模糊神经网络技术综述_张凯
- 格式:pdf
- 大小:164.83 KB
- 文档页数:5
模糊神经网络第一篇:模糊神经网络的基本原理及应用模糊神经网络是一种最早应用于模糊理论和神经网络理论的融合体,是一种新型的人工智能技术。
模糊神经网络的基本原理是将模糊理论和神经网络理论相结合,通过神经元与模糊集之间的映射建立模糊神经网络,实现数据处理和分类识别的功能。
模糊神经网络由输入层、隐含层和输出层三层组成,输入层接收输入数据,隐含层对输入数据进行加工处理,输出层根据隐含层提供的输出结果进行数据分类和识别。
整个模型的训练过程是通过反向传播算法实现,用来更新神经元之间权值的调整,进而提高分类和识别的准确度。
模糊神经网络在模式识别、图像处理、智能控制、时间序列预测等许多领域得到广泛应用,其应用具有许多优点。
例如,在模式识别领域,其能够对样本数据的模糊性进行精细化处理,提高识别精度;在智能控制领域,其能够通过学习和反馈调整策略,提高自适应控制效果,还能够模拟人的认知过程,具有较高的仿真能力,从而实现全面协调的规划与决策。
尽管模糊神经网络具有许多优点,但是和其他神经网络一样,其存在一些缺点。
例如,网络模型设计难度大,需进行繁琐的参数优化和实验验证;模型训练过程中存在局部最优问题,可能导致模型的收敛速度较慢,所以在实际应用过程中,需要充分考虑它们的优缺点来选择合适的模型。
综上所述,模糊神经网络在人工智能领域的应用具有广泛的前景,因为其能够克服传统的困难,更好地解决问题。
在未来,我们将不断地研究模糊神经网络的性能优化和应用扩展,为促进人工智能理论与应用的融合做出更大的贡献。
第二篇:模糊神经网络的案例分析及实现方法模糊神经网络是人工智能领域重要的一类算法之一,它在图像处理、数据挖掘、机器学习等领域得到了广泛的应用。
下面我们以智能交通管理为例,介绍模糊神经网络的具体应用过程。
模糊神经网络在实现智能交通管理中,主要可以实现车辆流量监测、拥堵监测、交通信号优化等功能。
其中,车辆拥堵监测是模糊神经网络在智能交通管理中的应用较为广泛的方向。
模糊神经网络
在人工智能领域中,神经网络一直是一种广泛应用的模型,用于解决各种复杂的问题。
然而,传统的神经网络在处理模糊或不确定性数据时存在一定的局限性。
为了解决这个问题,人们提出了模糊神经网络这一新颖的概念。
模糊神经网络结合了模糊逻辑和神经网络的优势,能够更好地处理不确定性数据。
模糊逻辑是一种能够处理模糊性数据和不确定性信息的逻辑系统,而神经网络则可以模拟人脑的神经元之间的连接关系,在学习和处理信息方面表现出色。
模糊神经网络的核心思想是利用模糊集合和神经网络相结合,通过模糊推理和神经网络学习的方式来处理复杂的问题。
在模糊神经网络中,模糊集合用于表示输入和输出的模糊性,神经网络则用于学习和调整模糊集合之间的关系。
与传统的神经网络相比,模糊神经网络在处理模糊性数据和不确定性信息方面具有更强的表达能力和适应性。
它能够更好地处理具有模糊性和不确定性的问题,比如模糊控制、模糊分类、模糊决策等方面的任务。
在实际应用中,模糊神经网络已经被广泛应用于各种领域,如模糊控制系统、模糊模式识别、模糊优化等。
通过模糊神经网络的建模和训练,可以更好地解决现实世界中存在的模糊性和不确定性问题,提高系统的稳定性和鲁棒性。
总的来说,模糊神经网络是一种很有前景的研究方向,它将模糊逻辑和神经网络的优势结合起来,为处理复杂的不确定性数据提供了一种有效的解决方案。
随着人工智能技术的不断发展,模糊神经网络必将在更多的领域发挥巨大作用,为社会的进步和发展做出更大的贡献。
