21世纪高层建筑结构技术的发展与成就
- 格式:doc
- 大小:34.00 KB
- 文档页数:4
世界高层建筑发展历史及发展趋势在人类建筑的发展历程中,高层建筑的崛起是一个令人瞩目的篇章。
从最初的简单构造到如今的摩天大楼,高层建筑不仅是建筑技术进步的象征,也反映了社会、经济和文化的变迁。
追溯到古代,虽然没有现代意义上的高层建筑,但一些建筑已经展现出了向上发展的趋势。
例如,埃及的金字塔虽然主要是作为陵墓而建,但它们的巨大高度和复杂结构显示了当时人们在建筑垂直方向上的努力。
进入近代,随着工业革命的推进,建筑材料和技术有了显著的进步,为高层建筑的发展奠定了基础。
19 世纪末 20 世纪初,美国芝加哥出现了一批早期的高层建筑。
这些建筑采用了钢结构框架,使得建筑物能够承载更多的重量并且建造得更高。
其中,芝加哥家庭保险大楼被认为是世界上第一座现代意义上的高层建筑。
20 世纪中叶,高层建筑在全球范围内迅速发展。
美国纽约的帝国大厦成为了当时的标志性建筑,其高度达到了 381 米。
这座建筑不仅在高度上令人惊叹,其简洁而富有力量感的设计也成为了经典。
在亚洲,日本在战后经济迅速崛起,也建造了不少高层建筑。
而中国自改革开放以来,随着经济的腾飞,高层建筑如雨后春笋般在各大城市涌现。
高层建筑的发展不仅仅是追求高度的突破,还体现在设计理念和功能的多样化上。
早期的高层建筑主要是作为办公场所,而如今,高层建筑涵盖了住宅、酒店、商业综合体等多种功能。
在设计方面,更加注重环保和可持续发展。
采用高效的节能设备、绿色建筑材料,以及优化建筑的自然采光和通风,以减少对环境的影响和能源的消耗。
同时,高层建筑的外观设计也越来越具有创新性和艺术性。
不再仅仅是简单的几何形状,而是融合了当地文化特色和艺术元素,成为城市的地标性建筑。
未来,世界高层建筑的发展趋势将呈现出以下几个特点。
智能化将成为重要的发展方向。
通过先进的传感器和控制系统,实现对建筑内部环境、设备运行的智能监控和管理,提高建筑的安全性和舒适性。
绿色可持续发展将更加深入。
随着全球对环境保护的重视,高层建筑将在能源利用、水资源管理、垃圾处理等方面实现更加高效和环保的解决方案。
高层建筑结构体系的发展和应用情况【摘要】随着经济的发展,越来越多的高层建筑出现在我们的日常生活中,对于大多数人来说高层建筑似乎只是一个城市经济发展程度的象征或城市中的一个标志性建筑。
但是随着高层建筑在城市中越来越多,简单了解一些高层建筑结构体系及应用情况也具有相当重要的意义。
【关键词】发展历程建筑结构发展趋势19世纪末,随着科学技术的发展,钢筋混领土结构、钢结构在土木工程领域中代替传统的砖、石、木结构得到了推广和应用,建筑高度的增加、层数的增多、跨度的增大,现代意义上的高层建筑开始出现。
回顾高层建筑的发展历史,我们可以看到其中代表建筑是美国1931年建成的纽约帝国大厦(高381m,102层)、1972年建成的纽约世界贸易中心的姊妹楼(417m和415m,100层,“9.11”事件中被毁)和1974年建成的芝加哥西尔斯大厦(441.9m,110层),前苏联和波兰与1953年和1955年分别渐层的莫斯科国立大学(239m,26层)和华沙科学文化宫(231m,42层),1978年澳大利亚悉尼建成的MLC中(229m65层)。
1985年以来,亚洲的日本、韩国、马来西亚、朝鲜及中国等国家迅速发展了高层及超高层建筑,其中有1996年建成的深圳的帝王大厦(高325m,69层)、广州中信广场(321.9,80层),1998年建成的吉隆坡石油大厦(400m,88层)上海金茂大厦(395m,69层)。
将世界上最高的100幢高层建筑的建筑年代和在世界上各地的分布表作统计可看出:随着时间推移20实际中,北美洲在前100幢高层建筑中所占的数量由多变少,而亚洲则从无到有,由少变多。
并由此推论在21世纪中亚洲将成为世界建造高层建筑的中心。
随着工业化、商业化、城市化的进程,城市人口剧增,造成城市生产和生活用房紧张,地价昂贵,迫使建筑物向高空发展,由多层发展为高层。
19世纪末期,开始出现了现代形式的钢框架和钢筋混凝土框架结构的高层建筑。
21世纪建筑钢结构的应用及展望共3篇21世纪建筑钢结构的应用及展望121世纪建筑钢结构的应用及展望随着经济的发展和城市化的加速,各种建筑结构材料的应用变得越来越多样化。
其中,钢结构作为一种新型、轻质、高强、耐用的建筑结构材料,逐渐引起了人们的广泛关注和深入研究。
本文将从钢结构的历史发展、应用现状、技术特点及未来发展方向进行阐述。
钢结构的历史发展钢结构作为一种新型建筑结构材料,其历史可以追溯到19世纪末期。
当时,随着钢铁工业的蓬勃发展,更多的建筑师开始使用钢铁材料来构建建筑物。
特别是在美国和欧洲,钢结构被广泛运用于高层建筑和大型桥梁等结构。
而在中国,钢结构的运用相对较晚。
