浙教版数学九年级上册第一单元二次函数水平测试.docx
- 格式:docx
- 大小:312.71 KB
- 文档页数:6
第1章综合测评卷一、选择题(每题3分,共30分)1.下列各式中,y 是x 的二次函数的是(C ).A.x 2+2y 2=2B.x=y 2C.3x 2-2y=1D.21x +2y-3=02.对于二次函数y=(x-1)2+3的图象,下列说法正确的是(C ).A.开口向下B.对称轴是直线x=-1C.顶点坐标是(1,3)D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD)花园,这个矩形花园的最大面积是(C ).A.16m 2 B.12m 2 C.18m 2D.以上都不对4.如果抛物线y=mx 2+(m-3)x-m+2经过原点,那么m 的值等于(C ).A.0B.1C.2D.35.如图所示,直线x=1是抛物线y=ax 2+bx+c 的对称轴,那么有(D ).A.abc >0B.b <a+cC.a+b+c <0D.c <2b(第5题)(第6题)(第7题)(第8题)6.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是(C ).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y=ax 2+bx+c 的顶点为点P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A ′,则AA ′的长度为(A ).A.343 B.241 C.32D.38.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB=8m ,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC=1m ,则门高OE 为(B ).A.9mB.764m C.8.7m D.9.3m9.已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A(x 1,m),B(x 1+n ,m)两点,则m ,n 满足的关系为(D ).A.m=21n B.m=41n C.m=21n 2D.m=41n 210.已知二次函数y=-(x-1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为(D ).A.25 B.2 C.23 D.21(第10题答图)【解析】二次函数y=-(x-1)2+5的大致图象如答图所示:①当m ≤0≤x ≤n <1时,当x=m 时y 取最小值,即2m=-(m-1)2+5,解得m=-2或m=2(舍去).当x=n 时y 取最大值,即2n=-(n-1)2+5,解得n=2或n=-2(均不合题意,舍去).②当m ≤0≤x ≤1≤n 时,当x=m 时y 取最小值,由①知m=-2.当x=1时y 取最大值,即2n=-(1-1)2+5,解得n=25,或x=n 时y 取最小值,x=1时y 取最大值,2m=-(n-1)2+5,n=25,∴m=811.∵m <0,∴此种情形不合题意.∴m+n=-2+25=21.故选D.二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y=3x 2的图象重合,那么这个二次函数的表达式可以是y=3(x+2)2+3(只要写出一个).12.如图所示,抛物线y=ax 2+bx+c(a >0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P(5,0)在抛物线上,则9a-3b+c 的值为.(第12题)(第13题)(第14题)(第15题)13.如图所示,抛物线y=ax 2+bx+c 与x 轴相交于点A ,B(m+2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是(-2,0).14.如图所示,将两个正方形并排组成矩形OABC ,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M ,N 的二次函数的图象也过矩形的顶点B ,C ,若三个正方形边长均为1,则此二次函数的表达式为y=-34x 2+38x+1.15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图所示.这种工艺品的销售量y (件)关于降价x (元)的函数表达式为y=60+x.16.已知抛物线y=a(x-1)(x+a2)的图象与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是2或34或251 .三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25).(1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小?【答案】(1)设抛物线的函数表达式为y=a (x-2)2-3,把(1,-25)代入,得-25=a-3,即a=21.∴抛物线的函数表达式为y=21x 2-2x-1.图略.(2)∵抛物线对称轴为直线x=2,且a>0,∴当x ≥2时,y 随x 的增大而增大;当x ≤2时,y 随x 的增大而减小.18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y=4x-21x 2的图象的一段,斜坡的截线OA 是一次函数y=21x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.【答案】(1)∵y=4x-21x 2=-21(x-4)2+8,∴网球抛出的最高点的坐标为(4,8).(2)由题意得4x-21x 2=21x,解得x=0或x=7.当x=7时,y=21×7=27.∴网球在斜坡的落点A的垂直高度为27.19.(8分)若直线y=x+3与二次函数y=-x 2+2x+3的图象交于A ,B 两点,(1)求A ,B 两点的坐标.(2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?【答案】(1)由题意得⎩⎨⎧++-=+=3232x x y x y ,解得⎩⎨⎧==30y x 或⎩⎨⎧==41y x .∴A ,B 两点的坐标分别为(0,3),(1,4).(2)∵A ,B 两点的坐标是(0,3),(1,4),∴OA=3,OA 边上的高线长是1.∴S △OAB =21×3×1=23.(3)当x <0或x >1时,一次函数的值大于二次函数的值.20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x(km),乘坐地铁的时间y 1(min)是关于x 的一次函数,其关系如下表所示:地铁站A B C D E x(km)89111.513y 1(min)182222528(1)求y 1关于x 的函数表达式.(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【答案】(1)设y 1=kx+b ,将(8,18),(9,20)代入,得⎩⎨⎧=+=+209188b k b k ,解得⎩⎨⎧==22b k .∴y 1关于x 的函数表达式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y.则y=y 1+y 2=2x+2+21x 2-11x+78=21x 2-9x+80.∴当x=9时,y 有最小值,y min =2149802142⨯-⨯⨯=39.5.∴李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5min.21.(10分)已知二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A.(1)当a=21时,求点A 的坐标.(2)过点A 的直线y=x+k 与二次函数的图象相交于另一点B ,当b ≥-1时,求点B 的横坐标m 的取值范围.【答案】(1)∵二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A ,∴Δ=b 2-4a×21=b 2-2a=0.∵a=21,∴b 2=1.∵b <0,∴b=-1.∴二次函数的表达式为y=21x 2-x+21.当y=0时,21x 2-x+21=0,解得x 1=x 2=1,∴A(1,0).(2)∵b 2=2a ,∴a=21b 2,∴y=21b 2x 2+bx+21=21(bx+1)2.当y=0时,x=-b 1,∴A (-b 1,0).将点A (-b 1,0)代入y=x+k ,得k=b 1.由⎪⎪⎩⎪⎪⎨⎧+=++=b x y bx x b y 1212122消去y 得21b 2x 2+(b-1)x+21-b 1=0,解得x 1=-b 1,x2=22b b -.∵点A 的横坐标为-b 1,∴点B 的横坐标m=22b b -.∴m=22b b -=2(21b -b 21)=2(b 1-41)2-81.∵2>0,∴当b 1<41时,m 随b1的增大而减小.∵-1≤b <0,∴b 1≤-1.∴m ≥2×(-1-41)2-81=3,即m ≥3.22.(12分)设函数y=kx 2+(2k+1)x+1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k ,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k ,当x<m 时,y 随着x 的增大而增大,试求出m 的一个值.【答案】(1)如:y=x+1,y=x 2+3x+1,图略.(2)不论k 取何值,函数y=kx 2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明如下:由y=kx 2+(2k+1)x+1,得k(x 2+2x)+(x -y+1)=0.当x 2+2x=0,x -y+1=0,即x=0,y=1,或x=-2,y=-1时,上式对任意实数k 都成立,∴函数的图象必过定点(0,1),(-2,-1).∵当k=0时,函数y=x+1的图象与x 轴有一个交点;当k ≠0时,Δ=(2k+1)2-4k=4k 2+1>0,函数图象与x 轴有两个交点,∴函数y=kx 2+(2k+1)x+1的图象与x 轴至少有1个交点.(3)只要写出的m ≤-1就可以.