数学教案-代数式的值
- 格式:doc
- 大小:31.00 KB
- 文档页数:7
3.2代数式的值【教学目标】1.了解代数式的值的定义,能熟练地求代数式的值,理解代数式求值可以为一个转换过程或一个算法.2.在代数式求值过程中,初步感受函数的对应思想.3.会用代数式解决简单的实际问题.【重点难点】重点:会求代数式的值并解释代数式值的实际意义.难点:应用求代数式的值解决实际问题.【教学过程】一、创设情境为了开展体育活动,学校要购置一批排球,每班配备5个,学校另外留20个.(1)学校总共需要购置个排球.(2)如果学校有15个班级,那么需要购置的排球数是;(3)如果学校有20个班级,那么需要购置的排球数是.你是如何计算的?二、探究归纳探究点1:求代数式的值问题1:上述代数式的值是由谁的取值确定的?总结:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.问题2:根据下列x,y的值,你能求出代数式2x+3y的值吗?.(1)x=15,y=12;(2)x=1,y=-12总结:1.代入时,将相应的字母换成已给定的数值,其他的运算符号、原来的数及运算顺序都不能改变.2.当字母取不同数值时,代数式的值一般也不同.3.如果字母的取值是负数或分数,乘方时应加括号.【典例探究】例1:教材P79【例2】【针对性训练】教材P80练习总结:(1)求代数式的值的步骤:第一步:代入,用具体数值代替代数式里的字母;第二步:计算,按照代数式中指明的运算,计算出结果.(2)注意事项:①一个代数式中的同一个字母,只能用同一个数值去代替;②如果代数式里省略乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号;③代入时,不能改变原式中的运算符号及数字;④运算时,要注意运算顺序,即先算平方,再算乘除,最后算加减,有括号的要先算括号里面的.【拓展探究】问题3:代数式x2+x+3的值为7,则代数式2x2+2x-3的值是多少?你是如何计算的?探究点2:应用代数式的值解决实际问题问题4:填空:(1)路程=×;(2)工作量=×;(3)总价=×;(4)长为a,宽为b的长方形面积=;(5)边长为a的正方形面积=;(6)底为a,高为h的三角形面积=;(7)上底为a,下底为b,高为h的梯形面积=;(8)半径为r的圆的面积=;(9)长为a,宽为b,高为c的长方体的体积=;(10)棱长为a的立方体的体积=.【典例探究】例2:教材P80例3分析:跑道的周长是两段直道和两段弯道的长度的和.根据圆的周长求出弯道的长度.教师示范解答步骤.例3:教材P81例4分析:三角尺的面积=三角形的面积-圆的面积.总结:涉及不规则图形面积问题时,可以通过割补法把不规则图形转化为规则图形的和或者差来进行求解.【针对性训练】教材P81练习三、检测反馈(一)基础训练:1.当a=b=3时,x,y互为倒数,1(a+b)-3xy的值是()2A.0B.3C.-3D.62.当x=1,y=6时,代数式x2+y2的值是.3.当x=1,y=6时,求下列代数式的值:(1)x2+y2;(2)x2-2xy+y2.4.小亮从家出发乘汽车行驶了a千米用了1小时,又步行了0.5千米,又用了0.1小时到达某地.(1)用代数式表示小亮从家到某地的平均速度.(2)当a=80时,求此平均速度.5.如图,一个直角三角形ABC的直角边BC=a,AC=b,三角尺的厚度为h,三角形内部圆的半径为r.(1)用式子表示阴影部分体积V(结果保留π);(2)当a=10,b=6,r=2,h=0.2时,计算V的值.(π取3.14.结果精确到0.1)(二)拓展训练1.已知|A|=5,|B|=3,且AB<0,则A-B的值是()A.2或8B.1或-8C.±2D.±82.当x=1时,ax4+bx2+2=-3;当x=-1时,ax4+bx2-2=()A.3B.-3C.-5D.-73.我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=-3时,代数式(-2★z)-(-4★z)的值为.4.某商城销售某品牌运动鞋和袜子,运动鞋每双定价为300元,袜子每双定价为40元,十一期间商城决定开展促销活动,活动期间向顾客提供两种优惠方案:方案一:买一双运动鞋送一双袜子;方案二:运动鞋和袜子都按定价的九折付款;现某顾客要到该商城购买10双运动鞋,x(x>10)双袜子.(1)若该客户按照方案一购买,需付款元(用含x的代数式表示);若该客户按照方案二购买,需付款元(用含x的代数式表示);(2)若x=30,①通过计算说明按照方案一、方案二购买,哪种方案较为合算?②请你设计一个最优惠的购买方案,使得该客户花费最少,并写出你的购买方案和所需的费用.四、本课小结会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值一般也不同,所以在求代数式的值时,要注意解题步骤:(1)指出字母的取值;(2)抄写代数式;(3)代入;(4)计算.五、布置作业P82T3,5,7六、板书设计七、教学反思1.通过导入“代数式的值”概念时,情境导入,达到了激发学生兴趣的成效,让学生感受到了数学的生活化,营造了轻松的学习气氛.进一步理解代数式和代数式值的概念,为本节应用代数式的值解决实际问题作铺垫.在教学中注意引导学生体验字母取值和代数式值的对应思想.2.本节课一开始就直奔主题,提出如何求代数式的值,并要求学生根据两个不同类型的方法(直接代入法与整体代入法)求值,并求相同字母下代数式的值.通过计算,再次巩固了代数式的求值,突出重点.让学生经历探究、讨论、合作、交流的进程,明确符号所代表的数量关系,发展符号意识,熟练掌握求代数式值的方法,升华学生对概念的理解,并锻炼学生的计算能力.通过对实际问题的解决,学生熟悉到数学来源于生活,应用于生活,在问题解决中运用代数式求值的知识,通过实际背景帮学生明白代数式值的实际意义,调动学生的实践意愿.。
