运筹学中的运输问题
- 格式:ppt
- 大小:6.38 MB
- 文档页数:34
运筹学运输问题相关知识点运筹学,旨在通过数学模型和优化方法来解决各种决策问题,其中运输问题是运筹学中的一个重要分支。
运输问题旨在帮助我们确定如何在不同地点之间运输物品以达到最佳效益。
首先,运输问题基于以下几个基本假设:一是物流成本在运输过程中是线性的,二是物品在不同地点之间的运输是无差异的,三是供应和需求之间是平衡的。
在解决运输问题时,需要考虑以下几个关键要素:1.运输网络:此步骤涉及识别和描述供应地点、运输路径和需求地点。
通常使用图形表示来可视化运输网络,以便更好地理解和分析问题。
2.供应量和需求量:确定每个供应地点可提供的物品数量和每个需求地点所需的物品数量。
供应量和需求量之间必须达到平衡。
3.运输成本:每个运输路径的费用是决策的重要因素。
这可以涉及运输距离、运输方式、燃料成本等因素。
通常通过构建费用矩阵来表示各个路径的费用。
4.运输方案:确定如何分配物品以满足需求,并选择最佳的运输路径。
这通常通过使用线性规划模型来实现,以最小化总运输成本为目标。
解决运输问题的常见方法包括:1.西北角规则:该方法从供应和需求具有最大值的角度着手,逐步分配物品,直到达到平衡。
这种方法简单易行,但不一定能够找到全局最优解。
2.最小成本法:该方法根据运输路径的成本递增顺序,逐一分配物品,直到平衡为止。
这种方法能够找到最优解,但可能需要更多的计算量。
3.转运法:该方法通过寻找“供应地点里程+需求地点里程最小”的路径来决策,直至达到平衡。
这种方法在有多个供应地点和多个需求地点时非常实用。
除了基本的运输问题之外,还有其他一些相关的运筹学问题,如多品种运输问题、多目标运输问题和带有时间窗口的运输问题等。
这些问题在实际应用中都有广泛的应用,并且可以通过相应的数学模型和优化方法来解决。
综上所述,运筹学中的运输问题是一个重要的决策问题。
它涉及到寻找最佳的物品配送方案,以最小化总运输成本。
通过合适的数学模型和算法,我们可以有效地解决这类问题,为实际的物流管理提供有力的支持。
运筹学运输问题
运筹学是一门研究如何最优地规划和管理资源以实现预定目标的学科。
在运筹学中,运输问题是其中一个重要的应用领域。
运输问题主要关注如何有效地分配有限的资源到不同的需求点,以最小化总体运输成本或最大化资源利用效率。
这些资源可以是货物、人员或其他物资。
运输问题通常涉及到多个供应地点和多个需求地点之间的物流调度。
运输问题的目标是找到一种最佳的调度方案,使得满足所有需求的同时,总运输成本达到最小。
为了解决运输问题,可以采用线性规划、网络流和启发式算法等方法。
在运输问题中,需要确定以下要素:
1. 供应地点:确定从哪些地点提供资源,例如仓库或生产基地。
2. 需求地点:确定资源需要分配到哪些地点,例如客户或销售点。
3. 运输量:确定每个供应地点与需求地点之间的运输量。
4. 运输成本:确定不同供应地点与需求地点之间运输的成本,可以
包括距离、时间、燃料消耗等因素。
通过数学建模和优化技术,可以对这些要素进行量化和分析,以求得最佳的资源分配方案。
这样可以降低运输成本、提高物流效率,并且满足不同地点的需求。
总而言之,运输问题是运筹学中的一个重要领域,涉及到如何有效地规划和管理资源的物流调度。
通过数学建模和优化方法,可以找到最优的资源分配方案,从而实现成本最小化和效率最大化。
运筹学运输问题笔记(一)运筹学运输问题笔记一、运输问题的概述运输问题的定义运输问题是运筹学中的一种经典问题,也是线性规划中最简单的一种。
其定义是:在将若干种供给物品分别运往若干种需求地的过程中,在满足各个供求量限制和运输能力限制的基础上,使得总的运输成本最小。
运输问题的特点• 只涉及一种商品的运输;• 供给地和需求地的数量相等;• 供给地和需求地之间的运费相同。
运输问题的模型运输问题的模型可以用线性规划的形式表示:min Z =∑∑c ij nj=1m i=1x ijs.t. {∑x ij ni=1=b j (j =1,2,...,n )∑x ij m j=1=a i (i =1,2,...,m )x ij ≥0 (i =1,2,...,m;j =1,2,...,n )其中,c ij 代表从供给点i 到需求点j 的单位运费,a i 代表供给点的总供给量,b j 代表需求点的总需求量,x ij 代表从供给点i 到需求点j 的运输量。
二、运输问题的求解方法1. 列出初始可行解运输问题的求解可以先列出初始可行解,常用的方法有两种: • 西北角法(Northwest Corner Method )• 最小元素法(Least Cost Method )以上两种方法均可得到初始可行解,但最终得到的最优解可能不同。
2. 用改进的对角线法求解在得到初始可行解后,可以用改进的对角线法求解运输问题。
该方法的基本思想是:通过计算每个空运输路线上的机会成本,确定可能改进的单元格,然后通过交错路径法得到改进可行解,并最终求出最优解。
3. 用运输单纯形法求解对于规模较大或复杂的运输问题,可以用运输单纯形法求解。
该方法是将单纯形法应用到运输问题上,可以快速、准确地求解最优解。