直到20世纪90年代,在国家政策的引领下,我国开始大规模引进和生产钢结构,逐渐推广到各个领域,包括厂房、桥梁、楼房等。
钢结构的应用现状随着技术的不断进步,钢结构的应用范围也越来越广泛。
目前,钢结构被广泛应用于大型建筑、体育场馆、桥梁、厂房、露天停车场等建筑工程中。
比如,在北京市奥体中心的建设中,为了建造一系列延续历史、引领未来的新型场馆,国内外的钢结构建造技术得到了大规模的应用。
此外,钢结构还在四川鲁能国际儿童医院、山西霍州大智量贩、海南三亚中瑞丽莎别墅酒店等大型建筑中得到广泛运用。
钢结构的技术特点钢结构相对于传统的混凝土结构,具有以下几大技术特点:1.轻量化:钢结构由于质量轻,可以减轻建筑物的重量,从而减少建筑物对地基的压力。
2.强度高:钢材的强度很高,可以减少构件截面积,从而创造更大的空间。
3.施工快速:钢结构由于制造精度高,安装快速,可以缩短建筑工期,从而减少造价。
4.安全性高:钢结构具有良好的抗地震和防火性能。
未来发展方向未来,钢结构主要发展方向包括高性能、环保、生态等方面。
首先,高性能是未来钢结构发展的重要趋势。
由于钢结构具有透明性、多样性、空间感等特点,未来可以进一步开发钢结构的新型材料,提升钢结构的力学性能,从而推动钢结构在高耸建筑领域的应用。
浅谈高层建筑结构体系的发展和应用高层建筑是指高度超过一定标准的建筑物,通常指高度超过约50米的建筑物。
随着城市化进程的加快和土地资源的有限,高层建筑在城市中的比重逐渐增加。
高层建筑的结构体系的发展和应用是保证高层建筑的安全运行的关键。
高层建筑结构体系的发展经历了长期的实践和探索过程。
早期的高层建筑多采用砖木结构,如古代城楼等;后来随着钢结构的发展,高层建筑开始采用钢框架结构,如美国的沃尔多夫-阿斯特里亚酒店;再后来,随着混凝土技术的进步,高层建筑开始采用钢混凝土结构,如中国的上海东方明珠塔等。
高层建筑结构体系的发展主要受以下因素影响:首先,结构材料的发展。
随着钢材和混凝土技术的进步,结构材料的承载能力不断提高,能够满足高层建筑的承重要求。
其次,结构理论的发展。
结构力学理论的不断深入研究,使得人们对高层建筑结构的力学性能有了更深入的了解,从而为高层建筑结构的设计提供了理论基础。
再次,建筑设计的发展。
现代建筑设计注重的是结构与功能的有机结合,高层建筑的结构设计越来越趋向于优化和精细化,以满足人们对于建筑物功能和美观的要求。
高层建筑结构体系的应用广泛而多样。
在结构形式上,高层建筑的结构体系主要包括钢框架结构、钢混凝土框架结构、剪力墙结构、空心楼板结构等。
不同的结构形式适用于不同的高层建筑类型和地理环境。
在实际应用中,高层建筑结构体系需要满足以下基本要求:首先,足够的承载能力。
高层建筑需要能够承受自身重量、风荷载、地震力等外力作用,并保证结构的安全性。
其次,良好的抗震性能。
高层建筑作为地震灾害较为严重的地区常见的建筑形式之一,需要具备良好的抗震性能。
再次,合理的结构刚度。
高层建筑的结构刚度需要能够在风荷载等外力作用下保持稳定,以保证建筑物不会产生过大的振动,影响人们的正常活动。
最后,合理的经济性。
高层建筑的结构体系需要兼顾安全性和经济性,以降低建设成本。
总之,高层建筑结构体系的发展和应用是一个不断探索和完善的过程。
国内外高层与超高层建筑的发展在现代城市的天际线上,高层与超高层建筑如同璀璨的明珠,展现着人类建筑技术和设计理念的不断进步。
这些高耸入云的建筑不仅改变了城市的面貌,还对经济、社会和文化产生了深远的影响。
高层与超高层建筑的发展并非一蹴而就,而是经历了一个漫长的历程。
在国外,早在 19 世纪末,随着工业革命的推进和城市化进程的加速,高层建筑开始崭露头角。
美国芝加哥的家庭保险大楼被认为是世界上第一座现代意义上的高层建筑,它采用了钢结构框架,开创了高层建筑的新纪元。
20 世纪初,纽约的帝国大厦成为了当时世界上最高的建筑。
这座建筑不仅高度惊人,其建筑风格和设计理念也具有划时代的意义。
它展现了当时美国的强大经济实力和建筑技术的高超水平。
此后,世界各地的高层建筑如雨后春笋般涌现。
在亚洲,日本、韩国等国家也纷纷建造了具有代表性的高层建筑。
在国内,高层与超高层建筑的发展起步相对较晚。
但随着改革开放以来经济的快速发展和城市化进程的加快,我国的高层建筑建设也取得了举世瞩目的成就。
上海的金茂大厦、环球金融中心以及广州的中信广场等都是国内高层建筑的代表作品。
高层与超高层建筑的发展离不开先进的建筑技术。
钢结构、混凝土技术的不断创新和改进,为高层建筑的建设提供了坚实的基础。
高强度的钢材使得建筑能够承受更大的重量和风力,而高性能的混凝土则保证了建筑的稳定性和耐久性。
同时,建筑施工技术的进步,如塔吊技术的提升、预制构件的应用等,大大提高了施工效率,缩短了建设周期。
在设计方面,高层与超高层建筑也越来越注重人性化和环保理念。
不再仅仅追求高度和外观的独特性,而是更加关注使用者的舒适度和建筑与周边环境的和谐共生。