一、教学目标:1.理解代数式的基本概念和性质。
2.掌握计算代数式的值的方法。
3.能够应用代数式的值解决实际问题。
二、教学重难点:1.理解代数式的基本概念和性质。
2.掌握计算代数式的值的方法。
三、教学准备:1.教师准备:教学课件、教学演示素材和相关实例。
2.学生准备:学生课本、笔记本和学习工具。
四、教学过程:Step 1:导入新课(10分钟)1.引入代数式的概念,通过实例提问帮助学生理解:“什么是代数式?”2.解释代数式的组成部分,包括字母、数字、运算符等。
3.引导学生思考与生活中实际问题结合,讨论代数式的应用场景。
Step 2:讲解代数式的值以及计算方法(20分钟)1.通过示意图和具体例子,展示代数式的不同取值。
2.讲解代数式的值的概念,即将代数式中的字母用具体数值代替后的结果。
3.分析代数式计算的基本步骤,包括替换字母、运算符计算等。
4.提供一些练习题,让学生通过实际计算加深理解。
Step 3:合作探究(20分钟)1.将学生分组,出示一些代数式的计算题目。
2.学生在小组内讨论,并通过合作探究的方式计算出答案。
3.每个小组选择一个代表上讲台解答问题,其他小组对其答案进行评价和讨论。
Step 4:拓展应用(20分钟)1.提供一些生活中常见的代数式应用题,如实际购物、运动比赛等。
2.引导学生根据问题提供的信息,构建相应的代数式。
3.学生根据代数式计算,得出问题答案,并进行相关讨论。
Step 5:总结反思(10分钟)1.教师总结本节课的重点和难点,帮助学生理解代数式的概念和计算方法。
2.学生回答教师提问,分享自己的学习体会和问题。
五、课后作业:1.完成课后练习册相关习题。
2.思考并写下自己对代数式概念和实际应用的理解。
六、教学反思:本节课通过引入代数式的概念和性质,帮助学生理解和掌握了代数式的计算方法。
通过合作探究和实际应用题的练习,激发到学生的学习兴趣,并巩固了所学的知识。
但在教学过程中,需要注意让学生通过互动讨论等形式积极参与,增加课堂氛围。
3.1 课时3 代数式的值一、教学目标1.在代数式的求值过程中,初步感受函数的对应思想。
2.感受字母取值的变化与代数式的值的变化之间的联系,能利用代数式的值推断一些代数式所反映的规律。
二、教学重点难点重点:当字母取具体数时,对应的代数式的值的求法及规范书写格式。
难点:会正确地求出代数式的值.感受这种对应关系。
三、课堂结构设计回顾旧知---创设情境,探求新知---即时训练,巩固新知-------练习交流,巩固提高-------总结反思,感悟收获。
四、教学过程(一)回顾旧知回顾上节课所学习代数式和代数式值的概念,以及代数式在具体情境中的意义。
(二)创设情境,探求新知在计算机上可以设置运算程序,输入一组数据,计算机就会呈现运算结果,就好像一个“数值转换机”,通过“数值转换机”直观形象的体现字母取值的变化与代数式的值的变化之间的对应关系,从而初步渗透函数的思想。
讲解教材中的议一议,填表并看谁算的又快有准。
注意规范书写格式。
(三)即时训练,巩固新知内容:课后习题第2题。
目的:根据老师们平时的教学经验,课后的这个第2题是学生做的最差的一道题。
作为初学者,学生刚刚知道了代数式和代数式值的意义,会求代数式的值,而这题中涉及到合并同类项的内容,在课堂上老师适当引导,可以给以后的合并同类项埋下伏笔,制造悬念,提高学生的学习兴趣。
(四)练习交流, 巩固提高解决教材中的随堂练习等.思考题:已知ab>0,且a、b的绝对值分别为6、8,求a+b的值。
(五)总结反思,感悟收获同学之间交流本节课的学习收获和体会.教师帮助学生归纳必要的内容。
五、教学反思《代数式》是义务教育课程标准实验教科书(北师大版)七年级上学期的内容。
本节课一开始就直奔主题,提出数值转换机,并要求学生根据两个不同的数值转换机列出不同的代数式,并求相同字母下代数式的值。
进而引出议一议,让学生通过表格中大量的计算,熟练掌握求代数式值的方法,升华学生对概念的理解,并锻炼学生的计算能力。
初中数学代数式的值教案_答题技巧代数式的值一、教学目标1、使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;2、经历求代数式的值的过程,进一步理解字母表示数的意义,感受代数式求值的转化思想。
3、培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
二、教学重点和难点重点和难点:正确地求出代数式的值三、课堂教学过程(一)从学生原有的认识结构提出问题1?用代数式表示:(投影)(1)a与b的和的平方;(2)a,b两数的平方和(3)a与b的和的50%?2?用语言叙述代数式2n+10的意义?3?对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50?我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值?这就是本节课我们将要学习研究的内容?(二)师生共同研究代数式的值的意义1?用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值? 2?结合上述例题,提出如下几个问题:(1)求代数式2x+10的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象?