DWI和ADC原理及应用
- 格式:ppt
- 大小:1.71 MB
- 文档页数:21
磁共振弥散加权成像ADC值诊断胰腺癌的临床应用分析磁共振弥散加权成像(DWI)是一种以水分子在组织内部运动难易程度来反映组织形态与微环境的成像技术,其ADC值(apparent diffusion coefficient,表观扩散系数)作为定量参数已被广泛应用于临床医学。
胰腺癌是一种常见的消化系统恶性肿瘤,临床上早期诊断率不高,一旦晚期则预后较差。
磁共振弥散加权成像ADC值对于诊断胰腺癌有着很好的临床应用前景,下面将对磁共振弥散加权成像ADC值在胰腺癌诊断中的临床应用进行分析。
一、磁共振弥散加权成像(DWI)及ADC值的基本原理DWI技术是通过观察组织内水分子的微环境变化,来反映组织的形态与结构。
在DWI 图像上,组织中的水分子受到约束时,信号呈现亮信号(高信号),而当水分子受到约束程度减小时,信号呈现暗信号(低信号)。
ADC值则是通过对DWI图像中不同b值的信号进行定量分析得到的结果,其数值反映了水分子在组织内部的自由运动度,即水分子的扩散性。
ADC值越大,表示组织内水分子的自由度越高,反之则表示组织结构的变化或异常,因此ADC值对于反映组织的微环境与形态有着重要的临床意义。
胰腺癌的早期症状不典型,临床诊断难度较大,大部分患者在确诊时已经为晚期。
而DWI技术能够对组织的微结构变化进行敏感反映,ADC值可以反映组织水分子在微环境中的运动情况,因此对于早期胰腺癌的诊断有很好的帮助。
研究发现,常规磁共振成像对于直径小于2cm的胰腺癌诊断准确率不高,而结合DWI成像及ADC值测定则可提高诊断准确率,因此DWI及ADC值对早期胰腺癌的诊断具有很好的临床应用前景。
2. 判断肿瘤侵袭深度对于胰腺癌的治疗方案选择与预后判断而言,肿瘤的侵袭深度是一个很重要的临床参数。
DWI技术及ADC值可以对于判断胰腺癌的侵袭深度与生长模式提供很好的帮助。
研究显示,ADC值与肿瘤间质纤维化密切相关,ADC值低则意味着肿瘤组织特性中间质纤维化程度较高,侵袭性增加,这对于评估肿瘤的侵袭深度及治疗策略选择有着重要的指导意义。
磁共振弥散加权成像ADC值诊断胰腺癌的临床应用分析磁共振弥散加权成像(DWI)是一种新型的影像学技朮,可以用来评估组织中水分子的弥散情况。
ADC值(Apparent Diffusion Coefficient,表观弥散系数)是一种定量评价DWI影像的指标,可以反映组织中水分子的弥散程度。
近年来,磁共振弥散加权成像ADC值在临床上的应用越来越广泛,特别在胰腺癌的诊断中起到了重要作用。
本文将对磁共振弥散加权成像ADC值在胰腺癌诊断中的临床应用进行分析,并探讨其在临床实践中的意义及前景。
一、磁共振弥散加权成像ADC值原理磁共振弥散加权成像是基于不同组织中水分子的弥散情况对组织进行成像的一种技术。
而ADC值则是一种反映组织中水分子弥散度的定量指标,其数值越小表示组织中水分子的弥散程度越小,而数值越大表示组织中水分子的弥散程度越大。
ADC值的计算是基于DWI影像所获取到的信号强度,通过数学模型计算得到,能够客观地反映组织中水分子的弥散情况。
1. 提高胰腺癌的诊断准确性磁共振弥散加权成像ADC值可以客观地反映组织中水分子的弥散情况,胰腺癌组织中的细胞密度高、细胞膜通透性差,导致ADC值较低。
利用ADC值可以明显区分胰腺癌与正常胰腺组织,有助于提高胰腺癌的诊断准确性。
