医学统计学——数值变量资料的统计描述
- 格式:ppt
- 大小:2.46 MB
- 文档页数:38
医学统计学的基本内容第一章医学统计学的基本内容第一节医学统计学的含义1、医学统计学定义医学统计学(statistics)作为一门学科的定义是:关于医学数据收集、表达和分析的普遍原理和方法。
2、医学统计学研究方法:通过大量重复观察,发现不确定的医学现象背后隐藏的统计学规律。
3、医学统计推论的基础:在一定条件下,不确定的医学现象发生可能性,即概率。
第二节、统计学的几个重要概念一(资料的类型1、计量资料(数值变量):对每一观察对象用定量的方法,测定某项指标所得的资料。
一般有度量衡单位,每个对象之间有量的区别。
2、计数资料(分类变量):对观察对象按属性或类型分组计数所得的资料。
每个对象之间没有量的差异,只有质的不同。
3、等级资料(有序分类变量):对观察对象按属性或类型分组计数,但各属性或类型之间又有程度的差别。
注意:不同类型的资料采用的统计分析方法不同;三类资料类型可以相互转化。
二、总体根据研究目的所确定的同质的所有观察对象某项变量值的集合1、有限总体:只包括在确定时间、空间范围内的有限个观察对象。
2、无限总体:没有时间、空间范围的限制,观察对象的数量是不确定的,无限的三、样本从总体中随机抽取部分观察对象,其某项变量值的集合。
从总体中随机抽取样本的目的是: 用样本信息来推断总体特征。
四、随机事件可以发生也可以不发生,可以这样发生也可以那样发生的事件。
亦称偶然事件。
五、概率描述随机事件发生可能性大小的数值,记作,,其取值范围0?P?1,一般用小数表示。
,,0,事件不可能发生必然事件(随机事件的特例);,,1,事件必然发生;,?0,事件发生的可能性愈小;,?1,事件发生的可能性愈大六、小概率事件习惯上将,?0.05或,?0.01 的随机事件称小概率事件。
表示某事件发生的可能性很小。
七、参数和统计量参数:总体指标,如总体均数、总体率,一般用希腊字母表示统计量:样本指标,如样本均数、样本率,一般用拉丁字母表示八、学习医学统计学的方法1、重点掌握“四基”:基本知识、基本概念、基本原理和基本方法;2、重视统计方法在实际中应用,重视实习和综合训练;注意学习每种统计方法的应用范围、应用条件,大多数公式只要求了解其意义和使用方法,不用记忆和探究数理推导。
医学统计学计数资料的统计描述(一)医学统计学计数资料的统计描述计数资料是医学研究中常见的数据类型,例如统计某种疾病的患病人数、治愈人数等。
如何对这些数据进行科学统计描述,成为了医学研究不可避免的问题。
一、计数资料的基本概念计数资料是指由离散数据组成的一种数据类型,这些数据仅取有限个数值,如某类疾病的患病人数(自然数)或治愈人数(非负整数)。
计数资料是医学研究中常见的数据类型,对于这些数据的科学统计描述极为重要。
二、计数资料的统计描述1. 频数频数是指计数资料中各取值出现的次数,常以小写字母n表示。
例如患病人数为0的样本数为n0,患病人数为1的样本数为n1,以此类推。
2. 频率频率是指频数与总样本数的比值,常以小写字母f表示。
例如患病人数为0的频率为f0=n0/n,患病人数为1的频率为f1=n1/n,以此类推。
频率可以体现每个取值在样本中的分布情况,是比较常用的统计指标,其和为1。
3. 百分比百分比是指频数与总样本数的比值乘以100,常以百分号表示。
例如患病人数为0的百分比为f0×100%,患病人数为1的百分比为f1×100%,以此类推。
4. 累计频率累计频率是指某一取值及其以下所有取值的频率之和,常以小写字母F 表示。
例如患病人数小于等于3的累计频率为F3=f0+f1+f2+f3。
累计频率可以体现小于等于某个取值的样本在总样本中所占比例。
三、总结计数资料是医学研究中常见的数据类型,对于这些数据的科学统计描述有益于研究者更加深入地了解样本的分布情况,进而提出相应的研究假设。
频数、频率、百分比和累计频率是计数资料的常用统计指标,可分析每个取值在样本中的分布情况和各个取值间的差异。
在实际研究中,研究者应根据实际情况选择合适的统计方法进行分析,以期得到更为科学的结论。
医学统计学知识点汇总(精华)一.概论1,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。
2,医学统计学的主要内容:1)统计研究设计调查研究设计和实验研究设计2)医学统计学的基本原理和方法研究设计和数据处理中的基本统计理论和方法。
A:资料的搜集与整理 B:常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图 C:统计推断,如参数估计和假设检验。
3)医学多元统计方法多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic回归与Cox回归分析。
3,统计工作步骤:1)设计明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。
2)搜集材料A,搜集材料的原则及时、准确、完整B,统计资料的来源医学领域的统计资料的来源主要有三个方面。