模糊神经网络的研究及其应用模糊神经网络是一种结合了模糊逻辑和神经网络的先进技术,它在许多领域中都得到了广泛的应用。
在本文中,我们将介绍模糊神经网络的基本概念、特点、理论研究以及实际应用,最后对未来发展进行展望。
模糊神经网络是一种基于模糊逻辑理论的多层前馈网络,它通过模拟人脑神经元的连接方式来实现分类和识别等功能。
与传统的神经网络相比,模糊神经网络具有以下特点:模糊化输入:将输入数据转换为模糊量,使网络能够更好地处理不确定性和非线性问题。
采用模糊规则:模糊神经网络采用模糊规则进行计算,这些规则可以很好地描述现实世界中的模糊现象。
双重迭代:模糊神经网络需要进行模式识别和参数优化双重迭代过程,以实现网络性能的优化。
模糊神经网络在许多领域中都得到了广泛的应用,以下是其中的几个典型例子:图像处理:模糊神经网络可以应用于图像分类、图像增强、图像恢复等方面,提高图像处理的效果和速度。
语音识别:模糊神经网络可以应用于语音信号的特征提取和分类,提高语音识别的准确率和鲁棒性。
自然语言处理:模糊神经网络可以应用于文本分类、情感分析、机器翻译等方面,提高自然语言处理的效果和效率。
控制领域:模糊神经网络可以应用于系统建模、控制优化等方面,提高控制系统的稳定性和鲁棒性。
模糊神经网络的理论研究主要集中在以下几个方面:模糊逻辑的研究:模糊逻辑是模糊神经网络的基础,因此对模糊逻辑的研究是十分必要的。
主要研究内容包括模糊集合、模糊关系、模糊推理等方面的研究。
神经网络的研究:神经网络是模糊神经网络的核心,因此对神经网络的研究也是十分必要的。
主要研究内容包括神经元的数学模型、神经网络的训练算法、神经网络的稳定性等方面的研究。
模糊神经网络的建模和优化:模糊神经网络的建模和优化是提高其性能的关键。
主要研究内容包括网络结构的选取、参数的优化、训练算法的设计等方面的研究。
模糊神经网络在实际应用中已经取得了显著的成果,以下是其中的几个例子:电力系统的负荷预测:通过建立基于模糊神经网络的负荷预测模型,可以对电力系统的负荷进行准确预测,提高电力系统的稳定性和安全性。
模糊神经网络的设计与训练模糊神经网络(Fuzzy Neural Networks,FNN)作为一种融合了模糊推理和神经网络的智能计算模型,已经在各个领域展示了强大的应用潜力。
它能够处理模糊和不确定性信息,具有较强的自适应性和泛化能力。
本文将深入探讨模糊神经网络的设计与训练方法,并探索其在实际问题中的应用。
一、概述模糊神经网络是在传统神经网络基础上引入了模糊推理机制的一种扩展形式。
它利用模糊逻辑处理输入数据,并通过神经网络学习算法进行自适应调整,从而实现对输入数据进行分类、识别和预测等任务。
与传统方法相比,模糊神经网络具有更强大的表达能力和更好的鲁棒性。
二、设计方法模糊神经网络设计中最基本的问题是确定输入输出变量之间的关系以及它们之间相互作用方式。
常用方法包括基于规则、基于模型以及基于数据等。
基于规则方法通过人工构建规则集合来描述变量之间关系,并利用规则集合进行推理。
这种方法的优点是能够直观地表达专家知识,但缺点是规则集合的构建和调整需要大量的人力和时间。
基于模型方法利用数学模型来描述变量之间的关系,如模糊推理系统和模糊Petri网等。
这种方法可以通过数学推导和优化算法来确定模型参数,但需要对问题进行较为精确的建模。
基于数据方法利用大量数据来学习变量之间的关系。
常用算法包括神经网络、遗传算法、粒子群优化算法等。
这种方法可以通过大规模数据集进行训练,但对于数据质量和训练时间要求较高。