∵k<0,∴函数y=kx 2+(2k+1)x+1的图象在对称轴直线x=-k k 212+的左侧,y 随x 的增大而增大.由题意得m ≤-k k 212+.∵当k<0时,k k 212+=-1-k21>-1.∴m ≤-1.23.(12分)如图1所示,点P(m ,n)是抛物线y=41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为点H .【特例探究】(1)当m=0时,OP=1,PH=1;当m=4时,OP=5,PH=5.【猜想验证】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想.【拓展应用】(3)如图2所示,图1中的抛物线y=41x 2-1变成y=x 2-4x+3,直线l 变成y=m(m <-1).已知抛物线y=x 2-4x+3的顶点为点M ,交x 轴于A ,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y=m(m <-1)与对称轴交于点C ,若对于抛物线上每一点都满足:该点到直线y=m 的距离等于该点到点N 的距离.①用含m 的代数式表示MC ,MN 及GN 的长,并写出相应的解答过程.②求m 的值及点N 的坐标.(第23题)【答案】(1)1,1,5,5.(2)猜想:OP=PH.证明:设PH 交x 轴于点Q ∵P 在y=41x 2-1上,∴P (m ,41m 2-1),PQ=∣41m 2-1∣,OQ=|m|.∵△OPQ 是直角三角形,∴OP=22OQ PQ +=222141m m +⎪⎭⎫ ⎝⎛+=22141⎪⎭⎫ ⎝⎛+m =14m 2+1.∵PH=yp-(-2)=(41m 2-1)-(-2)=41m 2+1,∴OP=PH.(3)①∵M (2,-1),∴CM=MN=-m-1.GN=CG-CM-MN=-m-2(-m-1)=2+m.②点B 的坐标是(3,0),BG=1,GN=2+m.由勾股定理得BN=22GN BG +=()2221m ++.∵对于抛物线上每一点都有:该点到直线y=m 的距离等于该点到点N 的距离,∴1+(2+m )2=(-m )2,解得m=-45.∵GN=2+m=2-45=43,∴N (2,-43).。
浙教版九年级上册第一章二次函数一、选择题1.下列函数中,是二次函数的是( )A .y =3x ﹣2B .y =1x 2C .y =x 2+1D .y =(x ﹣1)2﹣x 22.二次函数 y =k x 2−6x +3 的图象与x 轴有交点,则k 的取值范围是( )A .k <3B .k <3 且 k ≠0C .k ≤3D .k ≤3 且 k ≠03.已知二次函数y =−12x 2+bx 的对称轴为x =1,当m ≤x ≤n 时,y 的取值范围是2m ≤y ≤2n .则m +n 的值为( )A .−6或−2B .14或−74C .14D .−24.已知二次函数y =a x 2+bx +c (a ≠0)的图象如图所示,在下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b <m(am +b)(m ≠1的实数),其中正确的结论有( )A .1个B .2个C .3个D .4个5.如图,二次函数y =−x 2+x +2及一次函数y =x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数,当直线y =x +m 与新图象有4个交点时,m 的取值范围是( )A .14<m <−3B .254<m ≤1C .−2<m <1D .−3<m <−2二、填空题6.若y =(m−3)x m2−5m +8+2x−3是关于x 的二次函数,则m 的值是 .7.二次函数 y =−(x−6)2+8 的最大值是 .8.已知抛物线y =a x 2−2ax 经过A (m−1,y 1),B (m,y 2),C (m +3,y 3)三点,且y 1<y 3<y 2≤−a 恒成立,则m 的取值范围为 .9.飞机着陆后滑行的距离s (米)与滑行时间t (秒)的关系满足s =−32t 2+bt .当滑行时间为10秒时,滑行距离为450米,则飞机从着陆到停止,滑行的时间是 秒.10.如图,抛物线y =−87x 2+247x +2与x 轴交于A 、B 两点,与y 轴交于C 点,P 为抛物线对称轴上动点,则PA +PC 取最小值时,点P 坐标是 .11.若定义一种新运算:m@n ={m−n(m ≤n)m +n−3(m >n),例如:1@2=1−2=−1,4@3=4+3−3=4.下列说法:(1)−7@9= ;(2)y =(−x +1)@(x 2−2x +1)与直线y =m(m 为常数)有1个交点,则m 的取值范围是 .三、单选题12. 已知y =(a−1)x 2−2x +a 2是关于x 的二次函数,其图象经过(0,1),则a 的值为( )A .a =±1B .a =1C .a =−1D .无法确定13.抛物线 y =−3x 2+6x +2 的对称轴是( )A .直线 x =2B .直线 x =−2C .直线 x =1D .直线 x =−114.已知二次函数y =3x 2+2x−1,把图象向右平移n 个单位长度后,使两个函数图象与x 轴的交点中,相邻的两个交点之间的距离都相等,则n 的值为( )A .43B .83C .23或83D .43或8315.已知一个二次函数y =a x 2+bx +c 的自变量x 与函数y 的几组对应值如下表,x …−4−2035…y…−24−80−3−15…则下列关于这个二次函数的结论正确的是( )A.图象的开口向上B.当x>0时,y的值随x的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线x=116.直线y=ax+b与抛物线y=a x2+bx+b在同一坐标系里的大致图象正确的是()A.B.C.D.四、解答题17.已知二次函数过点A(0,−2),B(−1,0),C(2,0).(1)求此二次函数的解析式;(2)当x为何值时,这个二次函数取到最小值?并求出这个最小值.18.已知二次函数y=x2−4x+1.(1)将该二次函数化成y=a(x+ℎ)2+k的形式.(2)自变量x在什么范围内时,y随x的增大而增大?19.在平面直角坐标系中,已知抛物线y=a x2−2a2x−3(a≠0).(1)若a=1,当−2<x<3时,求y的取值范围;(2)已知点A(2a−1,y1),B(a,y2),C(a+2,y3)都在该抛物线上,若(y1−y3)(y3−y2)>0,求a 的取值范围.20.在平面直角坐标系xOy中,已知抛物线y=x2−2tx+t2−t.(1)求抛物线的顶点坐标(用含t的代数式表示);(2)点P(x1,y1),Q(x2,y2)在抛物线上,其中t−1≤x1≤t+2,x2=1−t.①若y1的最小值是−2,求y1的最大值;②若对于x1,x2,都有y1<y2,求t的取值范围.21.若一个函数的解析式等于另两个函数解析式的和,则这个函数称为另两个函数的“生成函数”.现有关于x的两个二次函数y1,y2,且y1=a(x−m)2+4(m>0),y1,y2的“生成函数”为:y=x2+4x+14;当x=m时,y2=15;二次函数y2的图象的顶点在y轴上.(1)求m的值;(2)求二次函数y1,y2的解析式.22.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使得利润最大?小明同学,为了完成以上问题,小明分析:调整价格包括涨价和降价两种情况.小明先探索了涨价的情况,下面是小明的思路,请你帮助小明完善以下内容:(1)假设每件涨价x元,则所得利润y与x的函数关系式为 ;其中x的取值范围是 ;在涨价的情况下,定价 元时,利润最大,最大利润是 .(2)请你参考小明(1)的思路继续思考,在降价的情况下,求最大利润是多少?(3)在(1)(2)的讨论及现在的销售情况,回答商家如何定价能使利润能达到最大?23.在平面直角坐标系中,二次函数y=−x2+bx+c(b、c为常数)的图象经过点A(3,0)和点B(0,3 ).(1)求这个二次函数的表达式.(2)当0≤x≤m+1时,二次函数y=−x2+bx+c的最大值与最小值的差为1,求m的取值范围.(3)当m≤x≤m+1(m>0)时,设二次函数y=−x2+bx+c的最大值与最小值的差为ℎ,求ℎ与m之间的函数关系式.(4)点P在直线x=m上运动,若在坐标平面内有且只有两个点P使△PAB为直角三角形,直接写出m 的取值范围.答案解析部分1.【答案】C 2.【答案】D 3.【答案】D 4.【答案】B 5.【答案】D 6.【答案】27.【答案】88.【答案】−12<m <09.【答案】2010.【答案】(32,87)11.【答案】(1)−16(2)−3<m <−112.【答案】C 13.【答案】C 14.【答案】D 15.【答案】D 16.【答案】D17.【答案】(1)y =x 2−x−2(2)当x =12时,y 的最小值为−9418.【答案】(1)y =(x−2)2−3(2)当x >2时,y 随x 的增大而增大19.【答案】(1)解:当a =1时,y =x 2−2x−3,抛物线开口向上,对称轴为直线x =1,x =−2比x =3距离对称轴远,∴x =1时,y =1−2−3=−4为函数最小值,当x =−2时,y =4+4−3=5为函数最大值,∴当−2<x <3时,−4≤y <5;(2)解:∵对称轴为直线x =a ,∴当a >0时,抛物线开口向上,函数有最小值y 2,∴y3−y2>0,∵(y1−y3)(y3−y2)>0,∴y1−y3>0,即y1>y3,∴|2a−1−a|>|a+2−a|,解得a>3,当a<0时,抛物线开口向下,函数有最大值y2,∴y3−y2<0,∵(y1−y3)(y3−y2)>0,∴y1−y3<0,即y1<y3,∴|2a−1−a|>|a+2−a|,解得a<−1,∴a的取值范围是a>3或a<−1.20.【答案】(1)(t,−t)(2)①2;②t<−12或t>32.21.【答案】(1)m=1(2)y1=−2(x−1)2+4;y2=3x2+1222.【答案】(1)y=−10x2+100x+6000;0⩽x⩽30;65;6250元(2)解:设每件降价x元,则每星期售出商品的利润w元,则w=(20−x)(300+20x)=−20x2+100x+6000,∵函数的对称轴为x=−1002×(−20)=2.5,∴当x=2.5(元)时,则w=−20×2.52+100×2.5+6000=6125(元);(3)解:∵6250>6125,∴用涨价方式比降价方式获得利润大,当定价为65元时,利润最大.23.【答案】(1)解:将A(3,0)、B(0,3)代入y=−x2+bx+c中,得{−9+3b+c=0,c=3.解得{b=2,c=3.∴y=−x2+2x+3.(2)解:∵函数图象的顶点坐标为(1,4),∴点B(0,3)关于对称轴直线x=1的对称点的坐标为(2,3),4−3=1.∴1≤m+1≤2,∴0≤m≤1(3)解:当0<m ≤12时,ℎ=4−(−m 2+2m +3)=m 2−2m +1.当12<m ≤1时,ℎ=4−(−m 2+4)=m 2.当m >1时,ℎ=−m 2+2m +3−(−m 2+4)=2m−1.(4)m =0或m =3或m <3−322或m >3+322.。
