线性控制系统的数学模型
- 格式:pptx
- 大小:1.54 MB
- 文档页数:90
自动控制学习1.控制系统的数学模型经典控制理论分析线性控制系统的性能的方法:时域分析、根轨迹、频域分析。
线性化处理选用拉氏变换,非线性处理,用泰勒级数展开,当增量很小时,去除增量线性化。
复数域的数学模型:传递函数。
定义在零初始状态下,输出的拉氏变换与输入的拉氏变换的比值。
2.线性系统的时域分析2.1一阶系统的时域分析2.2 二阶系统的时域分析时域分析就是输出响应随着时间变化由输入激励函数所产生响应的变化。
输入激励有单位阶跃函数、单位脉冲函数、单位斜坡函数。
系统的稳定性分析:所谓稳定性就是指系统在扰动消失后,由初始偏差状态恢复到原状态的性能。
即平衡状态稳定性。
若达到稳定,闭环系统的极点均具有负实部,即所有极点均落在S轴的左边。
赫尔维茨判据:要求其闭环特征方程的系数全大于零,且各顺序主子式也大于零。
劳斯判据:为防止劳斯判据失效,在劳斯表中出现无穷大项时,可以用原特征方程乘以(s+a)的系数重新组成特征方程。
若出现全零行,则去F(s)为全零行的上一行,用F(s)的导数取代全0行。
时域分析中的重要参数δ-阻尼比,Wn-自然频率,σ-衰减系数,Wd-阻尼振荡频率,td-延迟时间,tr-上升时间,tp-峰值时间,ts-调节时间2.3 自动控制经典控制理论1、控制系统的组成:给定+控制器+被控对象+反馈。
2、基本的控制方式:1)开环控制系统利用控制器或控制执行机构去获得预期的响应。
2)闭环(反馈)控制系统将被控量与期望值通过比较得到一个偏差,通过控制器的作减小或消除这个偏差,使被控量与期望值趋于一致。
2.3.1 线性系统的频域分析2.3.1.1频域分析法的特点根据傅里叶级数,周期函数的傅里叶级数都是由正弦和余弦组成的三角级数。
周期为T 的任一周期函数f(t),若满足狄里赫莱条件:在一个周期内只有有限个不连续点,在一个周期内只有有限个极大和极小值,f(t)在时间-T/2~T/2内积分存在,即可写出傅里叶级数。
经傅里叶分解后得到各项分量频率是基波频率的倍数,对不同频率分量的响应我们选用频域分析。
可编辑修改精选全文完整版控制系统的数学模型及传递函数2-1 拉普拉斯变换的数学方法拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。
一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。
f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。
2)当时,,M,a为实常数。
2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。
—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。
二、典型时间函数的拉氏变换在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。
1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见表2-1:拉氏变换对照表F(s) f(t)11(t)t三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。
2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有, 其中,当t<0时,f(t)=0,f(t-a)表f(t)延迟时间a. 证明:,令t-a=τ,则有上式=例:, 求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)由正向使的f(t)值。
第三十八章线性定常控制系统的数学模型第一节控制系统模型的构成一、控制系统的模型描述控制系统动态特性的数学表达式称为系统的数学模型,它是分析和设计系统的依据。
数学模型应当既能足够准确地反映系统的动态特性,又具有较简单的形式。
实际系统都程度不同地存在非线性和分布参数特性,如果这些因素影响不大,则可忽略不计。
在正常工作点附近变化时,可以用线性化模型来处理;但当系统在大范围内变化时采用线性化的模型就会带来较大误差。
可以根据系统内部的变化机理写出有关的运动方程,或者通过实验测取系统的输入!输出数据,然后对这些数据进行处理,从而建立系统的数学模型。
前者是机理法,后者是测试法,又称系统辨识。
二、微分方和差分方程微分方程是连续系统最基本的数学模型,可按下列步骤建立:"!将系统划分为单向环节,并确定各个环节的输入量、输出量。
单向环节是指后面的环节无负载效应,即后面的环节存在与否对该环节的动态特性没有影响。
#!根据系统内部机理,通过简化、线性化、增量化建立各个环节的微分方程。
$!消去中间变量,保留系统的输入量、输出量,得出系统的微分方程。
%!整理成标准形式,将含输出量的项写在方程左端,含输入量的项写在右端,并将各导数项按降阶排列。
设&!’,则单输入!单输出系统的微分方程的一般形式为((")())*+"((&!")())*…*+&!"(!())*+&(()),-./(’)())*-"/(’!")())*…*-’!"/!())*-’/())($0!")离散系统在某一时刻12的输出((1),可能既与同一时刻的输入与同一时刻的输入/(1)有关,又与过去时刻的输入((1!"),…,/(1!’)有关;而且还与过去时刻的输出/(1!"),…,((1!&)有关。
因此,&!’时,输入和输出之间的关系可表示为#($)*%"#($!")*…*%"#($!"),&.’($)*&"’($!")*…*&(’($!()($0!#)不失一般性,可以假定/(1),.,((1),.,13.。