然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应?(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?解:当x=7,y=4,z=0时x(2x-y+3z)=7(27-4+30)=7(14-4)=70?注意:如果代数式中省略乘号,代入后需添上乘号例2 根据下面a,b的值,求代数式a2-b2 的值?(1)a=4,b=12,(2)a=1 ,b=1?注意(1)如果字母取值是分数,作乘方运算时要加括号;(2)注意书写格式,“当……时”的字样不要丢;(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果三、课堂练习1?(1)当x=2时,求代数式x2-1的值;(2)当x=2 ,y=4 时,求代数式x(x-y)的值2?当a=-1,b=2 时,求下列代数式的值:(1)(a+b)2;(2)(a-b)2?3?当x=5,y=3时,求代数式xy+2y2的值?四、师生共同小结1?本节课学习了哪些内容?2?求代数式的值应分哪几步?3?在“代入”这一步应注意什么”五、当堂检测1、当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);(2) b2-4ac2、根据下面所给字母a、b的值,求代数式a+b的值(1)a=-3,b=-2(2)a=-8.b=+2(3)a=3/2,b=0。
初中初一数学教案代数式的值一、知识背景在代数式中,字母表示数,可以理解为是一种特殊的数字。
代数式中的字母称为未知数,代数式的值指的就是将未知数的值代入代数式,所得到的结果。
代数式是数学中非常重要的一种工具,它同样也是初中数学的重点部分。
能够理解代数式的概念,并掌握如何求代数式的值,是学好初中数学的一个必要条件。
二、教学目标1.能够掌握代数式的基本概念,理解代数式的组成和构成方式;2.能够理解代数式的值的概念,并能够根据题目要求求出代数式的值;3.能够应用所学的知识,解决实际问题。
三、教学内容1.代数式的定义和组成;2.代数式的值的概念;3.如何求代数式的值;4.实际应用。
四、教学过程1、引入新知识代数式一般由数字和字母按照一定的运算规则组成。
例如:3x+4,ax2+bx+c等等。
这些运算规则同我们平时学习的算术规则很相似。
2、讲解代数式的值代数式的值是指将代数式中的未知数换成具体的数后所得到的结果。
例如,x+3,当x=4时,其值为:x+3=4+3=7。
3、如何求代数式的值求代数式的值,实际上就是将代数式中的未知数用具体的数代替,进行计算。
例:已知代数式2x+5,当x=3时,求其值。
解:将x用3代替,得到$2\\times 3+5=11$,所以当x=3时,2x+5的值为11。
4、实际应用代数式的求值在实际应用中非常广泛。
例如,在经济学中,可以利用代数式求解成本、收益等问题,而在物理学和化学中,可以利用代数式求解力、电磁场等问题。
例:已知出售某种商品的利润百分比为20%,每个月销售量为240个,其销售收益为24x元。
请问,店主每个月的利润为多少元?解:首先,由题意可得利润百分比为20%,即$20\\div100=0.2$。
每销售一个商品的利润为:$20\\% \\times x$元,每个月销售240个,则利润为:$$240 \\times 0.2 \\times x = 48x$$每个月的利润为其销售收益减去成本,即:24x−48x=−24x 元。
代数式的值(1)教学目标: 1、会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法 2、会利用代数式求值推断代数式所反映的规律 3、能理解代数式值的实际意义 4、通过代数式求值的教学活动,渗透数学中的函数思想,培养学生解决实际问题能力。
教学重点:求代数式的值 教学难点:利用代数式求值推断代数式所反映的规律。
.教学过程: 一、创设情境: (一)1.求下图三角形的面积:2.继续求下图三角形的面积 3.用字母a 表示三角形的底,h 表示三角形的高,求当a =6,h = 3时,三角形的面积。
(二)用火柴棒搭小鱼 搭n 条小鱼,所需火柴棒的根数为:8+6(n-1) 用30代替n ,用100代替n. 引出代数式的值的定义。
二、探索新知及巩固练习 1.师生共同学习例1 当a =-2、b = -3时,求代数式2a 2-3ab +b 2的值。
教师写出例1的全部过程(主要规范学生做此类题目的格式) 解:当a = -2、b = -3时, 2a 2-3ab +b 2=2)2(-⨯2-3)3()2(-⨯-⨯+(-3)2=2⨯4-3⨯(-2)⨯(-3)+9 =8-18+9 =-1 2..学习例2(补充例题) 二次备课当x = 5、y =- 4(1) 练一练1.填表:(2)在下列计算程序中填写适当的数或转换步骤:P77练一练四、小结(本节内容实际在复习有理数混合运算的运算顺序)1.如果先给你计算程序,第一步把计算程序要表达的代数式表示出来。
第二步实质在做求代数式值的工作。
2.如果给你代数式让你设计计算程序,只要严格按照有理数混合运算的运算顺序再结合设计计算框图的规范要求来设计。
3.通过本节课的学习你收获了哪些?还有什么疑问?五、布置作业习题 3.3 2. 3. 4.六、课后反思。
关于初中数学教案之代数式的值教案内容:一、教学目标:1. 理解代数式的概念,掌握代数式的基本运算规则。