2. 监测胰腺癌治疗效果在胰腺癌治疗过程中,ADC值可以反映肿瘤组织的生物学活性和细胞密度变化,因此可以用于监测治疗效果。
研究表明,胰腺癌治疗后ADC值的改变与肿瘤的缩小或增大具有一定的相关性,通过监测ADC值的变化可以及时评估治疗效果,指导临床治疗。
3. 鉴别胰腺癌与胰腺炎胰腺癌与胰腺炎在临床上很容易混淆,磁共振弥散加权成像ADC值可以帮助鉴别二者。
研究表明,胰腺癌的ADC值通常较低,而胰腺炎的ADC值则较高,通过测量ADC值可以有效地区分胰腺癌和胰腺炎。
磁共振弥散加权成像ADC值在胰腺癌的诊断、治疗监测和鉴别诊断中具有重要的临床意义。
通过测量ADC值,可以为临床医生提供更多的客观资料,提高胰腺癌的诊断准确性和治疗效果评估的准确性。
DWI的原理及临床应用1. DWI简介扩散加权成像(Diffusion-Weighted Imaging,简称DWI)是一种基于核磁共振成像(Magnetic Resonance Imaging,简称MRI)的技术,它通过测量水分子在组织中的自由扩散,提供了关于组织微结构的信息。
DWI在医学影像学领域具有广泛的临床应用。
2. DWI的原理DWI是基于水分子的自由扩散现象来获取影像信息的。
水分子在组织中的自由扩散受到许多因素影响,例如细胞膜的完整性、细胞分布密度以及细胞内外溶液的分子浓度等。
DWI使用一种特殊的梯度来限制水分子的自由扩散,从而使得在某个方向上的水分子质量浓度的变化能够更容易地被检测到。
通过对不同方向上的梯度进行扫描和测量,可以获得组织中水分子自由扩散的信息。
3. DWI的临床应用DWI在临床应用中具有广泛的用途,以下是一些常见的应用。
3.1 脑卒中和脑损伤评估DWI可以用来评估脑卒中和脑损伤患者的病情。
脑卒中后,受损的脑组织中的水分子的自由扩散会受到限制,导致DWI图像上的信号改变。
通过对DWI图像的分析,可以帮助医生判断脑卒中患者的病情严重程度以及影响范围。
3.2 肿瘤检测和分析DWI可以用于肿瘤的检测和分析。
肿瘤组织中的细胞密度常常较高,导致水分子的自由扩散受到限制。
因此,DWI可以准确地检测出肿瘤的存在,并提供关于肿瘤的信息,例如肿瘤的大小、位置和形态。
3.3 炎症和感染的评估DWI也可以用于炎症和感染的评估。
炎症和感染通常导致组织细胞密度的增加,从而限制水分子的自由扩散。
通过对DWI图像进行分析,可以检测出炎症和感染的存在,并提供有关病情的额外信息。
3.4 白质疾病的诊断DWI是评估白质疾病的一种重要工具。
白质疾病是指影响脑的白质部分的一类疾病,例如白质卒中和多发性硬化症。
通过检测和分析DWI图像,可以帮助医生判断白质疾病的类型和程度。
3.5 弥漫性疾病的检测DWI还可以用于检测一些弥漫性疾病,如弥漫性肝病和弥漫性肾病。
磁共振的adc值概念
磁共振成像(MRI)中的ADC值指的是“Apparent Diffusion Coefficient(表观扩散系数)”。
ADC值是用来评估组织中水分子
扩散的速度和方向的参数,它是通过扩散加权成像(DWI)获得的。
DWI利用水分子在组织中的随机运动来生成图像,而ADC值则提供
了关于这种扩散运动的定量信息。
ADC值的概念与磁共振成像中的组织特性有关。
在ADC图像中,不同类型的组织会显示出不同的信号强度,这可以帮助医生诊断病
变或者评估组织的健康状况。
一般来说,组织中的水分子扩散速度