二次函数单元测试卷一、选择题(每题3分,共30分)1.下列各式中,y是x的二次函数的是( )A.y=1x2B.y=x2+1x+1C.y=2x2−1D.y=x2−12.一个二次函数图象的顶点坐标是(2,4),且过另一点(0,−4),则这个二次函数的解析式为( )A.y=−2(x+2)2+4B.y=2(x+2)2−4C.y=−2(x−2)2+4D.y=2(x−2)2−43.已知A(−1,y1),B(1,y2),C(3,y3)三点都在抛物线y=x2−3x+m上,则y1、y2、y3的大小关系为( )A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y2<y14.将抛物线y=3x2+2先向左平移2个单位长度,再向下平移3个单位长度,则得到的抛物线的解析式为( )A.y=3(x−2)2−1B.y=3(x−2)2+5C.y=3(x+2)2−1D.y=3(x+2)2+55.在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是( )A.B.C.D.6.若m<n<0,且关于x的方程a x2−2ax+3−m=0(a<0)的解为x1,x2(x1<x2),关于x的方程a x2−2ax+3−n=0(a<0)的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x27.已知二次函数y=a x2+bx+c满足以下三个条件:①b2a>4c,②a−b+c<0,③b<c,则它的图象可能是( )A.B.C.D.8.小明在解二次函数y=a x2+bx+c时,只抄对了a=1,b=4,求得图象过点(−1,0).他核对时,发现所抄的c比原来的c值大2.则抛物线与x轴交点的情况是( )A.只有一个交点B.有两个交点C.没有交点D.不确定9.已知二次函数y=x2−bx+1,当−32≤x≤12时,函数y有最小值12,则b的值为( )A.−2或32B.−116或32C.±2D.−2或−11610.如图,把二次函数y=a x2+bx+c(a≠0)的图象在x轴上方的部分沿着x轴翻折,得到的新函数叫做y=a x2+bx+c(a≠0)的“陷阱”函数.小明同学画出了y=a x2+bx+c(a≠0)的“陷阱”函数的图象,如图所示并写出了关于该函数的4个结论,其中正确结论的个数为( )①图象具有对称性,对称轴是直线x=1;②由图象得a=1,b=−2,c=−3;③该“陷阱”函数与y轴交点坐标为(0,−3);④y=−a x2−bx−c(a≠0)的“陷阱”函数与y=a x2+bx+c(a≠0)的“陷阱”函数的图象是完全相同的.A.1B.2C.3D.4二、填空题(每题4分,共24分)11.若y=(m2+m)x m2+1−x+3是关于x的二次函数,则m= .12.如图所示,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx.小强骑自行车从拱梁一端沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 s. 13.二次函数y=ax2+bx+c的图象与x轴交于A,B两点,顶点为C,其中点A,C坐标如图所示,则一元二次方程ax2+bx+c=0的根是 第12题图第13题图第16题图14.若把二次函数y=x2−2x−2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k= .15.y关于x的二次函数y=a x2+a2,在−1≤x≤1时有最大值6,则2a= .16.如图,在平面直角坐标系中,抛物线y=1x2−3x与x轴的正半轴交于点E.矩形ABCD2的边AB在线段OE上,点C、D在抛物线上,则矩形ABCD周长的最大值为 .三、综合题(17-20、22每题6分,21、23每题8分,共46分)17.已知点M为二次函数y=−(x−m)2+4m+1图象的顶点,直线y=kx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由;(2)如图,若二次函数图象也经过点A,B,且kx+5>−(x−m)2+4m+1,根据图象,直接写出x的取值范围.18.如图,二次函数y=a x2+2ax+c的图象与x轴交于A,B两点(点A在点B的左侧),与y轴正半轴交于点C,且OA=OC=3.(1)求二次函数及直线AC的解析式.(2)P是抛物线上一点,且在x轴上方,若∠ABP=45°,求点P的坐标.19.为了振兴乡村经济,增加村民收入,某村委会干部带领村民把一片坡地改造后种植了优质葡萄,今年正式上市销售,并在网上直播推销优质葡萄.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y={mx−76m(1≤x<20,x为正整数),n(20≤x≤30,x为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售葡萄的成本是18元/千克,每天的利润是W元.(1)m= ,n= ;(2)销售优质葡萄第几天时,当天的利润最大?最大利润是多少?20.如图,△ABC中,AC=BC,∠ACB=90°,A(−2,0),C(6,0),反比例函数y=kx (k≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=kx(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.21.如图,已知二次函数y=a x2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=a x2+2x+c的表达式;(2)连接PO,PC,并把ΔPOC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.22.根据以下素材,探索完成任务.如何设计跳长绳方案素材1图1是集体跳长绳比赛,比赛时,各队跳绳10人,摇绳2人,共计12人.图2是绳甩到最高处时的示意图,可以近似的看作一条抛物线,正在甩绳的甲、乙两位队员拿绳的手间距6米,到地面的距离均为1米,绳子最高点距离地面2.5米.素材2某队跳绳成员有6名男生和4名女生,男生身高1.70米至1.80米,女生身高1.66米至1.68米.跳长绳比赛时,可以采用一路纵队或两路纵队并排的方式安排队员位置,但为了保证安全,人与人之间距离至少0.5米.问题解决任务1确定长绳形状在图2中建立合适的直角坐标系,并求出抛物线的函数表达式.任务2探究站队方式当该队以一路纵队的方式跳绳时,绳子能否顺利的甩过所有队员的头顶?任务3拟定位置方案为了更顺利的完成跳绳,现按中间高两边低的方式居中安排站位.请在你所建立的坐标系中,求出左边第一位跳绳队员横坐标的最大取值范围.23.如图,对称轴为直线x=−1的抛物线y=a x2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(−3,0),且点(2,5)在抛物线y=a x2+bx+c上.(1)求抛物线的解析式;(2)点C为抛物线与y轴的交点;①点P在抛物线上,且S△POC=4S△BOC,求点P点坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析部分1.【答案】C2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】A10.【答案】C11.【答案】112.【答案】3613.【答案】x1=-2,x2=114.【答案】-215.【答案】2或−616.【答案】1317.【答案】(1)解:点M在直线y=4x+1上,∵y=−(x−m)2+4m+1,∴点M坐标为(m,4m+1),把x=m代入y=4x+1上得y=4m+1,∴点M(m,4m+1)在直线y=4x+1上;(2)解:把x=0代入y=kx+5,可得y=5,∴点B坐标为(0,5),把(0,5)代入y=−(x−m)2+4m+1,可得5=−m2+4m+1,解得m1=m2=2,∴y=−(x−2)2+9,把y=0代入y=−(x−2)2+9,可得0=−(x−2)2+9,解得x1=−1,x2=5,∵点A在x轴正半轴上,∴点A坐标为(5,0),∴x<0或x>5时,kx+5>−(x−m)2+4m+1.18.【答案】(1)解:∵OA=OC=3,∴点A(−3,0),C(0,3),∴{9a−6a+c=0c=3,解得{a=−1c=3,∴二次函数的解析式为y=−x2−2x+3,设直线AC的解析式为y=kx+b(k≠0),将点A(−3,0),C(0,3)代入,得{−3k+b=0b=3,解得{k=1b=3,∴直线AC的解析式为y=x+3;(2)解:如图,过点B作BP⊥AC交抛物线于点P,∵OA=OC,OA⊥OC,∴∠CAB=45°,∴∠ABP=45°,∴直线PB可以看作由直线y=-x向右平移得到,∴设PB的解析式为y=−x+m,∵二次函数的表达式为y=−x2−2x+3,令y=0,即−x2−2x+3=0,解得x1=−3,x2=1,∴点B(1,0),代入y=−x+m,得m=1,∴PB的解析式为y=−x+1,联立得{y=−x2−2x+3y=−x+1,解得{x=1y=0或{x=−2 y=3,∴点P的坐标为(−2,3).19.【答案】(1)−12;25(2)解:由(1)知第x天的销售量为20+4(x−1)=(4x+16)千克.当1≤x<20时,W=(4x+16)(−12x+38−18)=−2x2+72x+320=−2(x−18)2+968,∴当x=18时,W取得最大值,最大值为968.当20≤x≤30时,W=(4x+16)(25−18)=28x+112.∵a=28>0,∴W随x的增大而增大,∴W最大=28×30+112=952.