以氢、一氧化碳为吸附质进行选择化学吸附,即可测定活性金属表面积,因为氢、一氧化碳只与催化剂上的金属发生化学吸附作用,而载体对这类气体的吸附可以忽略不计。
同样,用碱性气体的选择化学吸附可测定催化剂上酸性中心所具有的表面积。
表2列出了用于测定催化剂比表面积的常见方法。
表2 催化剂比表面表征(1)金属催化剂有效表面积测定[17-19]金属表面积的测定方法很多,有X-射线谱线加宽法、X-射线小角度法、电子显微镜法、BET真空容量法及化学吸附法等。
其中以化学吸附法应用较为普遍,局限性也最小。
所谓化学吸附法即某些探针分子气体(CO、H2、O2等)能够选择地、瞬时地、不可逆地化学吸附在金属表面上,而不吸附在载体上。
所吸附的气体在整个金属表面上生成一单分子层,并且这些气体在金属表面上的化学吸附有比较确定的计量关系,通过测定这些气体在金属表面上的化学吸附量即可计算出金属表面积。
利用XRD、N2低温吸附脱附及FT-IR 、H2-TPR(H2程序升温脱附)及SEM、TEM等表征手段对其进行分析。
XRD即X-ray diffraction 的缩写,是X射线衍射,通过对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。
X射线是一种波长很短(约为20~0.06埃)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。
在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。
粉末X-射线衍射是分析晶体内部结构的有力手段。
工作原理X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X 射线和特征X射线两种。
晶体可被用作X光的光栅,这些很大数目的粒子(原子、离子或分子)所产生的相干散射将会发生光的干涉作用,从而使得散射的X射线的强度增强或减弱。
由于大量粒子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。
布拉格衍射示意图满足衍射条件,可应用布拉格公式:2dsinθ=nλ应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。
通过XRD 衍射峰位置(峰位)、衍射峰相对强度(峰强)和衍射峰形状(峰形)可对样品进行定性和定量分析,获得物相组成、晶面间距、晶粒大小、结晶度及残余应力等信息。
XPSX射线光电子能谱(X-ray photoelectron spectroscopy),简称XPS,是重要的表面分析技术之一。
它不仅能探测表面的化学组成,而且可以确定各元素的化学状态,因此,在化学、材料科学及表面科学中得以广泛应用。
基本原理X射线光子的能量在1000~1500ev之间,不仅可使分子的价电子电离而且也可以把内层电子激发出来,内层电子的能级受分子环境的影响很小。
催化剂性能表征催化剂性能优劣的判断指标。
其中最主要的是动力学指标,对于固体催化剂还有宏观结构指标和微观结构指标。
催化剂性能的动力学表征衡量催化剂质量的最实用的三大指标,是由动力学方法测定的活性、选择性和稳定性。
活性催化剂提高化学反应速率的性能的一种定量的表征。
在实际应用中,用特定条件下某一反应物的转化率或时空得率等数值来衡量它,例如下列反应:a A+b B─→c C+d DA的转化率x A定义为:式中n┱是反应前A的摩尔数;n A是反应后A的摩尔数。
时空得率为单位体积催化剂上所得产物的重量,其单位为千克/(米3·小时)。
这类数值与反应装置和条件有关,而且在给定条件下,若催化剂层存在着物理因素(传热、传质等)的影响,则其活性数值并不代表催化剂本身的本征活性。
在理论研究中,常采用无物理因素影响的动力学参数(反应速率、反应速率常数、活化能等)来表征催化剂的活性。
但反应速率和反应速率常数与催化剂计量的基准单位(表面积、体积、质量)有关。
以表面积为基准的量分别称为表面比反应速率和表面比速率常数;以质量为基准的称为比反应速率或催化剂的比活性。
反应速率常数的数值还与所用的速率方程的形式有关。
随着对催化作用的活性中心认识的深入和测试方法的进步,已引用酶催化中的转化频率来表示一般催化剂的活性。
其定义为单位时间内每个活性中心上起反应的次数或分子数。
转化频率的数值也须注明温度、起始浓度或压力和反应度。
选择性指催化剂对反应类型、复杂反应(平行或串联反应)的各个反应方向和产物结构的选择催化作用。
分子筛催化剂对反应分子的形状还有择形选择性。
催化剂的选择性通常用产率或选择率和选择性因子来量度。
对于前述反应式,目的产物C的产率s C定义为C的摩尔数n C对已转化的反应物A的摩尔数n A之百分比,即:式中a和c为常数。
如果已知主、副反应的反应速率常数分别为k1和k2,则选择性用选择性因子s来表示,s=k1/k2。
产率越高或选择性因子越大,则催化剂的选择性越好。
负载型金属催化剂Au/CeO2的结构表征摘要:本文主要利用一些常用的方法制备Au/CeO2催化剂,并且通过X-射线衍射法(XRD),程序升温还原(H2-TPR),CO-红外吸收光谱(C0-FTIP),透射电子显微镜(TEM)等表征方法对该催化剂进行表征。
为更好地认识和使用负载型催化剂Au/CeO2提供了可靠的依据。
关键词:负载型催化剂,Au/CeO2,结构表征。
负载型金属簇催化剂以载体作为一个支撑平台,将具有催化活性的金属尽可能均匀地分散于载体表面。