越快,ADC值就越高,反之则越低。
ADC值在临床上有着广泛的应用,特别是在神经科学和肿瘤学
领域。
在神经科学中,ADC值可以帮助医生评估脑部组织的健康状况,诊断脑梗死或者脑肿瘤等疾病。
而在肿瘤学中,ADC值可以用
来区分肿瘤组织和正常组织,评估肿瘤的侵袭性和治疗效果。
除了在临床诊断中的应用,ADC值也被用于科研领域。
科研人
员可以利用ADC值来研究不同疾病状态下组织的微观结构和生物学
特性,这有助于深入理解疾病的发病机制和病理生理过程。
总的来说,ADC值在磁共振成像中扮演着重要的角色,它提供了关于组织微观结构和健康状况的重要信息,对临床诊断和科研研究都具有重要意义。
希望这个回答能够从多个角度全面地解答你关于ADC值的问题。
dwi的原理及应用价值1. dwi的概述Diffusion weighted imaging(DWI)是一种用于检测水分子在体内扩散状态的成像技术。
它通过测量水分子扩散速率来提供关于组织微结构和功能的信息。
DWI 主要基于磁共振成像技术,通过对梯度强度进行环境控制,可以观察到水分子在组织中的自由扩散和限制扩散。
因此,DWI在医学领域的应用非常广泛,特别是在神经学、肿瘤学和心血管学等领域。
2. dwi的原理DWI的原理基于水分子的自由扩散和限制扩散。
在DWI图像中,水分子的自由扩散通过高强度信号表示,而限制扩散则通过低强度信号表示。
这种扩散现象与组织中的微结构有关,例如细胞膜、纤维束等,因此可以提供有关组织结构和功能的定量信息。
DWI图像的获取主要通过梯度强度的变化来控制,通常使用两个梯度脉冲进行测量。
第一个梯度脉冲用于标记水分子的起始位置,第二个梯度脉冲用于标记水分子的终点位置。
在获得了一系列梯度强度的图像之后,可以使用比较复杂的数学模型来计算水分子扩散的速率和方向。
3. dwi的应用价值3.1 神经学领域DWI在神经学领域的应用非常重要。
它可以用来检测和定位脑部损伤,如缺血性和出血性卒中、脑肿瘤等。
通过观察DWI图像中的水分子扩散情况,可以帮助医生判断患者的病情和制定相应的治疗方案。
此外,DWI还可以用于研究大脑功能连接。
通过观察不同脑区域间的水分子扩散情况,可以了解大脑的连接情况,并研究认知功能和神经系统疾病的发生机制。
3.2 肿瘤学领域DWI在肿瘤学领域有广泛的应用。
通过观察DWI图像中肿瘤周围的水分子扩散情况,可以帮助医生评估肿瘤的恶性程度和预测患者的预后。
此外,DWI还可以用于指导肿瘤的治疗计划,如放疗和手术。
3.3 心血管学领域在心血管学领域,DWI可以用于评估心肌梗死和心肌炎等心脏疾病。
通过观察DWI图像中心肌区域的水分子扩散情况,可以评估心肌的缺血和纤维化程度,并帮助医生制定相应的治疗方案。
弥散加权成像(DWI和ADC图)原理及临床应用转载自:熊猫放射什么是功能磁共振成像?以常规T1WI和T2WI为主的各种磁共振成像技术,主要显示人体器官或组织的形态结构及其信号强度变化,统称常规MRI检查或常规MR成像序列。
随着MRI系统硬件和软件的发展,相继出现了多种超快速成像序列(如EPI技术),单次采集数据的时间已缩短至毫秒。
以超快速成像序列为主的MRI检查,能够评价器官的功能状态,揭示生物体内的生理学信息,统称为功能磁共振成像,或功能性成像技术(functional imaging techniques)。