∵968>952,∴当x=18时,W最大=968.答:销售优质葡萄第18天时,当天的利润最大,最大利润是968元.20.【答案】(1)解:∵A(−2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∵∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(−2,0),B(6,8)代入y=ax+b,得{a=1,b=2.∴直线AB的函数表达式为y=x+2.将点D(m,4)代入y=x+2,得m=2.∴D(2,4).将D(2,4)代入y=kx,得k=8.(2)解:延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°.∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°.∵AB∥MP,∴∠MPL=∠BLP=45°,∴∠QMP=∠QPM=45°,∴QM=QP.设点P 的坐标为(t ,8t),(2<t <6),则PQ =t ,PN =6−t .∴MQ =PQ =t .∴S △PMN =12⋅PN ⋅MQ =12⋅(6−t)⋅t =−12(t−3)2+92.∴当t =3时,S △PMN 有最大值92,此时P(3,83).21.【答案】(1)解:将点B 和点C 的坐标代入 y =a x 2+2x +c ,得 {c =39a +6+c =0 ,解得 a =−1 , c =3 .∴ 该二次函数的表达式为 y =−x 2+2x +3 .(2)解:若四边形POP′C 是菱形,则点P 在线段CO 的垂直平分线上;如图,连接PP′,则PE ⊥CO ,垂足为E ,∵ C (0,3),∴ E(0, 32 ),∴ 点P 的纵坐标等于 32 .∴−x 2+2x +3=32 ,解得 x 1=2+102, x 2=2−102(不合题意,舍去),∴ 点P 的坐标为( 2+102, 32 ).(3)解:过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (m , −m 2+2m +3 ),设直线BC 的表达式为 y =kx +3 ,则 3k +3=0 , 解得 k =−1 .∴直线BC 的表达式为 y =−x +3 .∴Q 点的坐标为(m , −m +3 ),∴QP =−m 2+3m .当 −x 2+2x +3=0 ,解得 x 1=−1,x 2=3 ,∴ AO=1,AB=4,∴ S 四边形ABPC =S △ABC +S △CPQ +S △BPQ= 12AB ⋅OC +12QP ⋅OF +12QP ⋅FB = 12×4×3+12(−m 2+3m)×3当 m =32时,四边形ABPC 的面积最大.此时P 点的坐标为 (32,154) ,四边形ABPC 的面积的最大值为 758.22.【答案】解:任务一:以左边摇绳人与地面的交点为原点,地面所在直线为 x 轴,建立直角坐标系,如图:由已知可得, (0,1) , (6,1) 在抛物线上,且抛物线顶点的纵坐标为 2.5 ,设抛物线解析式为 y =a x 2+bx +c ,∴{c =136a +6b +c =14ac−b 24a=52 ,解得 {a =−16b =1c =1,∴抛物线的函数解析式为 y =−16x 2+x +1 ;任务二:∵y =−16x 2+x +1=−16(x−3)2+52,∴抛物线的对称轴为直线 x =3 ,10 名同学,以直线 x =3 为对称轴,分布在对称轴两侧,男同学站中间,女同学站两边,对称轴左侧的 3 位男同学所在位置横坐标分布是 3−0.5×12=114 , 114−0.5=94和 94−0.5=74,当 x =74 时, y =−16×(74−3)2+52=21596≈2.24>1.8 ,∴绳子能顺利的甩过男队员的头顶,同理当 x =34 时, y =−16×(34−3)2+52=5332≈1.656<1.66 ,∴绳子不能顺利的甩过女队员的头顶;∴绳子不能顺利的甩过所有队员的头顶;任务三:两路并排,一排 5 人,当 y =1.66 时, −16x 2+x +1=1.66 ,解得 x =3+3145 或 x =3−3145,但第一位跳绳队员横坐标需不大于 2 (否则第二、三位队员的间距不够 0.5 米)∴3−3145<x ≤2 .23.【答案】(1)解:∵抛物线的对称轴为直线x =−1,又∵点A(−3,0)与(2,5)在抛物线上,∴{9a−3b +c =04a +2b +c =5−b 2a=−1,解得{a =1b =2c =−3,∴抛物线的解析式为y =x 2+2x−3;(2)解:①由(1)知,二次函数的解析式为y =x 2+2x−3,∴抛物线与y 轴的交点C 的坐标为(0,−3),与x 轴的另一交点为B(1,0),则OC =3,OB =1,设P 点坐标为(x ,x 2+2x−3),∵S △POC =4S △BOC ,∴12×3×|x|=4×12×3×1,∴|x|=4,则x =±4,当x =4时,x 2+2x−3=16+8−3=21,当x =−4时,x 2+2x−3=16−8−3=5,∴点P 的坐标为(4,21)或(−4,5);②如图,设直线AC 的解析式为y =kx +t ,将A(−3,0),C(0,−3)代入得{−3k +t =0t =−3,解得{k =−1t =−3,∴直线AC 的解析式为y =−x−3,设Q 点坐标为(x ,−x−3),−3≤x ≤0,则D 点坐标为(x ,x 2+2x−3),∴QD =(−x−3)−(x 2+2x−3)=−x 2−3x =−(x +32)2+94,∴当x =−32时,线段QD 的长度有最大值94.。
浙教版九年级数学上册第一章二次函数检测题含答案第1章二次函数检测卷一、选择题(本大题共10小题,每小题4分,共40分) 1.下列各点不在抛物线y=x2-2图象上的是( ) A.(-1,-1) B.(2,2) C.(-2,0) D.(0,-2)2.二次函数y=(x-3)(x+2)的图象的对称轴是( ) A.x=3 B.x=-2 C.x=-12 D.x=123.抛物线y=-3x2+2x-1与坐标轴的交点个数为( )A.0个B.1个C.2个D.3个4.童装专卖店销售一种童装,若这种童装每天获利y(元)与销售单价x(元)满足关系y=-x2+50x-500,若要想获得最大利润,则销售单价x为( )A.25元B.20元C.30元D.40元5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )第5题图A.a>0B.当-1<x<3时,y>0C.c<0D.当x≥1时,y随x的增大而增大6.若A(-134,y1)、B(-1,y2)、C(53,y3)为二次函数y=-x2-4x+k的图象上的三点,则y1、y2、y3的大小关系是( )A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y37.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为( )A.y=2(x+3)2+4 B.y=2(x+3)2-4C.y=2(x-3)2-4 D.y=2(x-3)2+48.若二次方程(x-a)(x-b)-2=0的两根是m,n,且a<b,m<n,则实数a,b,m,n的大小关系是( ) A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b9.(资阳中考)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:第9题图①4ac-b2<0;②4a+c<2b;③3b+2c<0;④m(am +b)+b<a(m≠-1),其中正确结论的个数是( ) A.4个B.3个C.2个D.1个10.如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:第10题图①无论x取何值,y2的值总是正数;②a=1;③当x =0时,y2-y1=4;④2AB=3AC;其中正确结论是( ) A.①②B.②③C.③④D.①④二、填空题(本大题共6小题,每小题5分,共30分) 11.抛物线y=49(x-3)2与x轴的交点为A,与y轴的交点为B,则△AOB的面积为______.12.某二次函数的图象与x轴交于点(-1,0),(4,0),且它的形状与抛物线y=-x2形状相同.则这个二次函数的解析式为____ .13.某人乘雪橇沿如图所示的斜坡笔直滑下,滑下的路程s(米)与时间t(秒)间的关系式为s=10t+t2,若滑到坡底的时间为2秒,则此人下滑的高度为____米.第13题图14.如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是____.第14题图15.(荆州中考)若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为.16.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:x …-1 0 1 3 …y …-1 3 5 3 …下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小;③3是方程ax2+(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的是____.三、解答题(本大题共8小题,共80分)17.(8分)已知二次函数y=-x2+4x-3,其图象与y轴交于点B,与x轴交于A,C两点.求△ABC的周长和面积.18.(8分)在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.第18题图19.(8分)在关于x,y的二元一次方程组x+2y=a,2x-y=1中.(1)若a=3,求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最值.20.(8分)在平面直角坐标系中,△AOB的位置如图所示.已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).第20题图(1)求点B的坐标;(2)求过A,O,B三点的抛物线的函数表达式;(3)设点B关于抛物线的对称轴l的对称点为B′,求△AB′B的面积.21.