绿色建筑技术的应用,如太阳能利用、雨水收集系统、自然通风和采光设计等,不仅降低了建筑的能耗,还减少了对环境的影响。
此外,高层与超高层建筑的发展也对城市规划和管理提出了新的挑战。
这些建筑往往集中在城市的核心区域,对交通、消防、公共服务设施等都带来了巨大的压力。
现代高层建筑的建筑技术与创新随着城市化进程的加快和人口的不断增长,现代高层建筑成为城市发展的重要组成部分。
建筑师和工程师们通过不断创新和技术进步,推动了高层建筑的发展。
本文将探讨现代高层建筑的建筑技术与创新。
一、结构技术的创新现代高层建筑的设计和建造需要应对许多挑战,其中最关键的是结构技术的创新。
为了提高建筑的强度和稳定性,工程师们采用了许多先进的结构技术,如钢结构、混凝土框架结构以及超高强度玻璃幕墙等。
1. 钢结构钢结构广泛应用于现代高层建筑中,因为它具有优良的强度、刚度和耐久性。
钢结构可以有效地承受大量的重力和风力荷载,同时还能够减小建筑物的自重。
在高层建筑设计中,钢结构的使用不仅可以提高建筑的安全性,还可以增加建筑的可塑性和灵活性,满足不同的设计需求。
2. 混凝土框架结构混凝土框架结构也是一种常见的高层建筑结构形式。
它具有较好的抗震性能和抗侧向力能力,并且在隔热、隔音等方面表现出色。
混凝土框架结构的特点是可以将建筑负荷分散到整个结构中,提高了建筑的整体稳定性。
3. 超高强度玻璃幕墙高层建筑的外墙常采用玻璃幕墙作为主要设计元素,以增加建筑的透明度和美观性。
为了提高幕墙的安全性和抗风性能,工程师们开发了超高强度玻璃幕墙技术。
这种幕墙系统采用了特殊的玻璃材料和支撑结构,可以承受大风压和外力冲击,保证建筑物的安全性。
二、节能技术的应用随着能源资源的日益紧张和环境保护意识的提高,节能技术在现代高层建筑中得到了广泛应用。
工程师们通过创新设计和技术手段,减少了建筑的能源消耗,实现了可持续发展。
1. 绿色建筑材料现代高层建筑鼓励使用可再生材料和环保材料,比如利用再生纸板制作隔热板、使用可回收塑料和玻璃制作幕墙等。
这些材料不仅具有较强的隔热性能和耐久性,还可以减少对自然资源的依赖和对环境的污染。
2. 能源有效利用高层建筑通常使用先进的能源管理系统,包括智能照明系统、智能空调系统和太阳能发电系统等。
这些系统可以根据室内外环境条件自动调整能源的使用,以提高能源利用效率并减少能源的浪费。
1.3 高层建筑结构发展1.3.1 高层建筑的发展概况随着工业化、商业化、城市化的进程,城市人口剧增,造成城市生产和生活用房紧张,地价昂贵,迫使建筑物向高空发展,由多层发展为高层。
⑴近代(形成期)1819年,美国芝加哥16层Monadnock大楼,砖承重墙体系,底部八层砖墙1.8m厚1801年,美国曼彻斯特7层棉纺厂房,厂房内部采用铸铁框架承重1854年,美国长岛黑港采用熟铁建造灯塔1883年,美国11层保险公司,生铁柱,熟铁梁(世界第一栋高层建筑)1889年,9层 Second Rand Merally大楼,全钢框架(第一栋高层钢建筑)⑵现代(发展期)帝国大厦20世纪,钢结构技术的进步、电梯的发明,房屋建筑高度越来越高框架抗侧力体系-加竖向支撑或剪力墙来增强抗侧刚度和强度。
1905年,50层Metrop Litann大楼1913年,60层高234m的沃尔沃斯(Woolworth)大楼1929年,319m的Charysler大厦1931年,102层381m帝国大厦(采用平面结构理论,用钢量为206kg/m2)⑶二战结束后地价昂贵、平面结构理论——三维立体结构理论、轻质材料。
1972年,世界贸易中心(Twin Towers)高402m,110层——钢结构1974年,西尔斯大厦 442m(立体结构-框筒束体系,用钢量161kg/m2,与帝国大厦相比减少20%)——钢结构1996年,吉隆坡建成石油大厦,88层,高450m,是钢与混凝土混合结构。
2003年,10月中国台北101大厦,101层,高508m,首次突破500m高度。
全世界前10幢已建的最高建筑物1.3.2 我国高层建筑概况我国的现代高层建筑起步较晚,解放前,仅在几个大城市有为数很少的高层建筑。
解放以后,在20世纪50至60年代,陆续建造一些;自20世纪70年代,我国高层建筑建设加快了步伐,开始大批建造;进入80年代后,城市建设更是日新月异,高层建筑如雨后春笋,拔地而起。
高层建筑的历史发展
高层建筑的历史发展可以追溯到古代文明时期。
早在古埃及时期,人们就开始建造高大的金字塔和神庙。
然而,真正意义上的高层建筑的发展始于现代城市化的时期。
19世纪末20世纪初,随着工业革命和城市化的推进,人们开始建造越来越高的建筑。
第一代现代高层建筑被称为“钢铁巨人”,其中最著名的就是美国芝加哥的肯尼迪大厦。
这些建筑使用钢铁骨架和电梯技术,使得建筑物的高度不再受限制。
随着钢铁和混凝土技术的进步,高层建筑的设计和建造水平越来越高。