三、运输问题的应用运输问题在物流领域的应用在物流领域中,运输问题是非常重要的,可以通过求解运输问题来优化物流配送方案、降低物流成本、提高物流效率。
运输问题在生产计划中的应用运输问题还可以应用于生产计划中,可以通过求解运输问题来优化原材料到达厂区和半成品成品出厂的方案,提高生产效率,降低成本。
运输问题运输问题(transportation problem)一般是研究把某种商品从若干个产地运至若干个销地而使总运费最小的一类问题。
然而从更广义上讲,运输问题是具有一定模型特征的线性规划问题。
它不仅可以用来求解商品的调运问题,还可以解决诸多非商品调运问题。
运输问题是一种特殊的线性规划问题,由于其技术系数矩阵具有特殊的结构,这就有可能找到比一般单纯形法更简便高效的求解方法,这正是单独研究运输问题的目的所在。
§1运输问题的数学模型[例4-1] 某公司经营某种产品,该公司下设A、B、C三个生产厂,甲、乙、丙、丁四个销售点。
公司每天把三个工厂生产的产品分别运往四个销售点,由于各工厂到各销售点的路程不同,所以单位产品的运费也就不同案。
各工厂每日的产量、各销售点每日的销量,以及从各工厂到各销售点单位产品的运价如表4-1所示。
问该公司应如何调运产品,在满足各销售点需要的前提下,使总运费最小。
表4-1设代表从第个产地到第个销地的运输量(;),用代表从第个产地到第个销地的运价,于是可构造如下数学模型:(;运出的商品总量等于其产量)(;运来的商品总量等于其销量)通过该引例的数学模型,我们可以得出运输问题是一种特殊的线性规划问题的结论,其特殊性就在于技术系数矩阵是由“1”和“0”两个元素构成的。
将该引例的数学模型做一般性推广,即可得到有个产地、个销地的运输问题的一般模型。
注意:在此仅限于探讨总产量等于总销量的产销平衡运输问题,而产销不平衡运输问题将在本章的后续内容中探讨。
(;运出的商品总量等于其产量)(;运来的商品总量等于其销量)供应约束确保从任何一个产地运出的商品等于其产量,需求约束保证运至任何一个销地的商品等于其需求。
除非负约束外,运输问题约束条件的个数是产地与销地的数量和,即;而决策变量个数是二者的积,即。
由于在这个约束条件中,隐含着一个总产量等于总销量的关系式,所以相互独立的约束条件的个数是个。
运筹学运输问题的方法
运筹学中的运输问题可以通过以下方法进行解决:
1. 确定初始方案:最小元素法、付格尔法和西北角法等,其中最小元素法是先找出运费最小的,然后优先满足。
付格尔法是算出行差额和列差额,依次对差额最大的行或列中运费较小的先分配。
西北角法也是一种求初始可行解的方法。
2. 判定最优解:可以采用闭回路法或者位势法求检验数。
闭回路法是对所选回路上进行“奇+偶-”的操作,而位势法则是直接用公式:检验数=cij-ui-vj。
3. 调整优化解:以检验数<0且最小的数开始入基,对偶数点选择最小的xij出基。
接着为满足表格平衡,使奇数点加上xij,偶数点减xij,记住出基的点为空格点了,这样才能保证有数点一直是m+n-1个。
对于产销不平衡的问题,则考虑增设一个仓库存放多出来的部分,或者增设一个产地弥补不足的部分,这些运费均为0,后做法同上。
4. 重复上述步骤:如果还未得到最优解,则重复步骤2和3,直到求得最优解。
总的来说,运筹学的运输问题需要综合运用多种方法进行求解,通过不断调整和优化解,最终得到最优解。
第三章运输问题在生产实际中,经常需要将某种物资从一些产地运往一些销地,因而存在如何调运使总的运费最小的问题。
这类问题一般可用线性规划模型来描述,当然可以用单纯形法求解。
但由于其模型结构特殊,学者们提供了更为简便和直观的解法—-表上作业法。
此外,有些线性规划问题从实际意义上看,并非运输问题,但其模型结构类似运输问题,也可以化作运输问题进行求解。
第一节运输问题及其数学模型首先来分析下面的问题。
例3。
1农产品经销公司有三个棉花收购站,向三个纺织厂供应棉花。
三个收购站A1、A2、A3的供应量分别为50kt、45kt和65kt,三个纺织厂B1、B2、B3的需求量分别为20kt、70kt和70kt。
已知各收购站到各纺织厂的单位运价如表3-1所示(单位:千元/kt),问如何安排运输方案,使得经销公司的总运费最少?设x ij表示从A i运往B j的棉花数量,则其运输量表如下表所示。
表3—2由于总供应量等于总需求量,因此,一方面从某收购站运往各纺织厂的总棉花数量等该收购站的供应量,即x11+x12+x13 = 50x21+x22+x23 = 45x31+x32+x33 = 65另一方面从各收购站运往某纺织厂的总棉花数量等该纺织厂的需要量,即x 11+x 21+x 31 = 20 x 12+x 22+x 32 = 70 x 13+x 23+x 33 = 70因此有该问题的数学模型为min f= 4x 11+8x 12+5x 13+6x 21+3x 22+6x 23+2x 31+5x 32+7x 33x 11+x 12+x 13 = 50 x 21+x 22+x 23 = 45 x 31+x 32+x 33 = 65 x 11+x 21+x 31 = 20 x 12+x 22+x 32 = 70 x 13+x 23+x 33 = 70x ij ≥0,i=1,2,3;j=1,2,3 生产实际中的一般的运输问题可用以下数学语言描述。