这些技术包括弥散加权成像(DWI)、灌注加权成像(PWI),脑功能成像(fMRI),心脏运动和灌注实时成像(real-time imaging),磁共振波谱成像(MRS),全身成像,磁共振显微成像等。
b因子在弥散加权成像中有何作用?弥散(diffusion)是描述水和其他小分子随机热运动(布朗运动)的术语。
宏观看,水分子的净移动可通过表观弥散系数(ADC)描述,并通过应用两个梯度脉冲测量,其成像机制与相位对比MRA类似。
DWI的信号强度变化取决于组织的ADC状态和运动敏感梯度(MPG)的强度。
MPG由b因子(即弥散梯度因子,又称b值)控制。
b因子实际上决定ADC参与构成图像对比度的份额,即弥散权重的程度。
在DWI扫描序列中,如果采用长TR和长TE,且b=0,将形成普通的T2WI对比(SE-EPI)或T2*WI对比(GRE-EPI)图像。
随着b 因子增大(通常为500~1000s/mm2),图像的对比度也由T2权重逐步向弥散权重转变。
当MR图像中病变组织的高信号并非由于T2时间延长,而是反映ADC降低时,就形成所谓的DWI。
是否开启MPG是DWI与常规MRI 的不同点。
如何分析DWI和ADC图?弥散加权序列扫描产生2种图像,即弥散图(DWI)和ADC图。
在弥散图中,病变或受损组织的信号强度往往高于正常组织,而弥散自由度最大区域的信号强度最低,这使病变组织在DWI的信号表现类似于常规“T2WI”。
磁共振成像中DWI,ADC重建的原理是什么?
弥散运动即布朗运动。
弥散运动即布朗运动,是指分子在温度驱使下无规律随机的、相互碰撞、相互超越的运动过程。
常规MRI序列中水分子弥散运动队信号的影响非常小。
DWI是在常规序列的基础上,在XYZ轴三个互相垂直的方向上市价弥散敏感梯度,从而获得反映体内水分子弥散运动状况的MR图像。
在DWI中通常以表观弥散系数ADC描述组织中水分子弥散的快慢,并可得到ADC图。
将每一像素的ADC值进行自然对数运算后即可得到DWI图,因此同一像素在ADC图和DWI图中的信号强度通常相反,即弥散运动快的像素,其ADC值高,在DWI上呈低信号,反之亦然。
核磁共振成像的优点MR 所显示的解剖结构逼真,使病变组织和正常组织均可清晰显示.具有高的软组织对比分辨力.无骨伪影干扰.不用对比剂即可进行血流成像,其多参数成像便于对照比较、并可获得多方位成像对软组织有极好的分辨力。
对膀胱、直肠、子宫、骨、关节、肌肉等部位的检查优于CT通过调节磁场可自由选择所需剖面。
能得到其它成像技术所不能接近或难以接近部位的图像。
对于椎间盘和脊髓,可作矢状面、冠状面、横断面成像,可以看到神经根、脊髓和神经节等。
不像CT只能获取与人体长轴垂直的横断面
•2018-06-05。
DWI和ADC图的影像变化(一)脑扩散加权成像用于急性或超急性缺血性脑中风的诊断性检查具有重要价值已经为临床广泛接受。
但是,脑扩散加权成象的诊断作用远不止此。
事实上,对于多种神经功能缺失性疾病,包括肿瘤、脱髓鞘病、外伤等,都具有一定的诊断和鉴别诊断作用。
一、脑扩散加权成像的基本知识扩散是指脑组织内水分子的扩散运动,受体内多种因素的影响。
例如压力、温度存在空间差别时,即存在有压力梯度,温度梯度时,引起水分子在高低压力差或温度差的位置间的运动。
离子的相互作用也产生水分子扩散运动。
脑扩散加权成像是通过施加梯度磁场脉冲(Magnetic Gradient Pulse)来实现的。
这需要性能优良的梯度磁场。