20世纪上半叶,纽约的埃默里克大厦、伦敦的帝国大厦和巴黎的埃菲尔铁塔成为代表性的高层建筑。
20世纪中叶,随着玻璃幕墙技术的出现,高层建筑的外观和结构发生了巨大变化。
这种技术使得建筑物能够拥有更大的窗户和透明度,提供更好的采光和景观。
同时,高层建筑的设计和建造也更加注重环保和节能。
21世纪初,高层建筑的发展进入了一个新的阶段。
超高层建筑的出现成为新的潮流,代表性的有迪拜的哈利法塔和上海的上海中心大厦。
这些超高层建筑不仅在高度上创造了新的纪录,同时也运用了最先进的技术和设计理念。
未来,高层建筑的发展趋势可能会继续朝着更高、更环保和更智能
的方向发展。
新材料、可再生能源和智能科技的应用将进一步改变高层建筑的设计和建造方式,使其更加适应未来城市的需求。
世界高层建筑发展历史及发展趋势在人类文明的漫长进程中,建筑始终是见证社会发展与科技进步的重要标志。
而高层建筑,作为建筑领域的璀璨明珠,更是以其独特的魅力和不断刷新的高度,展现着人类的智慧与勇气。
回顾历史,高层建筑的起源可以追溯到古代文明时期。
在那个时候,虽然技术条件有限,但人们已经开始尝试建造相对较高的建筑。
例如,埃及的金字塔,尽管其主要目的是作为法老的陵墓,但它们高大而雄伟的身姿,无疑展现了当时人们在建筑高度上的追求。
然而,真正意义上的现代高层建筑的发展,始于 19 世纪末 20 世纪初的工业革命时期。
工业革命带来了一系列的技术变革,为高层建筑的兴起奠定了基础。
钢铁产量的大幅增加和质量的提升,使得钢结构成为可能。
钢结构具有强度高、重量轻的特点,为建筑向高空发展提供了有力的支撑。
同时,电梯的发明和改进,解决了人们在垂直交通上的难题,使得高层办公和居住成为现实。
20 世纪初,美国成为了高层建筑发展的先驱。
纽约的伍尔沃斯大厦于 1913 年建成,高度达到 241 米,成为当时世界上最高的建筑。
这座建筑采用了钢结构和哥特式风格的装饰,展现了新技术与传统美学的结合。
此后,美国的高层建筑如雨后春笋般涌现。
1931 年,纽约的帝国大厦竣工,其高度达到 381 米,再次刷新了世界记录。
这座建筑不仅在高度上令人瞩目,其简洁而富有力量感的外观设计,也成为了现代高层建筑的经典之作。
在 20 世纪中叶,随着战后经济的复苏和城市化进程的加速,高层建筑在全球范围内得到了广泛的发展。
欧洲、亚洲等地纷纷开始建造自己的高层建筑。
这一时期的高层建筑,在设计和技术上不断创新。
例如,玻璃幕墙的广泛应用,不仅为建筑提供了良好的采光和视野,还赋予了建筑更加现代化的外观。
同时,计算机技术的发展,也使得建筑结构的计算和设计更加精确和复杂。
进入 21 世纪,高层建筑的发展呈现出了新的趋势。
一方面,高度的竞争依然激烈。
中东地区的迪拜成为了这一竞争的焦点。
有关高层建筑的论文在现代城市的天际线上,高层建筑如同一颗颗璀璨的明珠,不仅展现了人类建筑技术的巨大成就,也反映了社会经济的发展和人们对空间的不断追求。
高层建筑的出现改变了城市的面貌,为人们提供了更多的居住和工作空间,同时也带来了一系列的挑战和问题。
一、高层建筑的发展历程高层建筑的发展可以追溯到古代文明时期。
例如,埃及的金字塔和巴比伦的通天塔都展示了古人在建造高大建筑方面的尝试。
然而,真正意义上的高层建筑始于 19 世纪末 20 世纪初的工业革命时期。
随着钢铁、混凝土等新型建筑材料的出现,以及电梯技术的发明,使得建造更高的建筑成为可能。
20 世纪初,美国的芝加哥学派率先掀起了高层建筑的热潮。
他们提出了“形式追随功能”的设计理念,注重建筑的实用性和经济性。
这一时期的高层建筑多采用框架结构,外观简洁大方。
到了 20 世纪中叶,高层建筑在全球范围内得到了迅速发展。
尤其是在亚洲的一些新兴经济体,如中国、日本和韩国,高层建筑如雨后春笋般涌现。
这些建筑不仅在高度上不断刷新纪录,在设计和功能上也更加多样化和复杂化。
二、高层建筑的类型和特点高层建筑的类型多种多样,根据其用途可以分为住宅、办公、商业、酒店等。
不同类型的高层建筑在设计和功能上有着各自的特点。
住宅高层建筑通常注重居住的舒适性和安全性,要考虑采光、通风、隔音等因素。
办公高层建筑则需要满足高效的工作环境要求,具备良好的交通流线、智能化的设施和灵活的空间布局。
商业高层建筑要吸引顾客,注重外观的独特性和内部空间的开放性。
酒店高层建筑则要提供优质的服务和舒适的住宿体验。
高层建筑的特点主要包括以下几个方面:1、高度优势高层建筑能够充分利用有限的土地资源,提供更多的建筑面积,满足城市人口增长的需求。
2、视野开阔居住或工作在高层建筑中,可以享受到广阔的视野和良好的景观。
3、集中化服务高层建筑可以集中提供各种服务设施,如电梯、消防系统、通风系统等,提高服务效率和管理水平。
高层建筑发展历史在人类建筑的漫长历程中,高层建筑的崛起是一个引人瞩目的篇章。
从最初的简单堆叠到如今的摩天大楼林立,高层建筑的发展不仅见证了人类技术的进步,也反映了社会、经济和文化的变迁。