这种催化剂有很多优点,金属多半能以微小晶体的形式,高度分散在载体的整个表面,从而产生较大的活性表面。
分散于载体中的金属粒子愈小,暴露于表面的金属原子所占的比例愈大,愈有利于金属粒子与反应物的接触,从而提高了催化剂中金属活性组分的利用率。
另外,载体还能改善反应热的散发,阻止金属微晶的烧结与由此产生的活性表面的降低等等。
因此,负载型金属簇催化剂已广泛应用于石油炼制,汽车尾气转化,一氧化碳加氢,脂肪化合物加氢等催化反应过程中。
大量的研究结果表明,负载金属催化剂表面金属粒子的结构与催化性能之间存在着密切的关系,所以运用各种物化表征方式准确地测定催化剂的表面结构是非常重要的。
本文对负载型金属簇催化剂的结构表征方法进行了综述,主要的结构表征方法包括X-射线衍射(XRD),扩展X-射线精细结构吸收谱(EXAFS),CO作探针的红外吸附光谱(C0-FTIR),X-射线光电子能谱!(XPS)以及透射电子显微镜(TEM)等。
1.X-射线衍射法(XRD)X-射线衍射线宽分析(LBA)方法已被广泛用来表征负载型催化剂中金属晶粒的分散程度。
利用LBA不仅可以根据Scherrer公式估计金属粒子的平均粒径,而且还可根据完全的线型分析确定晶粒的粒径分布和晶格变型情况。
该方法适用于2-100nm之间晶粒的分析。
X-射线粉末衍射(XRD)分析的样品在Rigaku 300 X -射线衍射仪上进行旋转阳极的发电机和一个单色探测器。
负载型金属催化剂Au/CeO2的结构表征摘要:本文主要利用一些常用的方法制备Au/CeO2催化剂,并且通过X-射线衍射法(XRD),程序升温还原(H2-TPR),CO-红外吸收光谱(C0-FTIP),透射电子显微镜(TEM)等表征方法对该催化剂进行表征。
为更好地认识和使用负载型催化剂Au/CeO2提供了可靠的依据。
关键词:负载型催化剂,Au/CeO2,结构表征。
负载型金属簇催化剂以载体作为一个支撑平台,将具有催化活性的金属尽可能均匀地分散于载体表面。
这种催化剂有很多优点,金属多半能以微小晶体的形式,高度分散在载体的整个表面,从而产生较大的活性表面。
分散于载体中的金属粒子愈小,暴露于表面的金属原子所占的比例愈大,愈有利于金属粒子与反应物的接触,从而提高了催化剂中金属活性组分的利用率。
另外,载体还能改善反应热的散发,阻止金属微晶的烧结与由此产生的活性表面的降低等等。
因此,负载型金属簇催化剂已广泛应用于石油炼制,汽车尾气转化,一氧化碳加氢,脂肪化合物加氢等催化反应过程中。
大量的研究结果表明,负载金属催化剂表面金属粒子的结构与催化性能之间存在着密切的关系,所以运用各种物化表征方式准确地测定催化剂的表面结构是非常重要的。
本文对负载型金属簇催化剂的结构表征方法进行了综述,主要的结构表征方法包括X-射线衍射(XRD),扩展X-射线精细结构吸收谱(EXAFS),CO作探针的红外吸附光谱(C0-FTIR),X-射线光电子能谱!(XPS)以及透射电子显微镜(TEM)等。
1.X-射线衍射法(XRD)X-射线衍射线宽分析(LBA)方法已被广泛用来表征负载型催化剂中金属晶粒的分散程度。
利用LBA不仅可以根据Scherrer公式估计金属粒子的平均粒径,而且还可根据完全的线型分析确定晶粒的粒径分布和晶格变型情况。
该方法适用于2-100nm之间晶粒的分析。
X-射线粉末衍射(XRD)分析的样品在Rigaku 300 X -射线衍射仪上进行旋转阳极的发电机和一个单色探测器。
结构表征:1. 晶相:XRD(多晶,单晶)——确定样品晶体类型(2θ-d 晶面间距,T强度);TEM(透射电镜)。
2. 化学环境,配位状态:IR,UV,UV-Ramon,XPS,NMR,EPS,Mossbour。
组成表征:XRF,ICP(准确),XPS,AEM(分析电镜)。
宏观物性表征:1. 粒度(密度,强度):SEM(扫描电镜),TEM,XRD,激光衍射和光散射(统计结果)2. 形貌:TEM+SEM3. 多孔性:氮气吸附,压汞法,烃分子探针4. 稳定性:TG-DTA,XRD酸性及酸强度表征:1. 酸性:NH3-IR,吡啶(Py)-FT-IR,FT-IR,MAS-NMR(31Al,1H)。
2. 酸强度:NH3-TPD,Hammett指示剂,吸附量热。
3. 内外表面酸的识别:探针分子反应法。
金属性表征:1. 分散度:H2吸附,HOT,TEM,XPS。
2. 还原性:TPR。
3. 氧化还原态:XPS。
4. 表面吸附物种:IR。
金属与载体/助剂相互作用:TPR,XPS,DTA。
再生:TG-DTA,TPO。
1 什么是XRF?一台典型的X射线荧光(XRF)仪器由激发源(X射线管)和探测系统构成。
X射线管产生入射X射线(一次X射线),激发被测样品。
受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。
探测系统测量这些放射出来的二次X射线的能量及数量。
然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。
利用X射线荧光原理,理论上可以测量元素周期表中的每一种元素。
在实际应用中,有效的元素测量范围为11号元素(Na)到92号元素(U)。
2 X射线荧光的物理意义:X射线是电磁波谱中的某特定波长范围内的电磁波,其特性通常用能量(单位:千电子伏特,keV)和波长(单位:nm)描述。
X射线荧光是原子内产生变化所致的现象。
一个稳定的原子结构由原子核及核外电子组成。