2. 能够求解简单代数式的值。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学重点:1. 代数式的概念及其基本运算规则。
2. 求解代数式的值的方法。
三、教学难点:1. 代数式的运算顺序。
2. 求解复杂代数式的值。
四、教学准备:1. 教学课件或黑板。
2. 练习题。
五、教学过程:1. 引入:通过生活中的实例,引导学生思考代数式的概念,如“小明的年龄比小红大3岁,小红的年龄比小华小2岁,请问小华的年龄是多少?”2. 讲解:讲解代数式的概念,介绍代数式的基本运算规则,如加减乘除、幂的运算等。
3. 示例:给出一个简单的代数式,如“x + 2”,引导学生求解其值。
4. 练习:给出一些练习题,让学生独立求解代数式的值,并提供解答和解析。
5. 总结:总结求解代数式的值的方法和注意事项,如先进行括号内的运算,遵循运算顺序等。
教学反思:六、教学拓展:1. 引入代数式的拓展知识,如函数的概念和性质。
2. 通过实例讲解函数与代数式的关系,让学生理解函数的定义和图像。
3. 引导学生思考如何将代数式转化为函数,以及如何求解函数的值。
七、教学案例:1. 给出一个具体的代数式求解案例,如“求解表达式(3x 2y) + 4(x + y) 的值,其中x = 2, y = 3”。
2. 引导学生分析代数式的结构和运算规则,制定解题步骤。
3. 指导学生进行代数式的运算,求解出表达式的值。
八、练习与巩固:1. 设计一些具有代表性的练习题,让学生独立求解代数式的值。
2. 提供解答和解析,帮助学生巩固代数式的运算规则和解题方法。
3. 鼓励学生相互讨论和交流,共同解决问题,提高解题能力。
九、课堂小结:1. 回顾本节课所学的内容,让学生总结代数式的概念、基本运算规则和求解方法。
2. 强调代数式在数学中的重要性,以及代数式求解在实际问题中的应用。
代数式的值教案七年级数学教案一、教材分析1:教材地位《代数式的值》选自华东师大版数学七年级上册第三章第二节,这一节的主要内容是用数值代替代数式中的字母,按照代数式的运算方法计算结果,在前面的学习中,我们已经学习了代数式,这为我们这一节的学习打下了基础,而我们这一节的学习也为我们后面学习整式和方程等做好了准备。
2:教学目标:知识与能力:1、了解代数式的值的概念,会求代数式的值。
2、会利用代数式的值解决简单的实际问题3、培养学生准确地运算能力,并适当地渗透对应的思想、数形结合思想及整体代换的思想。
过程与方法:1、通过传数游戏,增加学生代值计算的意识。
2、通过例题教学,引导学生提出问题,去比较,去分析,去猜想,有意识培养学生的探索精神和探索能力。
3、加强学科间的联系,让学生体验到邻近学科中的应用。
情感态度与价值观:1、通过传数游戏、生活中的实例、邻近学科的应用、阅读材料等激发学生学习数学的兴趣,并主动参与谈论、探索、思考与操作。
2、通过所学知识,让学生初步体验到数学中抽象概括的思维方法和事物的特殊性与一般性可以互相转化的辨证关系,从而形成正确的世界观。
●二:教法、学法分析本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。
教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。
重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式。
难点:正确地求出代数式的值。
“对应”思想和“整体代换”思想的渗透。
●三、教学过程:●一、试一试传数游戏1、规则:班级同学按4位同学一组进行分组,做一个传数游戏。
2.1.3 代数式的值教案一、教学目标1.理解代数式的基本概念和计算方法。
2.掌握代数式的值的计算方法。
3.培养学生分析和解决实际问题的能力。
二、教学重点1.代数式的值的计算方法。
2.实际问题与代数式的联系。
三、教学难点1.解决实际问题时的代数式的设置和计算。
2.锻炼学生的逻辑思维和分析能力。
四、教学准备1.教师准备好黑板、粉笔、PPT等教学工具。
2.学生准备好笔记本和书写工具。
五、教学过程1. 导入(5分钟)通过与学生互动问答的方式,复习上节课所学的代数式的基本概念和计算方法。
2. 概念讲解(10分钟)•教师通过PPT讲解代数式的值的概念,并举例说明。
•引导学生理解代数式的值是指将代数式内的字母用具体的数值代入后所得到的结果。
3. 基本练习(15分钟)•教师出示几个代数式,要求学生计算出其对应的值,并板书在黑板上。
•学生针对教师所出的题目进行课堂练习,教师进行适时的点评。
4. 实际问题(20分钟)•教师以生活实际问题为例,引导学生将问题转化为代数式,并计算出对应的值。
•学生在教师的引导下,独立解决几个实际问题,并在黑板上展示所得到的代数式和计算结果。
5. 拓展练习(20分钟)•教师出示一些较难的代数式,并要求学生计算出其对应的值。
•学生自主进行拓展练习,并在黑板上展示解题过程和结果。
6. 总结(10分钟)•教师对本节课所学内容进行总结,并强调代数式的值的计算方法。
•学生积极发言,对所学知识进行总结和归纳。
六、作业布置1.完成课堂上未完成的练习题。
2.预习下一节课的内容。
七、教学反思本节课通过讲解代数式的值的计算方法,引导学生将代数式与实际问题相联系,并通过练习与解答实际问题提高了学生的分析和解决问题的能力。
但在教学中,需要更多地引导学生参与讨论和互动,以增加学生的学习积极性。
同时,在设计教学过程时,还可以更注重学生的巩固和拓展训练,以帮助学生更好地掌握代数式的概念和计算方法。