早期的人类居住形式多为低矮的房屋,主要是为了满足基本的生存需求。
随着城市的兴起和人口的增长,对空间的需求逐渐增加,促使人们开始探索垂直方向的建筑可能性。
然而,在很长一段时间里,由于建筑技术和材料的限制,高层建筑的发展十分缓慢。
真正意义上的高层建筑可以追溯到 19 世纪末 20 世纪初。
工业革命带来了钢铁生产和机械制造技术的巨大进步,为高层建筑的建造提供了物质基础。
1885 年,美国芝加哥建成了世界上第一座采用钢结构的高层建筑——家庭保险大楼。
这座大楼虽然只有 10 层,但它标志着高层建筑发展的一个重要转折点。
20 世纪初至中叶,高层建筑在世界各地逐渐兴起。
美国在这一领域继续引领潮流,纽约的克莱斯勒大厦和帝国大厦成为当时的标志性建筑。
克莱斯勒大厦以其独特的装饰艺术风格和优美的线条吸引了众人的目光,而帝国大厦则以其高达 381 米的高度,在很长一段时间内保持着世界最高建筑的纪录。
在这一时期,高层建筑的设计和建造技术不断改进。
电梯技术的发展使得人们能够更便捷地上下楼层,从而促使建筑向更高的方向发展。
同时,建筑结构的理论和计算方法也日益完善,为设计师提供了更多的可能性。
混凝土作为一种重要的建筑材料,也在高层建筑中得到了广泛应用,增强了建筑的稳定性和耐久性。
二战后,全球经济复苏,高层建筑迎来了新的发展机遇。
亚洲和欧洲的一些国家和地区开始大规模建设高层建筑,以满足城市发展和人口增长的需求。
日本在战后迅速崛起,东京的高层建筑如雨后春笋般涌现。
而在欧洲,伦敦、巴黎等城市也出现了具有特色的高层建筑。
20 世纪 70 年代以来,随着计算机技术的应用和建筑材料的创新,高层建筑的发展进入了一个全新的阶段。
高强度钢材、高性能混凝土以及各种新型复合材料的出现,使得建筑能够承受更大的荷载和风力,从而可以建造更高、更复杂的结构。
第一次高层建筑时期(1890~1900 年)一、工业革命后建筑技术成就18世纪末至19世纪末,欧洲和美国的工业革命带来了生产力的发展与经济的繁荣。
这时期,城市化发展迅速,城市人口高速增长。
为了在s较小的土地范围内建造更多的使用面积。
建筑物不得不向高空发展。
另一方面,钢结构的发展和电梯的出现则促成了多层建筑的大量建造。
19世纪初,英国出现铸铁结构的多层建筑(矿井、码头建筑),但铸铁框架通常是隐藏在砖石表面之后。
1840年之后的美国,锻铁梁开始代替脆弱的铸铁梁。
熟铁架、铸铁柱和砖石承重墙组成笼子结构,是迈高层建筑结构的第一步。
19世纪后半叶出现了具有横向稳定能力的全框架金属结构。
幕墙概念产生,房屋支撑结构与围护墙分离。
在建筑安全方面,防火技术与安全疏散逐步提高。
六十年代,美国已出现给排水系统、电气照明系统、蒸汽供热系统和蒸汽机通风系统,1920年代出现空调系统。
由于乘客电梯的出现,建筑突破5层的高度限制(徒步可行的登高距离)。
1845年奥迪斯在纽约举办安全电梯展览。
奥迪斯令人信服地演示他的发明,切断缆绳,电梯箱仍安全地悬挂在半空中。
1857年在纽约城百货公司安装了第一台蒸汽驱动安全电梯。
18世纪70年代,蒸汽电梯被更快的水力电梯取代。
1890年奥迪斯发明了现代电力电梯。
1870 年后,高层建筑的技术发展进入了新的阶段。
纽约公正生命保险大厦被认为是高层建筑的早期版本,因为除了高度和结构外,它采用了几乎全部必需的高层建筑技术元素。
建筑采用装饰性的法国双重斜坡屋顶,虽只有5层,但高度达到130英尺,并且在办公楼中首次使用电梯。
可以说它是电梯建筑或原始高层建筑的最早实例。
1871年芝加哥发生火灾,建筑中铁部件的失败教训促成了建筑防火设计的进步。
建造者开始在铁梁和铁柱外面覆盖面砖,并应用空心砖楼板,提高金属骨架的耐火性能。
1879年,威廉·詹尼设计第一拉埃特大厦,这个七层货栈是砖墙与混凝土混合结构。
高层建筑结构框架结构在现代城市的天际线中,高层建筑如同一颗颗璀璨的明珠,展现着人类建筑技术的巨大成就。
而在这些高层建筑中,框架结构是一种常见且至关重要的结构形式。
框架结构,简单来说,就是由梁和柱组成的结构体系。
这些梁和柱通过节点相互连接,形成一个能够承受和传递各种荷载的整体。
想象一下,一个巨大的骨架,支撑着整座建筑的重量,这就是框架结构的基本形象。
框架结构具有诸多优点。
首先,它能够提供较为灵活的空间布局。
由于墙不承重,室内的分隔可以根据使用者的需求进行灵活改变,这对于商业办公、住宅等多种用途的高层建筑来说非常重要。
比如说,一个写字楼可以根据不同租户的要求,轻松地划分出大小不一的办公区域。
其次,框架结构的施工相对较为简便。
柱子和梁可以在工厂预制,然后运输到施工现场进行安装,这不仅提高了施工效率,还能保证构件的质量。
而且,这种预制和装配的方式也有利于减少施工现场的噪音、粉尘等污染,符合现代建筑施工的环保要求。
再者,框架结构具有良好的抗震性能。