三、训练方法模糊神经网络的训练是指通过调整网络参数使其能够更好地适应输入输出之间的关系。
常用的训练算法包括基于梯度下降法、遗传算法以及粒子群优化等。
基于梯度下降法是一种常用且有效的训练方法,其基本思想是通过计算误差函数对网络参数求导,并根据导数值调整参数值。
这种方法可以在一定程度上保证误差函数逐渐减小,但容易陷入局部最优解。
遗传算法是一种模拟自然进化过程的优化算法,通过选择、交叉和变异等操作来搜索最优解。
这种方法适用于复杂的非线性问题,但计算复杂度较高。
模糊神经网络算法研究一、引言模糊神经网络算法是一种结合了模糊逻辑和神经网络的计算模型,用于处理模糊不确定性和非线性问题。
本文将通过研究模糊神经网络的原理、应用和优化方法,探索其在解决实际问题中的潜力和局限性。
二、模糊神经网络算法原理1. 模糊逻辑的基本概念模糊逻辑是处理模糊信息的数学工具,其中包括模糊集合、隶属函数、模糊关系等概念。
模糊集合用来描述不确定或模糊的概念,而隶属函数表示一个元素属于某个模糊集合的程度。
模糊关系则用于表达模糊集合之间的关系。
2. 神经网络的基本原理神经网络是一种由人工神经元构成的计算系统,以模仿生物神经系统的运作方式。
其中的神经元接收输入信号、进行加权处理,并通过激活函数输出计算结果。
神经网络通过训练和学习来调整连接权值,以实现对输入输出之间的映射关系建模。
3. 模糊神经网络的结构和运算模糊神经网络结合了模糊逻辑的不确定性处理和神经网络的学习能力,并采用模糊化和去模糊化的过程来实现输入输出之间的映射。
常见的模糊神经网络结构包括前馈神经网络、递归神经网络和模糊关联记忆。
三、模糊神经网络算法应用1. 模糊神经网络在模式识别中的应用模糊神经网络在模式识别领域有广泛应用,例如人脸识别、手写识别和语音识别等。
由于模糊神经网络对于模糊和不完整信息的处理能力,能够更好地应对现实场景中的噪声和不确定性。
2. 模糊神经网络在控制系统中的应用模糊神经网络在控制系统中的应用主要体现在模糊控制器的设计和优化。
通过模糊控制器的设计,可以实现对复杂系统的自适应控制和非线性控制。
同时,模糊神经网络还可以与PID控制器相结合,提高系统的控制性能。
3. 模糊神经网络在预测和优化中的应用模糊神经网络在时间序列预测和多目标优化等问题中也有广泛应用。
例如,使用模糊神经网络来预测股票市场的趋势和交通流量的变化,以及应用模糊神经网络来优化生产调度和资源分配等问题。
四、模糊神经网络算法优化1. 模糊神经网络参数优化模糊神经网络的性能很大程度上依赖于其参数的设置。
模糊神经网络应用流程和操作模糊神经网络是一种前馈神经网络,它可以将非精确信息以数学方法更好地处理。
在本文中,我们将介绍模糊神经网络的应用流程和操作,以便帮助读者更好地理解这种神经网络。
一、模糊神经网络的基本概念和特点模糊神经网络是一种基于模糊集合理论的神经网络,它与其他神经网络相比,有以下几个独特的特点:1.具有模糊性:传统的神经网络只能处理精确的数据,而模糊神经网络可以处理不确定、模糊或误差较大的数据。
2. 具有贡献性:通过模糊神经网络的学习和训练,它可以为每个输入变量分配权重,以确定每个变量的贡献度。
3. 可以建立映射关系:模糊神经网络可以将输入变量映射到输出变量,形成一种非线性的映射关系。
二、模糊神经网络的应用流程模糊神经网络的应用流程包括以下几个步骤:1. 确定输入变量和输出变量:首先,需要确定待处理数据的输入变量和输出变量,同时确定它们的值域。
2. 设计模糊集合:建立输入变量和输出变量的模糊集合,用于描述变量之间的映射关系。