数学教案-代数式的值教学目标1.使学生把握代数式的值的概念,能用详细数值代替代数式中的字母,求出代数式的值;2.培育学生精确地运算力量,并适当地渗透特别与一般的辨证关系的思想。
教学建议1.重点和难点:正确地求出代数式的值。
2.理解代数式的值:(1)一个代数式的值是由代数式中字母的取值而打算的.所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈代数式的值时,必需指明在什么条件下.如:对于代数式;当时,代数式的值是0;当时,代数式的值是2.(2)代数式中字母的取值必需确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如:中不能取1,由于时,分母为零,式于无意义;假如式子中字母表示长方形的长,那么它必需大于0.3.求代数式的值的一般步骤:在代数式的值的概念中,实际也指明白求代数式的值的方法.即一是代入,二是计算.求代数式的值时,一要弄清晰运算符号,二要留意运算挨次.在计算时,要留意按代数式指明的运算进展.4。
求代数式的值时的留意事项:(1)代数式中的运算符号和详细数字都不能转变。
(2)字母在代数式中所处的位置必需搞清晰。
(3)假如字母取值是分数时,作乘方运算必需加上小括号,将来学了负数后,字母给出的值是负数也必需加上括号。
5.本节学问构造:本小节从一个应用代数式的实例动身,引出代数式的值的概念,进而通过两个例题叙述求代数式的值的方法.6.教学建议(1)代数式的值是由代数式里的字母所取的值打算的,因此在教学过程()中,留意渗透对应的思想,这样有助于培育学生的函数观念.(2)列代数式是由特别到一般, 而求代数式的值, 则可以看成由一般到特别,在教学中,可结合前一小节,适当渗透关于特别与一般的辨证关系的思想.教学设计例如代数式的值(一)教学目标1使学生把握代数式的值的概念,能用详细数值代替代数式中的字母,求出代数式的值;2培育学生精确地运算力量,并适当地渗透特别与一般的辨证关系的思想。
代数式的值教案设计一、教学目标1.理解代数式的定义和性质;2.能够计算代数式的值;3.培养学生对代数式计算的思维能力。
二、教学重难点1.代数式的定义和性质理解;2.代数式的值计算。
三、教学内容1.代数式的定义和性质;2.代数式的值计算。
四、教学准备1.教材《初中数学》;2.黑板、彩色粉笔;3.教学PPT;4.练习题和答案。
五、教学过程Step 1 引入知识(15分钟)1.教师简要介绍代数式的定义和性质,并给予例子解释。
2.简单提问学生,让学生对代数式的概念有初步了解。
Step 2 理解代数式(20分钟)1.教师通过示意图和实例,深入讲解代数式的定义和性质,引导学生进行思考。
2.教师通过演示,引导学生进行实际操作,让学生能够发现和总结代数式的特点。
Step 3 代数式的值计算(30分钟)1.教师通过具体的例子引导学生学习代数式的值计算方法。
2.教师解释常见的代数式计算方法,并通过示例进行讲解。
Step 4 练习巩固(25分钟)1.教师发放练习题,让学生进行个人或小组练习。
2.批改练习题,教师进行讲解并与学生讨论答案。
3.教师布置作业,巩固学生对代数式的理解和计算。
六、教学延伸1.对于学习困难的学生,教师可以通过口头和书面计算方式进行个别培养;2.对于进步较快的学生,教师可以出一些拓展题目进行挑战。
七、教学反思本节课采用了直观教学和探究式学习相结合的方式,通过提问激发学生的思考能力,提高学生的学习兴趣。
在引入知识环节,对代数式的定义和性质进行简单介绍,并通过实例进行解释,激发学生对代数式的兴趣。
在理解代数式环节,通过示意图和实例进行深入讲解,引导学生进行思考。
在代数式的值计算环节,通过具体的例子引导学生学习计算方法,解释常见的计算方法。
在练习巩固环节,教师布置了练习题,并进行了批改和讲解。
整节课过程设计合理,学生参与度高,达到了预期的教学目标。
数学教案-代数式的值教学目标1.理解代数式的概念和性质;2.掌握代数式的值的计算方法;3.能够灵活运用代数式求值;4.培养学生对数学的抽象思维和逻辑推理能力。
教学准备1.教学用具:黑板、粉笔、教案;2.学生用具:铅笔、纸张。
教学过程导入(5分钟)1.上课前,教师可以编写一道代数题目,并在黑板上引导学生讨论如何求其值;2.让学生举例说明代数式在实际生活中的应用。
理论讲解(15分钟)1.引导学生回忆代数式的定义:由数、字母和运算符号组成的式子;2.介绍代数式的性质:代数式可以进行运算,并且运算的结果也是一个数;3.举例说明代数式的运算规律,如加法的交换律、结合律等。
示例演练(20分钟)1.设计一些简单的代数式求值的题目,让学生通过演算求出其值;2.引导学生逐步解析代数式的求值过程;3.提醒学生注意运算符的优先级,正确进行运算。
拓展训练(20分钟)1.给学生一些复杂的代数式,要求他们灵活应用求值的方法;2.引导学生分析代数式的结构和特点,合理运用运算规律简化计算过程;3.鼓励学生主动提出自己的解法,并与同学分享讨论。
深化理解(15分钟)1.结合现实问题,设计一道综合性的代数求值题目;2.鼓励学生思考和分析问题,将问题抽象为代数式,并求出其值;3.引导学生总结解决这类题目的方法和技巧。
课堂总结(5分钟)1.教师对本课的重点知识进行总结回顾,并强调代数式求值的重要性;2.鼓励学生进行课后复习,并提出问题进行讨论。
教学反思通过本节课,学生能够理解代数式的概念和性质,掌握代数式求值的方法。
在课堂中,教师通过示例演练和拓展训练,培养了学生的抽象思维和逻辑推理能力。
同时,通过设计综合性的代数求值题目,引导学生将数学知识与实际问题相结合,提高了学生解决问题的能力。