(10分)某校九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运动的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1米处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?第21题图22.(12分)(衢州中考)已知二次函数y=x2+x的图象,如图所示.(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1);(2)在同一直角坐标系中画出一次函数y=12x+32的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值;(3)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=12x+32的图象上,请说明理由.第22题图23.(12分)某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个) …30 40 50 60 …销售量y(万个) … 5 4 3 2 …同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式;(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?24.(14分)如图,抛物线y=ax2+bx与x轴交于O、A两点,与直线y=x交于点B,点A、B的坐标分别为(3,0)、(2,2).点P在抛物线上,过点P作y轴的平行线交射线OB于点Q,以PQ为边向右作矩形PQMN,且PN=1,设点P的横坐标为m(m>0,且m≠2).第24题图(1)求这条抛物线的解析式;(2)求矩形PQMN的周长C与m之间的函数关系式;(3)当矩形PQMN是正方形时,求m的值.活页参考答案上册第1章二次函数检测卷1.C 2.D 3.B 4.A 5.B 6.C 7.A 8.A 9.B 10.D11.612.y=-x2+3x+4或y=x2-3x-413.1214.-215.-1或2或116.①③④17.令x=0,得y=-3,故B点坐标为(0,-3),解方程-x2+4x-3=0,得x1=1,x2=3.故A、C两点的坐标为(1,0),(3,0).所以AC=3-1=2,AB=12+32=10,BC=32+32=32,OB=│-3│=3.C△ABC =AB+BC+AC=2+10+32;S△ABC=12AC•OB=12×2×3=3.18.(1)y=(x-1)2-4,即y=x2-2x-3; (2)令y=0,得x2-2x-3=0,解方程,得x1=-1,x2=3.所以二次函数图象与x轴的两个交点坐标分别为(3,0)和(-1,0).所以二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x轴的另一个交点坐标为(4,0).19.(1)a=3时,方程组为x+2y=3①,2x-y=1②;②×2得,4x-2y=2③,①+③得,5x=5,解得x =1,把x=1代入①得,1+2y=3,解得y=1,所以,方程组的解是x=1,y=1;(2)方程组的两个方程相加得,3x+y=a+1,所以S=a(3x+y)=a(a+1)=a2+a,所以,当a=-12×1=-12时,S有最小值.20.第20题图(1)过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C,D,则∠ACO=∠ODB=90°,∴∠AOC+∠OAC =90°.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∴∠OAC=∠BOD.又∵AO=BO,∴△ACO≌△ODB(AAS).∴OD=AC=1,DB=OC=3.∴点B的坐标为(1,3);(2)∵抛物线过原点,∴可设抛物线的函数表达式为y=ax2+bx.将点A(-3,1),B(1,3)的坐标代入,得9a-3b=1,a+b=3,解得a=56,b=136.∴所求抛物线的函数表达式为y=56x2+136x; (3)由(2)得,抛物线的对称轴为直线x=-1310,点B的坐标为(1,3),∴点B′的坐标为-185,3.设BB′边上的高为h,则h=3-1=2.|BB′|=1+185=235.∴S △AB′B=12BB′•h=12×235×2=235. 21.(1)根据题意可知,抛物线经过(0,209),顶点坐标为(4,4),则可设其解析式为y=a(x-4)2+4,解得a=-19.则所求抛物线的解析式为y=-19(x-4)2+4.又篮圈的坐标是(7,3),代入解析式得,y=-19(7-4)2+4=3.所以能够投中;(2)当x=1时,y=3,此时3.1>3,故乙队员能够拦截成功.22.(1)∵令y=0得:x2+x=0,解得:x1=0,x2=-1,∴抛物线与x轴的交点坐标为(0,0),(-1,0).作直线y=1,交抛物线于A、B两点,分别过A、B两点,作AC⊥x轴,垂足为C,BD⊥x轴,垂足为D,点C 和点D的横坐标即为方程的根.根据图1可知方程的解为x1≈-1.6,x2≈0.6;(2)∵将x=0代入y=12x +32得y=32,将x=1代入得:y=2,∴直线y=12x +32经过点(0,32),(1,2).直线y=12x+32的图象如图2所示,由函数图象可知:当x<-1.5或x>1时,一次函数的值小于二次函数的值;(3)先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标为P(-1,1).平移后的表达式为y=(x+1)2+1,即y=x2+2x+2.点P在y=12x+32的函数图象上.理由:∵把x=-1代入得y=1,∴点P的坐标符合直线的解析式.∴点P在直线y=12x+32的函数图象上.第22题图23.(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则30a+b=5,40a+b =4,解得:a=-110,b=8.∴函数解析式为:y=-110x+8; (2)根据题意得:z =(x-20)y-40=(x-20)(-110x+8)-40=-110x2+10x-200=-110(x2-100x)-200=-110[(x-50)2-2500]-200=-110(x-50)2+50,∵-110<0,∴x =50,z最大=50.∴该公司销售这种计算器的净得利润z与销售价格x的函数解析式为z=-110x2+10x -200,销售价格定为50元/个时净得利润最大,最大值是50万元;第23题图(3)当公司要求净得利润为40万元时,即-110(x-50)2+50=40,解得:x1=40,x2=60.作函数图象的草图,通过观察函数y=-110(x-50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y =-110x+8,y随x的增大而减少,∴若还需考虑销售量尽可能大,销售价格应定为40元/个.24.(1)把A(3,0)、B(2,2)两点坐标代入y=ax2+bx,得9a+3b=0,4a+2b=2,计算得出a=-1,b=3.故抛物线所对应的函数表达式为y=-x2+3x. (2)∵点P在抛物线y=-x2+3x上,∴可以设P(m,-m2+3m),∵PQ∥y轴,∴Q(m,m).①当0<m<2时,如图1中,PQ=-m2+3m-m=-m2+2m,C=2(-m2+2m)+2=-2m2+4m+2. ②当m>2时,如图2中,PQ=m-(-m2+3m)=m2-2m,C=2(m2-2m)+2=2m2-4m+2. (3)∵矩形PQMN是正方形,∴PQ=PN=1,当0<m<2时,如图3中,-m2+2m=1,计算得出m=1.当m>2时,如图4中,m2-2m=1,计算得出m=1+2(或1-2不合题意舍弃).第24题图。
浙教版九年级上册数学二次函数一、单选题1.二次函数得顶点坐标是()A.B.C.D.2.二次函数y=x2﹣6x﹣4的顶点坐标为()A.(3,5)B.(3,﹣13)C.(3,﹣5)D.(3,13)3.抛物线经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①;②>;③若n>m>0,则时的函数值小于时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个4.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①2a+b>0;②a+c<0;③4a+2b+c>0;④b2﹣5a2>2ac.其中正确的是()A.①②B.③④C.②③④D.①②③④5.飞机着陆后滑行的距离s(米)关于滑行的时间t(米)的函数解析式是s=60t﹣1.5t2,则飞机着陆后滑行到停止下列,滑行的距离为()A.500米B.600米C.700米D.800米6.已知二次函数(其中m>0),下列说法正确的是()A.当x>2时,都有y随着x的增大而增大B.当x<3时,都有y随着x的增大而减小C.若x<n时,都有y随着x的增大而减小,则D.若x<n时,都有y随着x的增大而减小,则7.已知:二次函数,其中正确的个数为()①当时,y随x的增大而减小;②若图象与x轴有交点,则;③当时,不等式的解集是;④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则 .A.1个B.2个C.3个D.4个8.二次函数的图象如图所示,则点在()A.第一象限B.第二象限C.第三象限D.第四象限9.新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.10.如图,二次函数(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②>4a,③0<b<1,④当x>﹣1时,y>0,其中正确结论的个数是()A.4个B.3个C.2个D.1个11.已知直线y=kx+b经过点A(0,6),且平行于直线y=-2x.(1)求该函数的解析式,并画出它的图象;(2)如果这条直线经过点P(m,2),求m的值;(3)若O为坐标原点,求直线OP的解析式;(4)求直线y=kx+b和直线OP与坐标轴所围成的图形的面积.。