3. 确定规则:利用专家知识或数据分析技术,确定变量之间的模糊规则,以便建立输入变量和输出变量之间的对应关系。
4. 建立神经网络:将模糊集合和规则输入到模糊神经网络中进行计算,以建立输入变量和输出变量的映射关系。
5. 网络训练:通过迭代反馈的方式,对模糊神经网络进行训练和优化,以提高网络的性能和准确度。
6. 模型验证:验证模糊神经网络的模型准确度和稳定性,以确定其在实际应用中的可靠性。
三、模糊神经网络的操作模糊神经网络的操作包括以下几个方面:1. 数据预处理:对输入数据进行标准化、归一化和特征提取等操作,以便更好地适应模糊神经网络的处理方式。
2. 模型选择:根据不同的应用场景和数据类型,选择适合的模型结构和参数配置,以便更好地满足实际需求。
3. 网络训练:通过反向传播算法等训练方法,对模糊神经网络进行训练和优化,以提高其性能和准确度。
4. 模型评估:对训练好的模型进行测试和验证,评估其准确度、稳定性和可靠性等方面的性能指标。
模糊神经网络简介模糊神经网络(FNN)是一种结合模糊逻辑和神经网络的方法,旨在处理模糊信息与不确定性。
该网络模拟人类大脑处理模糊信息的机制,能够有效地应对现实世界中的模糊问题。
模糊逻辑模糊逻辑是一种处理模糊性的数学工具,它引入了模糊集合和模糊运算,能够描述事物之间的模糊关系。
与传统的逻辑相比,模糊逻辑更符合人类认知过程,能够更好地处理模糊信息。
神经网络神经网络是一种由神经元和连接权重构成的计算模型,它能够通过学习不断优化权重,从而实现对输入数据的自适应建模。
神经网络在模式识别、预测和优化等方面表现出色。
模糊神经网络模糊神经网络将模糊逻辑和神经网络相结合,利用神经网络的自适应学习能力和模糊逻辑的模糊描述能力,有效地处理模糊信息。
FNN将模糊集合映射到神经网络,通过训练调整连接权重,实现对模糊规则的建模与推理。
FNN的特点•模糊描述能力:FNN能够处理模糊和不确定性信息,更适合于现实世界中的复杂问题。
•自适应学习:FNN可以根据输入数据进行权重调整,不断优化网络性能。
•非线性映射:FNN具有非线性映射能力,能够建模复杂的非线性关系。
•规则推理:FNN能够根据事先定义的模糊规则进行推理和决策。
应用领域模糊神经网络在诸多领域得到广泛应用: - 模糊控制:用于处理模糊和不确定性信息的系统控制。
- 模糊识别:用于模糊模式识别和特征提取。
- 模糊优化:用于解决模糊目标函数的优化问题。
- 模糊决策:用于模糊环境中的决策问题。
结语模糊神经网络作为模糊信息处理的有效工具,将模糊逻辑和神经网络的优势相结合,为处理现实世界中的复杂问题提供了一种全新的视角和方法。
随着人工智能技术的不断发展,模糊神经网络有望在更广泛的领域发挥重要作用。
利用模糊神经网络控制解决问题的原理及方法(优选)word资料利用模糊神经网络控制解决问题的原理及方法通过课程学习,我了解了模糊控制和神经网络控制解决问题的基本原理和方法。
通过查阅资料, 了解到模糊控制和神经网络控制在实际生活中如何解决问题。
我参考火灾探测系统为例,介绍模糊控制解决问题的原理及方法。
首先,简要介绍一下 Bp 神经网络控制和模糊控制的原理。
1. Bp 神经网络的结构及算法BP 网络可以有多层, 但为叙述简捷以三层为例导出计算公式。