在地震作用下,框架结构能够通过梁和柱的变形来吸收和耗散能量,从而减轻地震对建筑的破坏。
合理的设计可以使框架结构在地震中保持较好的稳定性,保障人员的生命和财产安全。
然而,框架结构也并非完美无缺。
它的侧向刚度相对较小,这意味着在水平荷载(如风荷载、地震荷载)作用下,框架结构容易产生较大的侧向位移。
为了克服这一缺点,通常需要采取一些加强措施,比如设置剪力墙、增加柱的截面尺寸或者采用更先进的结构体系(如框架剪力墙结构)。
在设计高层建筑的框架结构时,工程师们需要考虑众多因素。
荷载的计算是首要任务。
这包括建筑自身的重量(恒载)、人员和设备的重量(活载)、风荷载以及地震作用等。
准确地计算这些荷载,是确保结构安全的基础。
梁和柱的设计也至关重要。
柱子要能够承受巨大的压力,同时还要具备一定的抗弯能力。
梁则需要在承受竖向荷载的同时,将荷载有效地传递给柱子。
这就要求对梁和柱的截面尺寸、配筋等进行精心计算和设计。
我国高层建筑的现状及发展趋势随着我国城市化进程的加速,高层建筑如雨后春笋般在各大城市崛起。
高层建筑不仅是城市现代化的象征,也在一定程度上缓解了城市土地资源紧张的问题。
本文将对我国高层建筑的现状进行分析,并探讨其未来的发展趋势。
一、我国高层建筑的现状1、数量与规模不断增长近年来,我国高层建筑的数量呈现出爆发式增长的态势。
特别是在一线和二线城市,摩天大楼成为城市天际线的重要组成部分。
这些高层建筑不仅高度惊人,而且规模庞大,涵盖了商业、办公、住宅等多种功能。
2、技术水平逐步提高在高层建筑的建设过程中,我国的建筑技术水平不断提升。
从结构设计到施工工艺,从建筑材料到设备安装,都取得了显著的进步。
例如,在结构设计方面,采用了更加先进的抗震技术和防风技术,确保了高层建筑的安全性;在施工工艺方面,引入了现代化的施工设备和管理方法,提高了施工效率和质量。
3、绿色环保理念的融入随着环保意识的增强,绿色建筑理念在高层建筑中得到了越来越多的应用。
通过采用节能材料、优化建筑布局、利用可再生能源等手段,降低了高层建筑的能耗,减少了对环境的影响。
4、功能多样化如今的高层建筑不再仅仅是单一功能的建筑,而是融合了多种功能于一体。
例如,一些高层建筑既有办公区域,又有商业配套和住宅空间,形成了一个综合性的社区,满足了人们工作、生活、娱乐等多方面的需求。
然而,我国高层建筑在发展过程中也面临着一些问题。
1、安全隐患高层建筑由于高度较高,一旦发生火灾、地震等灾害,救援难度较大。
同时,一些高层建筑在建设过程中存在质量问题,也给人们的生命财产安全带来了威胁。
2、交通拥堵大量高层建筑集中在城市中心区域,导致人流、车流高度集中,加重了城市的交通拥堵问题。
3、维护成本高高层建筑的维护和管理需要大量的资金和技术支持。
例如,电梯的维护、外墙的清洗、设备的更新等,都需要投入大量的资源。
二、我国高层建筑的发展趋势1、智能化随着科技的不断发展,智能化将成为高层建筑未来发展的重要趋势。
现代超高层结构建筑施工技术的探讨【摘要】随着社会经济的不断发展,城市的经济建设在我国社会经济建设中占有很大的比例,而且由于大量的农村人口融入到城市中,给城市带来了很大的空间压力。
因此,为了有效的保障人们的生活水平,缓解空间压力,城市建筑也逐渐向着高层、超高层建筑发展。
但是,由于高层、超高层建筑一直是我国建筑工程中相对比较薄弱的一个环节,而且我国的超高层建筑技术施工水平还处于发展阶段,各个方面还不够成熟,因此还需要人们的共同努力,这样才能提高施工技术,我国的经济才能更好的发展。
本文通过对现代超高层结构建筑的施工技术进行简要的介绍,讨论了我国目前超高层结构建筑施工时存在的问题和解决方案,以供相关人士参考。
【关键词】超高层建筑结构;施工技术;钢结构引言目前,由于我国的社会经济的不断发展,人们对自身生活水平的要求也在不断正常,为了提高人们的生活质量,缓解城市压力,促进社会经济的稳定发展,人们开始向高层、超高层建筑施工技术方面进行探索,并且有了一定的成效。
随着21世纪的到来,我国的超高层建筑施工技术,也开始逐渐成熟起来,各类超高层建筑犹如雨后春笋般出现在人们的视野中,而且目前超高层建筑已经成我目前城市建设的主要方向。
因此,为了加强城市建筑,为了加快社会经济的发展,超高层建筑的施工技术在其中有着十分重要的意义。
一、超高层建筑结构发展及特点对于高层建筑相关规定,每个国家都有着不同的规定和概念。
在我国《民法通则》中规定,建筑物的高度只要超过100m,那这个建筑物无论是住宅还是公共建筑都一概被认为是超高层建筑。
自改革开发以来,我国开始注重城市的建设发展,开始对高层建筑和超高层建筑进行了一定探索,随着综合国力的不断增强,我国在建筑行业也得到了初步的发展,但是由于我国的建筑工程还处于起步状态,在施工技术方面还是存在许多的问题,因此还需要向西方发达国家学习。
随着我国人民的不断努力,我国的建筑工程结构也逐渐的由混凝土结构向着多元化的钢筋混凝土结构发展,这也意味着我国的建筑施工技术也向着时代跨出了一大步。