浙教版九年级上册单元练习《第1章二次函数》一、选择题1.若二次函数y=(m+1)x2+m2﹣2m﹣3的图象经过原点,则m的值必为()A.﹣1或3 B.﹣1 C.3 D.无法确定2.根据下列表格的对应值:x 3.23 3.24 3.25 3.26y=ax2+bx+c ﹣0.06 ﹣0.08 ﹣0.03 0.09判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解为x的取值范围是()A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.263.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t﹣4.9t2(t的单位:s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.0.71s B.0.70s C.0.63s D.0.36s4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;③b2﹣4ac>0,其中正确的个数是()A.0个B.1个C.2个D.3个5.函数y=ax2+bx+c的图象如图所示,那么关于一元二次方程ax2+bx+c﹣2=0的根的情况是()A.有两个不相等的实数根 B.有两个异号的实数根C.有两个相等的实数根D.没有实数根6.已知抛物线y=x2﹣2013x+2014与x轴的交点为(m,0),(n,0),则(m2﹣2013m+2014)+(n2﹣2013n+2014)的值是()A.0 B.2013 C.2014 D.2015二、填空题7.不论自变量x取什么实数,二次函数y=2x2﹣6x+m的函数值总是正值,你认为m的取值范围是,此时关于一元二次方程2x2﹣6x+m=0的解的情况是.三、解答题8.如图,一场篮球赛中,球员甲跳起投篮,已知球出手时离地面m,与篮圈中心的水平距离为7m,当球水平运行4m时达到离地面的最大高度4m.设篮球运行的轨迹为抛物线的一部分,篮圈距地面3m,在篮球比赛中,当进攻方球员要投篮时,仿守方球员常借身高优势及较强的弹跳封杀对方,这就是平常说的盖帽.(注:盖帽应在球达到最高点前进行,否则就是“干扰球”,属犯规.)(1)问此球能否投中?(2)此时,防守方球员乙前来盖帽,已知乙的最大摸球高度为3.19m,则他如何做才能成功?9.一个涵洞成抛物线形,它的截面如图.现测得,当水面宽AB=1.6m时,涵洞顶点O与水面的距离为2.4m.ED 离水面的高FC=1.5m,求涵洞ED宽是多少?是否会超过1m?(提示:设涵洞所成抛物线为y=ax2(a<0))10.利用图象解一元二次方程x2﹣2x﹣1=0时,我们采用的一种方法是:在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.(1)请再给出一种利用图象求方程x2﹣2x﹣1=0的解的方法;(2)已知函数y=x3的图象(如图),求方程x3﹣x﹣2=0的解.(结果保留2个有效数字)11.已知抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,0)、B(x2,0)(x1<x2),顶点M的纵坐标为﹣4,若x1、x2是方程x2﹣2(m﹣1)x+m2﹣7=0的两个根,且x21+x22=10.(1)求A、B两点的坐标;(2)求抛物线的解析式及点C的坐标;(3)在抛物线上是否存在点P,使三角形PAB的面积等于四边形ACMB的面积的2倍?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.12.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式;(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?初中数学试卷。
2021-2022学年浙教新版九年级上数学《二次函数》单元测试卷选择题1.若函数y=(,疟+巾)..^-2^1是二次函数,那么m的值是()A. 2B. - 1 或3C. 3D. -1±^22.函数y—ax2+bx+c(ci, b, c是常数)是二次函数的条件是()A.。
乂0, Z?尹0,。
乂0B. a<0, 乂0,。
乂0C. 3>0, Z?乂0, c乂0D. 617^03.二次函数y=ax1+bx+c的图象如图所示,根据图象可得a, b, c与0的大小关系是()A. a>0, b<0, cVOB. a>0, b>0, c>0C. a<0, b<0, c<0D. a<0, b>0, c<04.二次函数y= - (x- 2) 2 - 3的图象的顶点坐标是( )A. (2, 3)B. (2, - 3)C. ( -2, 3)D. (-2, -3)5.如图,当沥>0时,函数y=ax1与函数y=bx+a的图象大致是()6.若二次函数y= (m+1)x2 - iwc+m2 - 2m- 3的图象经过原点,则m的值必为()A. - 1 或3B. - 1C. 3D. -3或1A.开口向下B.顶点坐标是(1, 2)C.对称轴是直线x= - 1D.有最大值是29.如果函数y=(m-2) x m -2+2x-7是二次函数,则"Z的取值范围是()A. m= +2B. m=2C. m= -2D.机为全体实数10.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax1+c的图象大致为()二.填空题11.已知函数^= (m+2) x m(w+1)是二次函数,则秫=・12.如果函数、=(A-3)产'-3蚌2+版+1是二次函数,那么上的值一定是・13.若函数y=(m-3) x m'~7是二次函数,则成的值为.'214.若直线y=m (m为常数)与函数y=l ' 的图象恒有三个不同的交点,则常数4(X〉2)Xm的取值范围是.15.如图所示四个二次函数的图象中,分别对应的是®y=ax2;②y=*2;®y=cx1;®y=dx2.则。
浙教版初中数学九年级上册第一单元《二次函数》单元测试卷考试范围:第一章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列函数关系中是二次函数的是( )A. 正三角形面积S与边长a的关系B. 直角三角形两锐角A与B的关系C. 矩形面积一定时,长y与宽x的关系D. 等腰三角形顶角A与底角B的关系2.已知二次函数y=(k−3)x2+2x+1的图像与x轴有交点,则k的取值范围是( )A. k<4B. k≤4且k≠3C. k<4,且k≠3D. k≤43.对于关于x的函数y=(m+1)x m2−m+3x,下列说法错误的是( )A. 当m=−1时,该函数为正比例函数B. 当m2−m=1时,该函数为一次函数C. 当该函数为二次函数时,m=2或m=−1D. 当该函数为二次函数时,m=24.将抛物线y=x2+3x+2向右平移a单位正好经过原点,则a的值为( )A. a=1B. a=2C. a=−1或a=1D. a=1或a=25.二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是( )A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③b2−4ac>0;④a+b+c>0,其中正确的个数是( )A. 1B. 2C. 3D. 47.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8.抛物线y=x2−2x−3的顶点坐标是( )A. (1,−4)B. (2,−4)C. (−1,4)D. (−2,−3)9.二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b−2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个10.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是( )A. y=(200−5x)(40−20+x)B. y=(200+5x)(40−20−x)C. y=200(40−20−x)D. y=200−5x11.用长8米的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A. 64m225B. 4m23C. 83m2D. 4m212.已知二次函数y=x2−x+√28,若x=a时,y<0;则当x=a−1时,对应的函数值范围判断合理的是( )A. y<0B. 0<y<√28C. √28<y<16+√28D. y>4+√28第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.若y=(m−3)x2+3x−4是关于x的二次函数,则m的取值范围是.14.若函数y=−9(x+3)2+1−k的顶点在x轴上,则k=______.15.如图,在平面直角坐标系中,点A(2,4)在抛物线y=ax2上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为______ .16.如图,某扶贫单位为了提高贫困户的经济收入,购买了29m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个矩形养鸡舍,门MN宽1m,该鸡舍的最大面积可以达到m2.三、解答题(本大题共9小题,共72.0分。