在今后的教学中,应进一步加强学生的练习,丰富教学内容,提高教学效果。
《代数式的值》教案设计一、教学目标:1. 让学生理解代数式的概念,掌握代数式的基本运算方法。
2. 培养学生运用代数式解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容:1. 代数式的概念及基本运算。
2. 代数式在实际问题中的应用。
三、教学重点与难点:1. 重点:代数式的概念,代数式的基本运算。
2. 难点:代数式在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究代数式的概念和运算方法。
2. 利用实例分析,让学生学会将实际问题转化为代数式问题。
3. 采用小组合作学习,提高学生解决问题的能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生思考代数式的概念。
2. 新课:讲解代数式的定义,介绍代数式的基本运算方法。
3. 练习:让学生独立完成一些代数式的运算题目,巩固所学知识。
4. 应用:分析实际问题,引导学生将问题转化为代数式问题,并求解。
5. 总结:对本节课的内容进行总结,强调代数式在实际问题中的应用。
6. 作业:布置一些有关代数式的练习题目,巩固所学知识。
这五个章节的内容主要涵盖了代数式的概念、基本运算以及实际应用。
在教学过程中,要注意引导学生主动探究,培养他们分析问题、解决问题的能力。
六、教学评估:1. 通过课堂提问,检查学生对代数式概念的理解程度。
2. 通过运算练习,评估学生对代数式基本运算的掌握情况。
3. 通过实例分析,评估学生将实际问题转化为代数式问题的能力。
七、教学反馈:1. 根据学生的课堂表现和作业完成情况,及时给予反馈,指出学生的优点和不足。
2. 鼓励学生在课堂上积极提问,及时解答他们的疑问。
3. 针对学生的弱点,进行有针对性的辅导。
八、教学拓展:1. 介绍代数式在其他学科中的应用,如物理学、化学等。
2. 引导学生探索代数式与函数、方程等数学概念的联系。
3. 推荐一些有关的课外阅读材料,供有兴趣的学生进一步学习。
九、教学反思:1. 在教学过程中,是否有效地引导学生主动探究代数式的概念和运算方法?2. 学生是否能将实际问题转化为代数式问题,并熟练地进行求解?3. 针对教学过程中的不足,如何改进教学方法,提高教学效果?十、课后作业:1. 请学生总结本节课所学的内容,包括代数式的概念、基本运算及实际应用。
3.2 代数式的值-华东师大版七年级数学上册教案教学目标1.了解代数式的定义和特点2.了解代数式的化简和展开3.能根据题目要求求出代数式的值教学重点1.代数式的化简2.代数式的展开3.代数式的值计算教学难点如何根据题目要求求出代数式的值教学内容及方式1.代数式的定义和特点的讲解,配合示例讲解代数式的化简和展开2.配合例题,动手练习化简和展开代数式的操作3.配合例题,介绍如何根据题目要求求出代数式的值。
先简单的讲解一下“代数式的值”这个概念,如x=3,代入2x+3中,得到的结果为2∗3+3=9。
由此,我们可以知道代数式的值就是在代数式中把变量的值替换进去后得到的一个结果。
4.配合例题,动手练习如何根据题目要求求出代数式的值。
教学过程1.引导学生认识代数式的概念和特点。
让学生举例说明,引导学生了解代数式的化简和展开。
2.练习化简和展开代数式的操作。
3.给学生提供一些题目,介绍如何根据题目要求求出代数式的值。
4.练习如何根据题目要求求出代数式的值,掌握这一知识点。
讲授方法1.教师讲授代数式定义及特点,并以幻灯片或黑板板书形式示意。
配合例题讲解代数式的化简和展开操作。
2.学生观看视频或幻灯片讲解,然后任意两位学生一组进行练习,互相检查答案。
3.老师给学生提供带有变量的代数式及要求代入的变量值,通过样例演示,在指导下学生练习根据题目要求求代数式的值。
4.配合实例练习,老师可以让学生分组完成练习,进行小组内交流,组间讨论,或者由学生上台讲解。
常见问题1.代数式的展开和化简怎样区分和举例区别?答:展开和化简是代数式的两种常见变形方式。
化简的过程是要求化简后的表达式有更加简单、规则化的形式。
展开的过程是将括号中的各项按照乘法法则依次乘开,再将各项进行合并从而得到一般意义的式子。
2.如何判断题目要求的代入值?答:要求代入值需要看清题干中的表述,例如“当x=2时代数式的值是多少?”,这意味着需要代入的是x=2。
要注意看清所求值中的变量和所求值对应的代入值之间的关系。
一、教学目标1. 知识与技能:(1)理解代数式的概念,能够正确书写简单的代数式;(2)掌握代数式的基本运算方法,包括加减乘除、乘方等;(3)能够利用代数式解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳等方法,引导学生发现代数式的运算规律;(2)运用代数式解决实际问题,提高学生的应用能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生学习代数式的积极性;(2)培养学生合作、探究的学习态度,提高学生的自主学习能力。
二、教学重点与难点1. 教学重点:(1)代数式的概念及书写方法;(2)代数式的基本运算方法;(3)运用代数式解决实际问题。
2. 教学难点:(1)代数式运算规律的发现;(2)将实际问题转化为代数式求解。
三、教学准备1. 教师准备:(1)熟练掌握代数式的相关知识;(2)准备相关教学案例、例题;(3)制作教学课件、板书设计。