一是统计报表,二是经常性工作记录,三是专题调查或专题实验。
C,资料贮存3)整理资料 a检查核对b设计分组c拟定整理表d归表4)分析资料统计分析包括统计描述和统计推断4,同质(homogeneity):指被研究指标的影响因素相同。
变异(variation):同质基础上的各观察单位间的差异。
变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量变量值:变量的观察结果或测量值。
变量类型变量值表现实例资料类型数值变量离散型定量测量值,有计量单位产前检查次数计量资料连续型身高分类变量无序二分类对立的两类属性性别(男女)计数资料多分类不相容的多类属性血型(A,B,O,AB)有序多分类类间有程度差异的属性受教育程度(小学,中学,高中,大学…)等级资料5,总体(population)根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。
统计学概述一、统计学的意义统计学是研究数据的收集、整理、分析的一门科学,是认识社会和自然现象客观规律数量特征的重要工具。
统计学方法就是帮助人们透过偶然现象认识其内在的规律性,揭示疾病或现象发生、发展规律,为预防疾病、促进健康提供客观依据。
二、统计学的基本概念(一)同质与变异同质是指被研究指标的影响因素相同。
变异是同质基础上的观察单位(亦称为个体)之间的差异。
(二)总体与样本总体是指根据研究目的确定的同质观察单位的全体。
样本从总体中随机抽取的部分观察单位,其测量值(或变量值)的集合。
(三)变量与变量值变量:确定总体后,研究者应对每个观察单位的某些特征进行测量或观察,这种特征称为变量,如:身高、体重等。
变量值:变量的测得值。
如身高150cm,体重50Kg等。
(四)参数与统计量参数是指总体特征的统计指标。
如某地健康成年男性的平均血红蛋白值。
统计量是指样本特征的统计指标。
如从某地健康成年男性中抽取一部分人的平均血红蛋白值。
(五)误差误差泛指测量值与真实值之差。
根据误差的性质和来源,统计工作中产生的误差主要有三种类型,即系统误差、随机测量误差、抽样误差。
1.系统误差:测量结果有倾向性。
查明原因,可以避免。
特点:①测量结果有倾向性。
如仪器、试剂、判定标准等。
②查明原因,可以避免。
2.随机测量误差:收集资料的过程中,即使避免了系统误差,但由于各种偶然因素造成的测量值与真实值不完全一致,这种误差称为随机测量误差。
特点:①随机误差没有大小和方向。
②不可避免。
3.抽样误差:由于随机抽样所引起的样本统计量与总体参数之间的差异以及各样本统计量之间的差异称为抽样误差。
特点:变异是绝对的,抽样误差不可避免。
原因:个体之间的差异;抽样时只能抽取总体中的一部分作为样本。
(六)概率(P)概率是描述某随机事件发生可能性大小的量值,常用符号P表示。
随机事件的概率在0~1之间,即0≤P≤1。
小概率事件:P≤0.05或P≤0.01的事件。
医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同的因素情况。
如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。
变异:同质的基础上个体间的差异。
“同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的μ.δ.πX.S.p1.2.变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。
一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。
表现为数值大小,带有度、量、衡单位。
如身高(cm)、体重(kg)、血红蛋白(g)等。
二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。
分类:二分类:+ -;有效,无效;多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O、AB血型人数分布的数据资料是( )A.定量资料B.计量资料C.计数资料D.等级资料分组统计描述:是利用统计指标、统计表和统计图相结合来描述样本资料的数量特征及分布规律。
统计推断:是使用样本信息来推断总体特征。
统计推断包括区间估计和假设检验。
第四节统计表与统计图★一、统计表统计表的基本结构与要求标题:高度概括表的主要内容,时间、地点、研究内容,位于表的上方,居中摆放,左侧加表的序号。
标目:横标目和纵标目。
线条:通常采用三线表和四线表的形式。
没有竖线或斜线。
数字:表内数字一律用阿拉伯数字。
同一指标,小数位数应一致,位次对齐。
无数字用“—”表示。
暂缺用“…”表示。
“0”为确切值。
备注:位于表的下面,通常是对表内数字的注解和说明,必要时可以用“*”等标出。
一张统计表的备注不宜太多。
二、制表原则1.(7理分布。
【例题填空】描述某地十年间结核病死亡率的变化趋势宜绘制_________图。
数值变量资料的统计分析数值变量的统计分析是一种重要的数据分析方法,通过对数值变量的各种统计指标和分布进行分析,可以帮助我们了解和揭示数据的内在规律和特征。