高层建筑结构技术的发展与成就土木一班 110105130 唐海杰一、高层建筑发展概况一定层数或高度的建筑称为高层建筑。
高层建筑的起点高度或层数,各国规定不一,且多无绝对、严格的标准。
它与各个国家和地区的地理环境、地震强度、建筑材料、建筑技术、电梯的设置标准以及防火的特殊要求等很多因素有关。
如在美国,24.6m或7 层以上视为高层建筑;日本则为31m或8 层以上;英国为等于或大于24.3m;在我国一般8 层以上的房屋就需要设置电梯,对10 层以上的房屋就有提出特殊的防火要求的防火规范,因此我国的《民用建筑设计通则》(GB50352-2005)、《高层民用建筑设计防火规范》(GB50045-95)将10 层及10 层以上的住宅建筑与高度超过24m的公共建筑和综合性建筑称为高层建筑。
从结构受力性态的角度来看,8 层以上的房屋,风和地震等水平荷载或作用显得越来越重要,甚至起控制作用,因此《高层建筑混凝土结构技术规程》(JGJ3-2002)将10 层及10 层以上或高层超过28m 的钢筋混凝土结构称为高层建筑结构。
当建筑结构高度超过100m 时,称为超高层建筑。
新中国成立后,五十年代我国开始自行设计建造高层建筑,如北京的民族饭店(14层)、民航大楼(16层)等。
六十年代建成的广州宾馆(27层),其高度与解放前最高的上海国际饭店相同。
七十年代北京、上海、广州等地建成了一批剪力墙结构住宅和旅馆。
1975年广州白云宾馆(剪力墙结构33层、112米)的建成,标志着我国自行设计建造的高层建筑高度开始突破100米。
八十年代我国高层建筑发展进入兴盛时期,十年内全国(不包括香港、澳门、台湾)建成10层以上的高层建筑面积约4000万平方米,高度100米以上的共有12幢。
1985年建成的深圳国际贸易中心(筒中筒结构、50层、160米)是八十年代最高的建筑。
九十年代我国高层建筑进入飞跃发展的阶段。
截至1998年末,全国(不包括香港、澳门、台湾)建成的10层以上高层建筑面积约2亿5千万平方米,高度100米以上的高层建筑达200幢,其中150米以上的100幢,200米以上的20幢,300米以上的3幢,最高的上海金茂大厦88层、365米、塔尖高度420米。
1995年发布的世界最高的100栋建筑中上海金茂大厦、深圳地王大厦(81层、325米)和广州中天广场(80层、322米)分别列为第4、13和14名。
另有460米高的上海环球金融中心正在建造中。
特别值得提及的是,我国的超高层建筑绝大多数建于地震区。
二、高层建筑结构体系的多样化和复杂性七十年代以前,我国的高层建筑多采用钢筋混凝土框架结构、框架—剪力墙结构和剪力墙结构。
进入八十年代,由于建筑功能以及高度和层数等要求,筒中筒结构、筒体结构、底部大空间的框支剪力墙结构以及大底盘多塔楼结构在工程中逐渐采用。
九十年代以来,除上述结构体系得到广泛应用外,多筒体结构、带加强层的框架—筒体结构、连体结构、巨型结构、悬挑结构、错层结构等也逐渐在工程中采用。
为适应结构体系的多样化,结构材料向多样性发展,八十年代以前高层建筑主要为钢筋混凝土结构。
进入九十年代后,由于我国钢材产量的增加,钢结构、钢—混凝土混合结构逐渐采用。
如金茂大厦、地王大厦都是钢—混凝土混合结构。
此外,型钢混凝土结构和钢管混凝土结构在高层建筑中也正在得到广泛应用。
高层建筑结构采用的混凝土强度等级不断提高,从C30逐步向C60及更高的等级发展。
预应力混凝土结构在高层建筑的梁、板结构中广泛应用。
钢材的强度等级也不断提高。
我国高层建筑早期多为单一用途,为适应建筑功能需要,向多用途、多功能发展,高层建筑平面布置和立面体型日趋复杂。
结构平面形式多样,如三角形、梭形、圆形、弧形,以及多种形式的组合等亦多采用。
高层建筑立面体型亦有丰富的变化,立面退台、部分切块、挖洞、尖塔、大悬臂等,使高层建筑的刚度沿竖向发生突变。
由于建筑功能的改变,使结构体系、柱网发生变化,因此主体结构要发生转换,即由上部剪力墙结构到下部筒体框架或框架剪力墙结构的转换;或主体结构由上部小柱网、薄壁柱到下部大柱网的转换。
结构体系的转换及立面体型变化丰富的结构在地震区建造难度较大,还有待于进一步深入研究,并经历强震的检验。
三、高层建筑结构设计方法不断创新高层建筑结构的分析计算已基本告别传统的手工计算而采用计算机程序计算,基本上都采用三维空间结构分析计算程序。
常用的计算分析模型有,空间杆—薄壁杆件分析模型、空间杆—墙组元模型及空间杆—壳元分析模型。
有些程序可考虑楼板变形进行结构分析计算,能更真实反映复杂结构的受力特点。
除可进行钢筋混凝土结构计算外,有些计算分析软件还可进行钢结构、钢—混凝土混合结构的计算。
弹性动力时程分析的程序已相当成熟,一般以层模型进行动力时程分析,可输入各种类型的地震波,求得结构的位移与内力。