2. 学生准备:(1)预习代数式相关知识;(2)准备笔记本,记录重点知识;(3)积极参与课堂讨论。
四、教学过程1. 导入新课:(1)利用生活中的实例,引出代数式的话题;(2)介绍代数式的概念及书写方法。
2. 自主学习:(1)学生自主探究代数式的基本运算方法;(2)教师引导学生发现代数式运算规律。
3. 课堂讲解:(1)讲解代数式的运算方法,举例说明;(2)引导学生运用代数式解决实际问题。
4. 巩固练习:(1)学生独立完成相关练习题;(2)教师批改、讲解,及时反馈。
5. 课堂小结:(1)学生总结本节课所学知识;(2)教师补充、强调重点知识点。
五、课后作业1. 复习本节课所学知识,巩固代数式的概念、运算方法;2. 完成课后练习题,运用代数式解决实际问题;3. 预习下一节课内容,为课堂学习做好准备。
六、教学策略1. 情境教学:通过生活实例,激发学生学习兴趣,引导学生理解和掌握代数式。
2. 合作学习:鼓励学生分组讨论,共同探究代数式的运算规律,提高学生的团队协作能力。
初中数学教案之代数式的值一、教学目标1. 让学生理解代数式的概念,掌握代数式的基本运算方法。
2. 培养学生运用代数式解决实际问题的能力。
3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学内容1. 代数式的概念及基本运算方法。
2. 代数式在实际问题中的应用。
三、教学重点与难点1. 重点:代数式的概念,代数式的基本运算方法。
2. 难点:代数式在实际问题中的应用。
四、教学方法1. 采用情境教学法,让学生在实际问题中感受代数式的意义。
2. 运用小组合作学习法,培养学生团队协作能力。
3. 采用问答法,激发学生思考,提高学生口头表达能力。
五、教学准备1. 教师准备相关实例,用于讲解代数式在实际问题中的应用。
2. 学生准备笔记本,用于记录学习内容。
3. 教学PPT,用于展示代数式的相关知识点。
【导入】利用生活实例引入代数式的概念,激发学生兴趣。
【新课导入】1. 讲解代数式的概念,引导学生理解代数式的意义。
2. 讲解代数式的基本运算方法,如加减乘除、乘方等。
【实例讲解】1. 给出实例,让学生运用代数式解决问题。
2. 引导学生总结解题步骤,培养学生运用代数式解决问题的能力。
【课堂练习】1. 布置练习题,让学生巩固所学内容。
2. 引导学生互相讨论,共同解决问题。
【总结】1. 回顾本节课所学内容,让学生总结代数式的概念及基本运算方法。
2. 强调代数式在实际问题中的应用,提高学生运用代数式解决实际问题的能力。
【课后作业】1. 布置作业,让学生巩固代数式的基本运算方法。
2. 鼓励学生在生活中发现代数式的应用,提高学生对数学的兴趣。
六、教学拓展1. 讲解代数式的拓展知识,如函数、方程等。
2. 引导学生探索代数式在不同领域的应用,如科学计算、工程问题等。
七、课堂互动1. 组织学生进行小组讨论,分享各自在实际问题中运用代数式的经验。
2. 开展代数式竞赛,激发学生学习兴趣,提高学生运用代数式的能力。
八、教学评价1. 课后收集学生作业,评估学生对代数式的掌握程度。
【教案】个性初中数学代数式的值【一、教学目标】1. 了解代数式的基本组成和含义,掌握代数式化简的方法。
2. 熟悉解代数式的值的常用方法,能灵活应用代数式求值。
3. 培养学生对代数式的逻辑分析能力和数学计算思维。
【二、教学重点】1. 掌握代数式求值的基本方法和技巧。
2. 熟悉代数式化简的基本方法和技巧。
3. 培养学生对代数式求值的意识和能力。
【三、教学难点】1. 培养学生分析代数式的思维能力和逻辑思维能力。
2. 培养学生进行代数式求值的能力。
3. 提高学生对数学计算思维的认识和能力。
【四、教学内容】1. 代数式的基本组成和含义。
2. 代数式的化简方法和技巧。
3. 解代数式的值的常用方法和技巧。
【五、教学方法】1. 讲授法:讲解代数式求值的基本方法和技巧。
2. 演示法:通过实例进行讲解和演示,帮助学生加深对代数式求值的理解和认知。
3. 组合性教学法:将代数式的基本组成和含义、化简方法和技巧、求值的方法和技巧进行系统地组合,使学生能够全面掌握代数式求值的基本方法和技巧。
【六、教学媒体】1. 教科书、实物模型:利用教科书和实物模型辅助讲解和演示,帮助学生理解和掌握代数式的基本概念和基本操作。
2. 多媒体:使用多媒体PPT等工具,展现代数式的结构和化简过程,使学生更加形象直观地理解代数式求值的方法和技巧。
【七、教学评价】1. 课堂笔记:要求学生认真听讲,做好课堂笔记,记录重要知识点和思路。
2. 练习册:将代数式求值的习题集落实到练习册上,让学生反复练习、巩固。
3. 课堂测验:课堂测验是评价教学成果的重要方式,通过考核学生的掌握情况,及时发现问题、调整方案,为后续教学提供数据支持。
【八、教学实施】1. 预热:利用教师提前准备好的课件,展现个性化的代数式求值,唤起学生兴趣,引导学生进入学习状态。
2. 讲授:主要是讲解代数式化简和求值的方法和技巧,针对不同难度的代数式和求值题目,运用不同的解题方法和技巧,辅助学生掌握相关知识点。
数学教案-代数式的值
教学目标
1.使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学建议
1.重点和难点:正确地求出代数式的值。
2.理解代数式的值:
(1)一个代数式的值是由代数式中字母的取值而决定的.所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈代数式的值时,必须指明在什么条件下.如:对于代数式;当时,代数式的值是0;当时,代数式的值是2.