早期扩散加权成像只是在高场MR机上才能进行。
由于MR 机机器性能和技术条件的进步,目前扩散加权成像在低场MR机上也可实现。
可以运用多种扫描序列进行扩散加权成像,例如传统SET2WI, Fast SE T2WI,线扫描(Line Scan),螺旋扫描(Spiral Scan),以及回波平面扫描序列(Echo PlanarImaging--EPI)等。
回波平面扫描序列能显著减少扫描时间和减轻运动伪影,有效地增加了对分子运动所产生的信号变化的敏感性。
使DWI进入临床实用成为可能。
脑组织,尤其是脑白质的扩散运动是各向异性的。
产生脑白质各向异性的原因不完全明确。
可能与下述因素有关:轴索方向和髓鞘化程度;轴膜流(Axolemmelic Flow);细胞外液流(Extracellular Bulk Flow);细胞内液流(Intracellular Bulk Flow); 毛细管血流(Capillary Blood Flow). 各个方向上所施加的梯度脉冲大小相同,不同白质方向的信号强度受到梯度脉冲的作用,扩散运动发生变化。
额、枕部白质纤维与Y轴(前、后)方向一致,在Y轴施加梯度脉冲后,该方向的扩散运动加强,在DWI图象上呈低信号。
DWIT2透射、冲蚀、暗化效应,ADC与eADC的区别DWI是缺血性卒中诊断和治疗中使用最多的MRI影像技术,该成像技术可在活体上探测水分子的扩散行为,因此能够较早地探测超急性期脑梗死所导致的水分子扩散异常。
这种扩散异常可为缺血性卒中的早发现、早诊断提供重要的影像学依据。
在临床工作中,需要充分了解DWI的基本成像原理和图像信号的对比属性,这样才能更客观地解读DWI影像的信号变化。
01DWI影像的对比构成在判读DW I影像结果时,首先需要理解DWI的对比组成。
在DWI序列中当使用的b值较低时则扩散所导致的信号强度(S)变化遵循指数式衰减:S=S0e-bD,S0为当b=0或较低时采集的图像信号强度;b为DWI中扩散加权梯度大小,数值越高表明对水分子扩散行为敏感度越高;D表示水分子的扩散系数,即单位时间内扩散的面积。
通常DWI影像采用基于平面回波成像(echo planar imaging,EPI)信号读取的自旋回波序列,具有较长的重复时间和回波时间,因此当b=0所获得的图像可以理解为用EPI信号读取而获得的具有T2WI对比的图像。
在进行DWI时,当施加一定b值的扩散梯度后,组织中可以自由扩散的水分子就会存在一定程度的信号衰减,而那些相对静止的水分子(如梗死病变中的水分子)则信号不发生明显变化。
当b=0时,S=S0,而当使用扩散加权梯度时,水分子的扩散程度越大,其信号衰减表现则越明显。
如果扩散系数为0则提示水分子是静止不扩散的,那么无论使用多大的扩散梯度其信号也不会发生衰减。
缺血性卒中发生时因细胞毒性水肿导致细胞体积肿大,从而使得其内的水分子扩散受限,在卒中发病早期因为病变中水分含量增多不明显,此时在常规的T1、 T2及T2 FLAIR序列只见散在小片状陈旧病灶,而在DWI 上则可见大片状呈高信号改变的病变(图1)。
图1 脑梗死急性期的DWI影像结果 A:T2WI图像示右侧额叶、顶叶小片状高信号病变(箭头所示);B:T1WI图像示相应病变呈低信号改变(箭头所示);C:T2 FLAIR序列上与T2、T1序列对应区域可见小片状高信号改变(箭头所示);D:DWI图像示右侧额颞叶呈大片状高信号改变(箭头所示),提示急性期梗死。