设 BP 网络为三层网络,输入神经元以 i 编号,隐蔽层神经元以 j 编号,输出层神经元以 k 编号,示意图如图 1-1所示,其具体形式在下面给出,隐蔽层第 j 个神经元的输入为:∑=ii ji j o w net ,第 j 个神经元的输出为 (j j net g o =,输出层第 k 个神经元的输入为∑=j kj k o w net ,相应的输出为 (k k net g o =,式中 g 为 sigmoid 型函数, g(x= (11 (Θ+-+=x e x g , 式中ʘ为阈值或偏置值。
ʘ˃0则使 sigmoid 曲线沿横坐标左移, 反之则右移。
因此, 各神经元的输出应为∑Θ+-+=ij i ji j o w o (exp(1(1、∑Θ+-+=jk j kj k o w o(exp(1(1图 1-1神经网络结构图BP 网络学习过程中的误差反向传播过程是通过使一个目标函数(实际输出与希望输出之间的误差平方和最小化来完成的, 可以利用梯度下降法导出计算公式。
在学习过程中,设第 k 个输出神经元的希望输出为 pk t ,而网络输出为 pk o ,则系统平均误差为∑∑-=p kpk pk o t E 2 (21,为了表示方便,省去下标 p ,平均误差可写成∑-=kk k o t E 2 (21,式中平均误差 E 也称为目标函数。
根据梯度下降法, 权值的变化项∆ kj w 与ƏE/Əkj w 成正比,即∆ kj w =-ƞƏE/Əkj w ,由上述各公式可得:∆ kj w =-ƞƏE/Əkj w =j k k k k kjk k k k o o o o t net o E 1( ((--=∂∂∂∂∂∂-ηη, 记 j k k k k k o o o o t 1( (--=δ,对于隐含层神经元,也可写成∆ ji w =-ƞƏE/Əji w =i j j jji j j j j o o o E net o E 1((-∂∂-=∂∂∂∂∂∂-ηη, 1(j j j j o o E -∂∂-=δ,由于ƏE/Əj o 不能直接计算 , 而是以参数的形式表示 , 即 -ƏE/Əj o =-∑∑∑∑∑=∂∂-=∂∂∂∂-=∂∂∂∂kkj k kj k k j j j kj k k j k k k w w E o w E net E δ( (((, 则导出各个权重系数的调整量为∆ kj w j k k k k o o o o t 1( (--=η, ∆ ji w =i j o ηδ, 式中ƞ称为学习效率, ]1([j j kkj k j o o w -=∑δδ,1( (k k k k k o o o t --=δBP 网络的学习算法的具体步骤如下:1. 从训练本集中取某一样本,把它的输入信息输入到网络中2. 由网络正向计算出各层节点的输出3. 计算网络的实际输出与期望输出的误差4. 从输入层起始反向计算到第一个隐层,按一定原则向减小误差方向调整网络的各个联接权值5. 对训练样本集中的每一个样本重复以上步骤,直到对整个训练样本集的误差达到要求为止。
模糊神经网络的结构与实现方法概述:在数学、计算机科学、人工智能领域中,神经网络是一种模仿人类神经系统结构与功能的数学模型,被广泛用于模式识别、机器学习和人工智能等领域。
模糊神经网络就是基于模糊数学理论的神经网络。
本文将介绍模糊神经网络的基本结构和实现方法。
模糊神经网络的基本结构:模糊神经网络的结构与普通神经网络的结构类似,由输入层、隐藏层和输出层三个部分组成。
1.输入层:输入层用于接收外部输入的模糊信息。
一般来说,输入的信息经过模糊化处理,以便于神经网络进行处理。
这些信息可以是关于物体颜色、大小、形状和运动方向等方面的特征。
2.隐藏层:隐藏层通常用于进行信息加工、转化和计算。
在模糊神经网络中,隐藏层的作用是将输入的模糊信息转换成一组更加抽象和具有判断性质的特征。