弹塑性分析计算近几年已开始进行,已初步开发出一些可应用于工程设计的程序,包括弹塑性静力分析、层模型动力分析、杆模型平面结构动力分析等程序。
对结构体系进行了大量的研究工作。
从1974年开始对剪力墙结构进行了大量的试验研究,逐步形成了高层剪力墙结构体系;为适应高层住宅底部设置商业服务设施等要求,从1980年开始进行了底层大空间,上层为大开间剪力墙结构体系的研究。
进入八十年代,为完善筒体结构的计算方法与设计,我国进行了一些复杂的筒中筒结构的有机玻璃模型试验。
近年来对复杂体型的高层建筑如带有转换层、刚性层的结构错层结构、连体结构等进行了一批模型振动台试验。
为了解钢—混凝土混合结构的抗震性能,进行了带有转换层、刚性层的钢筋混凝土内筒、周边为钢框架的模型试验。
另外对复杂体型的高层建筑进行了风洞试验。
通过试验研究与分析,提出了相应的设计建议,并做为规范条文修订的依据。
在总结科研、设计、施工的基础上,1980年颁布施行了我国自行编制的《钢筋混凝土高层建筑结构设计与施工规定(JZ102-79)》,通过实践应用又积累了更多的经验,在1991年修改为《钢筋混凝土高层建筑结构设计与施工规程(JGJ3-91)》。
九十年代以来由于钢结构、钢—混凝土混合结构的兴建,1998年我国编制了《高层民用建筑钢结构技术规程(JGJ99-98)》。
最近由于体型复杂的高层建筑增多及超过200米的超高层建筑的出现,需要对《钢筋混凝土高层建筑结构设计与施工规程(JGJ3-91)》进行修订,修订后名称为《高层建筑混凝土结构技术规程》,内容将包括:总则、荷载和地震作用、常规高度结构设计的一般规定、结构计算分析、框架结构设计、剪力墙结构设计、框架—剪力墙结构设计、筒体结构设计、复杂高层建筑结构设计、混合结构设计、超高层建筑结构设计、基础设计、高层建筑结构施工等,将更适合高层建筑结构的设计应用。
其中按建筑物的高度、结构体系、抗震设防烈度可确定各类构件的抗震等级,从而按各类构件的延性要求,确定各构件的截面配筋设计及构造要求,以确保其良好的抗震性能。
四、高层建筑结构施工技术迅速发展高层建筑由于对抗震、抗风的要求高,且建筑多样化,层数、高度日益提高,九十年代以来国内高层建筑的施工方法是以全现浇钢筋混凝土施工为主体,另外由于钢结构和钢—混凝土混合结构的兴建,需辅以此类结构的预制安装方法和多种混合施工方法。
高层现浇钢筋混凝土施工技术着重解决了模板、混凝土、钢筋3个方面的施工新技术。
九十年代国内采用4种类型支模方法:即采用中、小模板、大模板、滑模、爬模,各种模板均有其优缺点和适用范围,今后要向标淮化、工具化方向发展。
高层建筑采用的混凝土强度等级已由常用的C30、C40逐步向 C50、C60、C80及更高的强度等级发展。
高强高性能混凝土的生产要有严格的质量控制与管理措施,应由工厂预拌生产。
国内预拌商品混凝土近年发展很快,约占全部混凝土总量的21%。
高层建筑还需要解决泵送混凝土问题,1997年可用国产混凝土拖式泵一次泵送到200米以上高度。
在普及C50、C60级混凝土的工程应用,扩大C70、C80级的工程试点的同时,开发配制C100级高强混凝土。
主要手段是在常规水泥、砂石的基础上,依靠化学外加剂和矿物掺合料来降低混凝土用水量和改善微观结构,使混凝土更加致密并获得高强。
1995年以来C80混凝土已在辽宁、上海、北京、广州个别工程中局部试用。
1997年国内建筑业应用高强混凝土776万立方米,占全部混凝土总量的4.6%。
在高层建筑基础采用大体积混凝土施工技术方面取得了经验,其主要措施为:减少水泥水化热,采用较低水化热水泥,掺粉煤灰和减水剂,提高砼抗拉强度;采用泵送预拌混凝土、分段、分层连续作业的合理浇捣方法,并及时养护及进行测温监控。
新上海国际大厦基础底板76米×72米,主楼底板厚3.5米,裙楼底板厚3米,不设结构缝,采用C30混凝土斜面分层浇筑,每层厚度不超过50厘米,17000立方米混凝土共用64小时,一次浇筑到顶,刮平养护后未发现裂缝。
对于14—40毫米粗钢筋的连接,从八十年代至今研究开发了4种连接技术;电渣压力焊,套筒挤压连接、锥螺纹连接、直螺纹连接,均在工程中得到应用,并迅速推广。
从五十年代到八十年代,主要对混凝土预制装配框架、装配式大板、升板、盒子结构等预制安装技术进行了研究,取得了一定成效。
从八十年代至今由于钢结构、钢—混凝土混合结构的兴建,钢结构安装技术有了新的发展。
主要以塔式起重机为主机进行安装,高强螺栓连接已取代铆接和部分焊接。
钢结构还需解决防火、防锈、防腐等问题。
深圳佳宁娜友谊广场两座33层公寓楼相距25.2米,在其顶部由8层高钢结构连成整体,总重8500KN,采用卷杨机高空平移法施工,获得成功。
高层建筑施工技术在迅速发展,在即将跨入的21世纪将继续保持这种发展趋势。
参考文献[1]常跃峰,赵文忠.高层建筑结构用钢板的开发与生产[A].1999 中国钢铁年会论文集(下)[C].1999。