数值变量的统计分析在各个领域和学科中都有着广泛的应用,如经济学、社会学、医学等。
本文将从描述统计、推断统计和回归分析三个方面介绍数值变量资料的统计分析方法。
描述统计是对数值变量资料进行整体描述的统计方法。
常用的描述统计指标包括中心趋势和离散程度两方面。
中心趋势指标包括平均数、中位数和众数。
平均数是最常用的中心趋势指标,它代表了样本数据的集中位置。
中位数是将数据按从小到大的顺序排列后,处于中间位置的数值,它对极端值不敏感,更能反映总体的典型水平。
众数是出现频率最高的数值,可以用来了解数据的分布特点。
离散程度指标包括范围、方差和标准差等。
范围是最大值和最小值的差值,表示了数据集的广度。
方差和标准差是衡量数据分散程度的指标,方差是每个数值与平均数的差的平方的平均值,标准差是方差的平方根,反映了数据的离散程度。
推断统计是利用样本数据对总体进行推断的统计方法。
常用的推断统计方法包括参数估计和假设检验。
参数估计是通过样本数据估计总体的未知参数,如均值、方差等。
常用的参数估计方法有点估计和区间估计。
点估计是通过样本数据得到总体参数的一个估计值。
常用的点估计方法有最大似然估计和矩估计。
区间估计则是对参数进行估计的同时还给出了一个可信的范围,可以用于报告不确定性。
假设检验是利用样本数据对总体参数进行假设检验的统计方法,用于判断总体参数是否符合一些假设。
假设检验包括单样本检验、双样本检验和方差分析等。
回归分析是一种用于研究变量之间关系的统计方法。
回归分析可以用于建立数值变量之间的函数关系,并用于预测和解释变量之间的关系。
常用的回归分析方法包括线性回归、多元回归和非线性回归等。
线性回归是建立线性关系模型的一种方法,通过最小二乘估计法来估计回归系数。
多元回归是在线性关系模型的基础上引入多个自变量进行分析。
第八章数值变量资料的统计描述三、习题A1型题1 . 描述一组正态或近似正态分布资料的平均水平用()A .算术均数B .几何均数C .中位数D .平均数E .众数2 . 血清学滴度资料最常计算()以表示其平均水平。
A .均数B .中位数C .几何均数D .全距E .标准差3 .表示变量值变异情况的指标最常用的是()A .四分位数间距B .全距C .标准差D .变异系数E .方差4 .两组呈正态分布的数值变量资料,但均数相差悬殊,若比较离散趋势,最好选用的指标为()A .全距B .四分位数间距C .方差D .标准差E .变异系数5 .下列哪一项不是标准差的应用范围()A .说明观察值的离散程度B .计算变异系数C .与均数一起描述正态分布的特征D .与均数一起根据正态分布的规律估计总体均数的可信区间E .计算标准误6 .在同一总体中随机抽样,样本含量n 越大,则理论上()越小A .样本标准差B .中位数C .标准误D .第95百分位数E .均数7 .算术均数与中位数相比()A .抽样误差更大B .不易受极端值影响C .更充分利用数据信息D .更适用于分布不明的资料E .更适用于偏态分布资料8 .单位不相同均数相差较大时,比较连续性资料的离散趋势,最好用()A .全距B . SC . CVD .四分位间距E .方差9 .变异系数的数值()A .一定大于1B .一定小于1C .可大于1 也可小于1D .一定比S 小E .一定比S 大10 .标准正态分布的均数与标准差分别为()A . O , 1B . 1 , OC . O , OD . 1 , lE . 1.96 , 2.5811 .各观察值均加(或减)同一个数后()A .均数不变,标准差不一定变B .均数不变,标准差变C .均数不变,标准差也不变D .均数变,标准差不变E .均数变,标准差也变12 . ( )分布的资料,均数等于中位数A .正态B .左偏态C .右偏态D .倒数偏态E .对数偏态A2型题13 .对120 名男大学生的身高进行了测量,每个测量值减去均数所得的差值再除以标准差,所得数值的分布为()A .正态分布B .标准正态分布C .正偏态分布D .负偏态分布E .偏态分布14 .若一组数据呈正态分布,其中大于 x -2.58s 的变量值占()A . 99.5 %B . 99 %C . l %D . 0.5 %E . 5 %15 .正态分布曲线下(μ士1.96σ)动区间的面积占总面积的()A . 97.5 %B . 95 %C . 5 %D . 2.5 %E . 1 %16 .某项计量指标仅以过高为异常,且资料呈偏态分布,则其95%参考值范围可为()A .≤P95B . ≥ P5C .≤P97.5D .≥P95E . P2.5 ~ P97.517 .某项计量指标仅以过低为异常,且资料呈偏态分布,则其95%参考值范围可为()A . ≤P95B . P2.5 ~ P97.5C .≤P97.5D . ≥P95E . ≥ P518 . X1 和X2:是两个独立的随机变量,( X1+ X2)与(X1- X2)的方差相比,理论上()A .更大B .可以大也可以小C .更小D .相等E .没有关系A3型题共同题干(19 ~ 21 )随机抽取某地2000 名正常人血铅测定值。