【期末专题复习】浙教版九年级数学上册第一章二次函数单元检测试卷一、单选题(共10题;共30分)1.抛物线的对称轴是( )A. B. C. D.2.函数中是二次函数的为( )A. y=3x−1B. y=C.D.3.对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A. 它的图象与x轴有两个交点B. 方程x2﹣2mx=3的两根之积为﹣3C. 它的图象的对称轴在y轴的右侧D. x<m时,y随x的增大而减小4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:① b2-4ac>0 ② a>0 ③ b>0 ④ c>0⑤9a+3b+c<0,则其中结论正确的个数是()A. 2个B. 3个C. 4个D. 5个5.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是()A. b2>4acB. ax2+bx+c≤6C. 若点(2,m)(5,n)在抛物线上,则m>nD. 8a+b=06. 函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c-2=0的根的情况是()A. 有两个不相等的实数根B. 有两个异号的实数根C. 有两个相等的实数根D. 没有实数根7.将抛物线y=2x2﹣1,先向上平移2个单位,再向右平移1个单位后其顶点坐标是()A. (2,1)B. (1,2)C. (1,﹣1)D. (1,1)8.若点P1(1,y1),P2(2,y2),P3(1,y3),都在函数的图象上,则()A. y2<y1<y3B. y1<y2<y3C. y2>y1>y3D. y1>y2>y39.(2017•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个10.函数与的图象可能是().A. B.C. D.二、填空题(共10题;共30分)11.把抛物线先向左平移1个单位,再向下平移2个单位,平移后抛物线的表达式是________.12.请选择一组你喜欢的、、的值,使二次函数的图象同时满足下列条件:①开口向下,②对称轴是直线;③顶点在轴下方,这样的二次函数的解析式可以是________.13.用一根长为16cm的铁丝围成一个矩形,则围成矩形面积的最大值是________cm2.14.根据下列表格的对应值,判断ax2+bx+c=0 (a≠0,a,b,c为常数)的一个解x的取值范围是________15.已知二次函数的图象(0≤x≤3)如图所示,则当0≤x≤3时,函数值y的范围是________.16.若抛物线y=x2﹣2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为________.17.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则该函数的最小值是________18.将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是________.19.函数y=x,y=x2和y= 的图象如图所示,若x2>x>,则x的取值范围是________.20.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为﹣其中正确的结论个数有________ (填序号)三、解答题(共9题;共60分)21.已知函数y=(k﹣2)x k²﹣4k+5+2x是关于x的二次函数.求:(1)满足条件的k的值;(2)当k为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?22.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?23.根据下列要求,解答相关问题.请补全以下求不等式﹣2x2﹣4x>0的解集的过程.①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为多少?;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.24.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,求m的最大值.25.某商场销售某种品牌的手机,每部进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8部;而当销售价每降低50元时,平均每天就能多售出4部.(1)当售价为2800元时,这种手机平均每天的销售利润达到多少元?(2)若设每部手机降低x元,每天的销售利润为y元,试写出y与x之间的函数关系式.(3)商场要想获得最大利润,每部手机的售价应订为为多少元?此时的最大利润是多少元?26.在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.27.如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.28.公司投资750万元,成功研制出一种市场需求量较大的产品,并再投入资金1750万元进行相关生产设备的改进.已知生产过程中,每件产品的成本为60元.在销售过程中发现,当销售单价定为120元时,年销售量为24万件;销售单价每增加10元,年销售量将减少1万件.设销售单价为x(元)(x>120),年销售量为y(万件),第一年年获利(年获利=年销售额﹣生产成本)为z(万元).(1)求出y与x之间,z与x之间的函数关系式;(2)该公司能否在第一年收回投资.29.如图,已知抛物线经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B、C重合),过M作NM∥y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,是否存在点m,使△BNC的面积最大?若存在,求m的值和△BNC 的面积;若不存在,说明理由.答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】C4.【答案】B5.【答案】C6.【答案】A7.【答案】D8.【答案】C9.【答案】C10.【答案】B二、填空题11.【答案】12.【答案】(不唯一)13.【答案】1614.【答案】3.24<x<3.2515.【答案】﹣1≤y≤316.【答案】m>117.【答案】118.【答案】19.【答案】x>1或﹣1<x<020.【答案】①③④三、解答题21.【答案】解:(1)函数y=(k﹣2)x k²﹣4k+5+2x是关于x的二次函数,得,解得k=1或k=3;(2)当k=1时,函数y=﹣x2+2x有最高点;y=﹣(x﹣1)2+1,最高点的坐标为(1,1),当x<1时,y随x的增大而增大.22.【答案】解:设销售单价为x元,销售利润为y元.根据题意,得y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000 当x= =35时,才能在半月内获得最大利润.23.【答案】解:①图所示:;②方程﹣2x2﹣4x=0即﹣2x(x+2)=0,解得:x1=0,x2=﹣2;则方程的解是x1=0,x2=﹣2,图象如图1;③函数y=x2﹣2x+1的图象是:当y=4时,x2﹣2x+1=4,解得:x1=3,x2=﹣1.则不等式的解集是:x≥3或x≤﹣124.【答案】解:∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0.∵抛物线过原点所以c=0,∴=,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3.25.【答案】解:(1)当售价为2800元时,销售价降低100元,平均每天就能售出16部. 所以:这种手机平均每天的销售利润为:16×(2800-2500)=4800(元);(2)根据题意,得y=(2900-2500-x)(8+4×),即y=x2+24x+3200;(3)对于y=x2+24x+3200,当x==150时,y最大值=(2900-2500-150)(8+4×)=5000(元)2900-150=2750(元)所以,每台手机降价2750元时,商场每天销售这种手机的利润最大,最大利润是5000元.26.【答案】解:(1)∵二次函数图象的顶点为A(1,﹣4),∴设二次函数解析式为y=a(x﹣1)2﹣4,把点B(3,0)代入二次函数解析式,得:0=4a﹣4,解得:a=1,∴二次函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)令y=0,得x2﹣2x﹣3=0,解方程,得x1=3,x2=﹣1.∴二次函数图象与x轴的两个交点坐标分别为(3,0)和(﹣1,0),∴二次函数图象上的点(﹣1,0)向右平移1个单位后经过坐标原点.故平移后所得图象与x轴的另一个交点坐标为(4,0).27.【答案】解:△PBQ的面积S随出发时间t(s)成二次函数关系变化,∵在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,∴BP=12﹣2t,BQ=4t,∴△PBQ的面积S随出发时间t(s)的解析式为:y= (12﹣2t)×4t=﹣4t2+24t,(0<t<6)28.【答案】解:由题意得,y=24﹣,即y=﹣x+36,z=(x﹣60)(﹣x+36)=﹣x2+42x﹣2160;(2)z=﹣x2+42x﹣2160=﹣(x﹣210)2+2250,当x=210时,第一年的年最大利润为2250万元,∵2250<750+1750,∴公司不能在第一年收回投资.29.【答案】(1)解:∵抛物线经过点A(−1,0),B(3,0),C(0,3)三点,∴设抛物线的解析式为:y=a(x+1)(x−3),把C(0,3)代入得:3=a(0+1)(0−3),a=−1,∴抛物线的解析式:y=-x2+2x+3(2)解:设直线BC的解析式为:y=kx+b,把B(3,0),C(0,3)代入得:,解得:,∴直线BC的解析式为y=-x+3,∴M(m,-m+3),又∵MN⊥x轴,∴N(m,-m2+2m+3),∴MN=(-m2+2m+3)-(-m+3)=-m2+3m(0<m<3)(3)解:S△BNC=S△CMN+S△MNB=|MN|·|OB|,∴当|MN|最大时,△BNC的面积最大,MN=-m2+3m=-(m-)2+,所以当m=时,△BNC的面积最大为× ×3=。
浙教版数学九年级上册第一单元二次函数水平测试一、选择题(共10小题,每小题3分,共30分)1.如图,正方形ABOC 的边长为2,反比例函数ky x=的图象过点A ,则k 的值是( )A .2B .﹣2C .4D .﹣42.将二次函数2x y =的图象向下平移1个单位,则平移后的二次函数的解析式为( )。
A ,12-=x yB ,12+=x yC ,2)1(-=x yD ,2)1(+=x y3.矩形的长为x ,宽为y ,面积为9.则y 与x 之间的函数关系用图象表示大致为( )A .B .C .D .4. 二次函数21y ax bx =++(0a ≠)的图象的顶点在第一象限,且过点(1-,0). 设1t a b =++,则t 值的变化范围是( )A ,0<t <1B ,0<t <2C ,1<t <2D ,11t -<< 5.如图,正比例函数x k y 11=和反比例函数xky 22=的图象交于A(-1,2)、B (1,-2)两点。
若y 1<y 2,则x的取值范围是( )。