这些特征可以用于后续的分类和识别。
3.输出层:输出层将隐藏层计算后的特征转换成分类结果。
在模糊神经网络中,输出层的结果通常为一组置信度或概率,表示某个输入向量属于每个不同类别的可能性大小。
模糊神经网络的实现方法:模糊神经网络的实现方法一般分为两种:基于规则的模糊神经网络和基于学习的模糊神经网络。
1.基于规则的模糊神经网络:基于规则的模糊神经网络是一种预设规则的模糊推理方法。
它使用if-then规则作为知识表示形式,通过模糊逻辑运算对规则进行推理,以得出输出结果。
这种方法的优点是不需要进行训练,但是缺点是规则需要手动预设,需要专家经验,并且容易出现规则矛盾的情况。
2.基于学习的模糊神经网络:基于学习的模糊神经网络是一种通过样本训练来确定模型参数的方法。
它使用输入和输出的训练样本集来训练网络的权重和阈值,以得出输出结果。
这种方法的优点是可以自动学习知识,并且可以处理复杂的非线性问题,但是需要大量的训练数据和时间。
总结:模糊神经网络作为一种非常有效的神经网络类型,已经被广泛应用于图像处理、模式识别、控制系统等领域。
本文简要介绍了模糊神经网络的基本结构和实现方法,并且指出了它的优点和缺点。
模糊算法与神经网络的结合技术与应用在现代人工智能技术中,模糊算法与神经网络被广泛应用并取得了很大的进展。
两者各自有着自己的优势和不足,但结合使用可以弥补彼此的缺陷,提高整体性能。
本文将介绍模糊算法与神经网络的结合技术,以及在实际应用中的一些案例。
一、模糊算法与神经网络的结合1.1 模糊神经网络模糊神经网络就是将模糊逻辑与神经网络相结合,由此产生的一种新型的神经网络。
它采用了模糊推理的方法,使得网络对于不确定的、模糊的信息也能进行有效的处理,提高了网络的健壮性和泛化能力。
1.2 模糊控制神经网络模糊控制神经网络是把模糊控制和神经网络相结合的一种方法。
它是一种基于经验的控制方法,能够自适应改善模糊系统的性能,实现控制目标。
它充分利用了模糊逻辑思想,能够处理输入具有模糊性质的问题,在非线性、不确定和时变等复杂情况下具有更好的控制效果。
1.3 模糊神经网络算法在模糊神经网络中,有许多不同的算法被提出和应用。
如ANFIS(自适应神经模糊推理系统)、WFNN(波形神经网络)和FILP(模糊逻辑程序设计)等。
这些算法各有特点,可以根据不同的实际需求和应用场景进行选择。
1.4 神经网络模糊化神经网络模糊化是指将神经网络中的输入和输出模糊化,从而实现对于不确定性信息的处理。
通过将模糊集合和模糊逻辑引入神经网络中,可以增强网络的适应性和鲁棒性,提高网络的泛化性能。
二、模糊算法与神经网络的应用案例2.1 工业控制在工业自动化控制中,模糊算法和神经网络通常被用来处理过程中的不确定性和非线性问题。
例如在温度控制、液位控制和车间调度等方面,它们能够提供更加精确和稳定的控制效果。
2.2 金融风险管理在金融风险管理方面,模糊算法和神经网络能够帮助银行和金融机构对金融市场和客户的信息进行分析和预测,建立风险模型和评估风险,以提高金融机构的风险管理能力。
2.3 图像和语音识别在图像和语音识别领域,模糊算法和神经网络能够处理复杂的、模糊的信息,提高识别精度。
模糊神经网络模型的改进与优化随着人工智能技术的不断发展,神经网络模型作为一种重要的机器学习方法,已经在许多领域取得了显著的成果。
然而,传统的神经网络模型在处理不确定性和模糊性问题时存在一定的局限性。
为了克服这些问题,研究人员提出了一种改进和优化传统神经网络模型的方法——模糊神经网络。
在传统神经网络中,输入和输出之间存在确定性映射关系。