(2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如:中不能取1,因为时,分母为零,式于无意义;如果式子中字母表示长方形的长,那么它必须大于0.
3.求代数式的值的一般步骤:
在代数式的值的概念中,实际也指明了求代数式的值的方法.即一是代入,二是计算.求代数式的值时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.
4。
求代数式的值时的注意事项:
(1)代数式中的运算符号和具体数字都不能改变。
(2)字母在代数式中所处的位置必须搞清楚。
(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。
5.本节知识结构:
本小节从一个应用代数式的实例出发,引出代数式的值的概念,进而通过两个例题讲述求代数式的值的方法.
6.教学建议
(1)代数式的值是由代数式里的字母所取的值决定的,因此在教学过程()中,注意渗透对应的思想,这样有助于培养学生的函数观念.
(2)列代数式是由特殊到一般,而求代数式的值,则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想.
教学设计示例
代数式的值(一)
教学目标
1?使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2?培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学重点和难点
重点和难点:正确地求出代数式的值
课堂教学过程()设计
一、从学生原有的认识结构提出问题
1?用代数式表示:(投影)
(1)a与b的和的平方;(2)a,b两数的平方和;
(3)a与b的和的50%?
2?用语言叙述代数式2n+10的意义?
3?对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)
某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50?我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值?这就是本节课我们将要学习研究的内容?
二、师生共同研究代数式的值的意义
1?用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值?
2?结合上述例题,提出如下几个问题:
(1)求代数式2x+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的`”之后,可用图示帮助学生加深印象?
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应?
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)
例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70?
注意:如果代数式中省略乘号,代入后需添上乘号?
例2根据下面a,b的值,求代数式a2-的值?
(1)a=4,b=12,(2)a=1,b=1?
解:(1)当a=4,b=12时,
a2-=42-=16-3=13;
(2)当a=1,b=1时,
a2-=-=?
注意(1)如果字母取值是分数,作乘方运算时要加括号;
(2)注意书写格式,“当……时”的字样不要丢;
(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n 是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数
值②计算结果
三、课堂练习
1?(1)当x=2时,求代数式x2-1的值;
(2)当x=,y=时,求代数式x(x-y)的值?
2?当a=,b=时,求下列代数式的值:
(1)(a+b)2;(2)(a-b)2?
3?当x=5,y=3时,求代数式的值?
答案:1.(1)3;(2);2.?(1);(2);3..?
四、师生共同小结
首先,请学生回答下面问题:
1?本节课学习了哪些内容?
2?求代数式的值应分哪几步?
3?在“代入”这一步应注意什么”
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.?
五、作业
当a=2,b=1,c=3时,求下列代数式的值:
(1)c-(c-a)(c-b);(2).
代数式的值(二)
教学目标
1.使学生掌握代数式的值的概念,会求代数式的值;
2.培养学生准确地运算能力,并适当地渗透对应的思想.
教学重点和难点
重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.难点:正确地求出代数式的值.
课堂教学过程()设计
一、从学生原有的认识结构提出问题
1.用代数式表示:(投影)
(1)a与b的和的平方;(2)a,b两数的平方和;
(3)a与b的和的50%.
2.用语言叙述代数式2n+10的意义.
3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)
某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.
二、师生共同研究代数式的值的意义
1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值.
2.结合上述例题,提出如下几个问题:
(1)求代数式2n+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
当教师引导学生说出:“代数式的值是由代数式
里字母的取值的确定而确定的”之后,可用图示帮助
学生加深印象.
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)
例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70.
注意:如果代数式中省略乘号,代入后需添上乘号.
解:(1)当a=4,b=12时,
a2-=42-=16-3=13;
注意(1)如果字母取值是分数,作乘方运算时要加括号;
(2)注意书写格式,“当……时”的字样不要丢;
(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n 是代数班的个数,n不能取分数.
最后,请学生总结出求代数值的步骤:
①代入数值②计算结果
三、课堂练习
1.(1)当x=2时,求代数式x2-1的值;
2.填表:(投影)
(1)(a+b)2;(2)(a-b)2.
四、师生共同小结
首先,请学生回答下面问题:
1.本节课学习了哪些内容?2.求代数式的值应分哪几步?
3.在“代入”这一步应注意什么?
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.
五、作业
1.当a=2,b=1,c=3时,求下列代数式的值:
2.填表
3.填表
课堂教学设计说明
由于代数式的值是由代数式里的字母所取的值决定的,因此在设计教学过程()中,注意渗透对应的思想,这样有助于培养学生的函数观念。