A 、x <-1或x >-1B x <-1或0<x <1 C-1<x <0或0<x <1 D -1<x <0或x >16.二次函数2()y a x m n =++的图象如图,则一次函数y mx n =+的图象经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 7.如图,点A 是反比例函数y =2x(x >0)的图象上任意一点,AB ∥x 轴交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D 在x 轴上,则S □ABCD为( ) A .2 B .3 C .4 D .58. 设二次函数c bx x y ++=2,当1≤x 时,总有0≥y ,当31≤≤x 时,总有0≤y ,那么c 的取值范围是( )A.3=cB.3≥cC.31≤≤cD.3≤c 9.反比例函数的两个点为、,且,则下式关系成立的是( )A . B . C . D .不能确定10.如图,已知抛物线y 1=-2x 2+2,直线y 2=2x +2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M = y 1=y 2.例如:当x =1时,y 1=0,y 2=4,y 1<y 2,此时M =0. 下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小;2y x=11(,)x y 22(,)x y 12x x >12y y >12y y <12y y =第7 A B O x3x 12③使得M 大于2的x 值不存在; ④使得M =1的x 值是 或 . 其中正确的是( )A. ①②B.①④C.②③D.③④二,填空题(共6小题,每小题4分,共24分)11.若反比例函数的图象经过点(1,4)P -,则它的函数关系式是 .12. 把二次函数2)1(2+-=x y 的图象绕原点旋转180°后得到的图象解析式为。
13.反比例函数的图象与一次函数的图象的一个交点是(1,),则反比例函数的解析式是 . 14.已知点A 、B在二次函数的图象上,若,则.15.有七张正面分别标有数字,,,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为,则使关于 的一元二次方程有两个不相等的实数根,且以为自变量的二次函数 的图象不经过...点(1,O)的概率是________. 16、如图,已知动点A 在函数4(0)y x x=>的图象上, AB x ⊥轴于点B ,AC y ⊥轴于点C ,延长CA 至点D ,使AD=AB ,延长 BA 至点E ,使AE=AC 。
直线DE 分别交x 轴于点P ,Q 。
当:4:9QE DP =时,图中阴影部分的面积等于_______三,解答题(共7题,共66分)17(本题8分) 如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数ky x=(k 为常数,且k ≠0)的图象 交于A ,B 两点,且点A 的坐标为(1-,4).(1)分别求出反比例函数及一次函数的表达式; (2)求点B 的坐标.18(本题8分)已知抛物线y =ax 2+bx +c 经过A (-1,0)、 B (3,0)、C (0,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时, 求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形?若存在,直接写出所有符合条件的 点M 的坐标;若不存在,请说明理由.ky =x 21y =x +k 3-2-1-a x 22(1)(3)0x a x a a --+-=x 22(1)2y x a x a =-+-+19.(本题8分))如图,等边△OAB 和等边△AFE 的一边都在x 轴上, 双曲线y =(k >0)经过边OB 的中点C 和AE 的中点D .已知等边 △OAB 的边长为4.(1)求该双曲线所表示的函数解析式; (2)求等边△AEF 的边长.20(本题10分)如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,二次函数c bxx y ++-=232的图象经过B 、C 两点. (1)求该二次函数的解析式;(2)结合函数的图象探索:当y >0时x 的取值范围.21(本题10分)..如图,等腰梯形ABCD 放置在平面直角坐标系中,已知A(-2,0)、B (6,0)、D (0,3),反比例函数的图象经过点C.(1)求点C 坐标和反比例函数的解析式;(2)将等腰梯形ABCD 向上平移m 个单位后,使点B 恰好落在曲线上,求m 的值. 22(本题10分)如图,一次函数122y x =-+分别交y 轴、x 轴于A 、B 两点,抛物线2y x bx c =-++过A 、B 两点。
(1)求这个抛物线的解析式;(2)作垂直x 轴的直线x=t ,在第一象限交直线AB 于M ,交这个抛物线于N 。
求当t 取何值时,MN 有最大值?最大值是多少? (3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标。
23.(本题12分)如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1,0),C (3,0),D (3,4).以A 为顶点的抛物线y=ax 2+bx+c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动.同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P ,Q 的运动速度均为每秒1个单位.运动时间为t 秒.过点P 作PE ⊥AB 交AC于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ⊥AD 于F ,交抛物线于点G ,当t 为何值时,△ACG 的面积最大?最大值为多少?(3)在动点P ,Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C ,Q ,E ,H 为顶点的四边形为菱形?请直接写出t 的值.参考答案:11.x y 4-= 12. 2)1(2-+-=x y 13. xy 3= 14. > 15. 16 313三,解答题()()()2,2224222,224,14)1(.17-∴⎪⎩⎪⎨⎧+-=-=+-=∴=∴+-=--=B x y x y x y b b x y A xy 上在解18.解:(1)将A (-1,0)、B (3,0)、C (0,3)代入抛物线y =ax 2+bx +c 中,得:,解得:∴抛物线的解析式:y =-x 2+2x +3.(2)连接BC ,直线BC 与直线l 的交点为P ;设直线BC 的解析式为y =kx +b ,将B (3,0),C (0,3)代入上式,得:,解得:∴直线BC 的函数关系式y =-x +3; 当x -1时,y =2,即P 的坐标(1,2). (3)抛物线的解析式为:x =-=1,设M (1,m),已知A (-1,0)、C (0,3),则:MA 2=m 2+4,MC 2=m 2-6m +10,AC 2=10;①若MA =MC ,则MA 2=MC 2,得:m 2+4=m 2-6m +10,得:m =1;②若MA =AC ,则MA 2=AC 2,得: m 2+4=10,得:m =±;③若MC =AC ,则MC 2=AC 2,得: m 2-6m +10=10,得:m =0,m =6;当m =6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,)(1,-)(1,1)(1,0).19.解:(1)过点C 作CG ⊥OA 于点G ,∵点C 是等边△OAB 的边OB 的中点, ∴OC =2,∠ AOB =60°,∴OG =1,CG =,∴点C 的坐标是(1,),由=,得:k =,∴该双曲线所表示的函数解析式为y =;(2)过点D 作DH ⊥AF 于点H ,设AH =a ,则DH =a .∴点D 的坐标为(4+a ,),∵点D 是双曲线y =上的点,由xy =,得(4+a )=,即:a 2+4a -1=0, 解得:a 1=-2,a 2=--2(舍去),∴AD =2AH =2-4,∴等边△AEF 的边长是2AD =4-8.20.(1)将B (2,2)C (0,2)代入,2424,2;2333b c y x x ===-++; (2)令y=0,求出与X 轴的交点坐标分别为(-1,0)、(时,13x -<<。
()()()()2,12,6212,3,41.21=∴='=m x y m B xy C 上在解22.解:(1)易得A (0,2),B (4,0) 将x=0,y=2代入22y x bx c c =-++=得 将x=4,y=0代入2y x bx c =-++得0=-16+4b+2,7,2,22c x =∴++27从而得b=y=-x 2(2)由题意易得217(,2),(,2)22M t t N t t t -+-++ 22712(2)422MN t t t t t =-++--+=-+从而 当2t =时,MN 有最大值4(3)、由题意可知,D 的可能位置有如图三种情形,当D 在y 轴上时,设D 的坐标为(0,a ) 由AD=MN 得1224,6,2a a a -===-解得, 从而D 为(0,6)或D (0,-2) 当D 不在y 轴上时,由图可知12D D N D M 为与的交点 易得126,2D N x D x +-13的方程为y=-M 的方程为y=22由两方程联立解得D 为(4,4)故所求的D 为(0,6),(0,-2)或(4,4)23,解:(1)A (1,4).由题意知,可设抛物线解析式为y=a (x ﹣1)2+4∵抛物线过点C (3,0),∴0=a (3﹣1)2+4,解得,a=﹣1,∴抛物线的解析式为y=﹣(x ﹣1)2+4,即y=﹣x 2+2x+3. (2)∵A (1,4),C (3,0),∴可求直线AC 的解析式为y=﹣2x+6. ∵点P (1,4﹣t ). ∴将y=4﹣t 代入y=﹣2x+6中,解得点E 的横坐标为x=1+.∴点G 的横坐标为1+,代入抛物线的解析式中,可求点G 的纵坐标为4﹣.∴GE=(4﹣)﹣(4﹣t )=t ﹣.又点A 到GE 的距离为,C 到GE 的距离为2﹣,即S △ACG =S △AEG +S △CEG =•EG •+•EG (2﹣)=•2(t ﹣)=﹣(t ﹣2)2+1.当t=2时,S △ACG 的最大值为1. (3)t=或t=20﹣8.初中数学试卷。