然而,在许多实际应用中,输入和输出之间往往存在着一定程度的不确定性和模糊性。
例如,在图像识别任务中,由于光线、角度、遮挡等因素影响,同一物体在不同条件下可能呈现出不同的特征。
这就需要我们能够处理输入数据中存在的不确定信息。
为了解决这个问题,研究人员提出了一种改进传统神经网络模型的方法——引入模糊逻辑推理机制。
通过引入隶属函数、关联度函数等概念,在传统神经网络中融入了对输入数据进行隶属度刻画和推理过程的能力。
这样一来,模糊神经网络模型能够更好地处理输入数据中的不确定性和模糊性,提高了模型的鲁棒性和泛化能力。
在模糊神经网络中,隶属函数是一个关键概念。
它用于描述输入数据在不同隶属度上的分布情况。
通过对输入数据进行隶属度刻画,可以更好地描述输入数据中存在的不确定性和模糊性。
常用的隶属函数包括高斯函数、三角函数、梯形函数等。
通过选择合适的隶属函数形式和参数设置,可以使得模糊神经网络适应不同类型和分布特征的输入数据。
除了隶属函数之外,关联度函数也是一个重要概念。
它用于描述输入数据与输出之间的关联程度。
通过引入关联度函数,可以对输出结果进行推理和判断。
常用的关联度函数包括最大值、最小值、平均值等。
通过选择合适的关联度计算方式,可以使得模糊神经网络在处理输出结果时更加准确和可靠。
在实际应用中,我们常常需要对大量样本进行训练,并根据训练结果进行预测或决策。
然而,在传统神经网络中,样本的数量和复杂度往往对训练和推理的效率产生了一定的影响。
为了优化模糊神经网络模型的训练和推理效率,研究人员提出了一种改进方法——混合优化算法。
第12卷 第2期2010年6月 辽宁科技学院学报JOURNAL OF L I A ON I N G I N STI T UTE OF SC I E NCE AND TECHNOLOGYVol.12 No.2Jun. 2010文章编号:1008-3723(2010)02-0015-03模糊神经网络研究现状综述李恒嵬(辽宁柏高智能系统工程有限公司辽宁沈阳110015)摘要:概述了近年来模糊神经网络领域的研究方法和研究的进展,从模糊系统和神经网络结合的可能性到模糊神经网络的结构确定、常见算法、规则的提取等进行了总结和概述,并对将来的研究方向进行了探索。
关键词:模糊控制;神经网络;模糊神经网络;模糊规则;自适应控制中图分类号:TP273.2 文献标识码:A1 引言自从世界上第一个模糊控制器诞生以来,模糊控制已取得了大量应用,尤其对那些大滞后、非线性强、模型粗糙甚至难以获得数学模型的复杂工业对象来说,应用模糊控制是非常成功的。
20世纪80年代以来,人工神经网络的研究掀起了新高潮,并取得了不少进展,引起学术界的广泛关注。
1987年,B.Kosko〔1〕率先将模糊理论和神经网络理论有机地结合而进行了系统地研究,从此,模糊神经网络的理论研究及应用得到了飞速发展,如今已成为许多专家学者研究的热点课题。
2 模糊神经网络概述2.1 模糊系统与神经网络结合的可能性Kosko证明了一个加性模糊系统能以任意的精度逼近一个紧致域上的任意连续函数〔1〕。
L i-Xin W ang利用St one -W eirstrass定理证明了模糊系统实际上是一个万能逼近器〔2〕,它表明存在一个高斯型模糊系统,能在任意精度上逼近任意给定的函数,多层前馈神经网络能够很好的任意逼近一连续函数〔3〕。
因此,从数学角度看神经网络与模糊系统有着某种天然的相似性。
模糊控制技术和神经网络技术同属于人工智能技术,各自具有对方恰恰不具备的优缺点,具有互补性。