圆锥曲线之性质
- 格式:docx
- 大小:197.46 KB
- 文档页数:10
圆锥曲线知识点总结圆锥曲线是解析几何中非常重要的一部分,它包括直角双曲线、抛物线和椭圆。
这些曲线都是由一个平面与一个旋转椭球体相交得到的,具有广泛的应用价值。
以下是对于圆锥曲线的知识点总结:一、直角双曲线直角双曲线由于其特殊的形状和性质,在物理学、工程学和数学等方面都有应用。
直角双曲线的方程可以表示为以下形式:(x^2/a^2) - (y^2/b^2) = 1其中a和b是正实数。
在直角双曲线上,存在两个焦点以及两个称为顶点的特殊点。
双曲线还具有渐近线,与其方程的斜率相关。
二、抛物线抛物线是一种类似于开口向上或开口向下的弧线。
它的方程通常表示为:y = ax^2 + bx + c其中a、b和c是实数且a不等于零。
抛物线的焦点是它的特殊点,而直径称为准线。
抛物线具有对称性质,其形状可以用焦点和准线的位置来确定。
三、椭圆椭圆是圆锥曲线中最常见的类型,它的形状类似于椭圆形。
椭圆的方程可以表示为:(x^2/a^2) + (y^2/b^2) = 1其中a和b是正实数。
椭圆具有两个焦点,椭圆的形状和大小由焦距和长短轴决定。
椭圆还具有较为特殊的直径,它称为主轴。
四、参数方程与极坐标方程除了直角坐标系下的方程表示,圆锥曲线还可以用参数方程和极坐标方程来描述。
参数方程是将x和y表示为参数t的函数,通过参数的变化来确定曲线上的点。
极坐标方程是使用角度和极径来定义曲线上的点。
五、圆锥曲线的性质圆锥曲线具有许多重要性质和性质。
其中一些重要的性质包括:切线的斜率、焦点与直线的关系、曲率和弧长等。
这些性质在求解问题和绘图中都有重要的应用。
总结:圆锥曲线是数学中的重要概念,它包括直角双曲线、抛物线和椭圆。
每种曲线都具有独特的形状和性质,可以通过方程、参数方程或极坐标方程来描述。
了解圆锥曲线的基本知识对于解决实际问题和深入理解数学概念都是非常重要的。
掌握圆锥曲线的知识点,将有助于我们在几何学和解析几何学领域更加灵活和熟练地运用相关概念。
圆锥曲线知识点圆锥曲线是数学中一类重要的曲线,它们是平面上所有与两个固定点(焦点)距离之和为常数的点的集合。
这些曲线包括椭圆、抛物线和双曲线。
以下是圆锥曲线的知识点总结:1. 椭圆:椭圆是平面上所有与两个焦点距离之和等于常数的点的集合。
这个常数大于两个焦点之间的距离。
椭圆的标准方程可以表示为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中,\( a \) 是椭圆的半长轴,\( b \) 是椭圆的半短轴。
2. 抛物线:抛物线是平面上所有与一个焦点和一个定点(顶点)距离相等的点的集合。
抛物线的标准方程可以表示为:\[ y^2 = 4ax \]或者\[ x^2 = 4ay \]其中,\( a \) 是抛物线的参数,表示顶点到焦点的距离。
3. 双曲线:双曲线是平面上所有与两个焦点距离之差的绝对值等于常数的点的集合。
这个常数小于两个焦点之间的距离。
双曲线的标准方程可以表示为:\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]或者\[ \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \]其中,\( a \) 是双曲线的实半轴,\( b \) 是双曲线的虚半轴。
4. 圆锥曲线的性质:- 椭圆具有两个焦点,所有点到两个焦点的距离之和是常数。
- 抛物线具有一个焦点和一个顶点,所有点到焦点的距离等于到顶点的距离。
- 双曲线具有两个焦点,所有点到两个焦点的距离之差的绝对值是常数。
- 圆锥曲线的焦点可以通过方程的参数确定。
5. 圆锥曲线的应用:- 椭圆在天文学中描述行星的轨道。
- 抛物线在光学中描述光线通过抛物面反射后的路径。
- 双曲线在工程学中用于设计某些类型的天线。
6. 圆锥曲线的参数化:- 椭圆的参数方程可以表示为:\[ x = a \cos(t) \]\[ y = b \sin(t) \]- 抛物线的参数方程可以表示为:\[ x = at^2 \]\[ y = 2at \]- 双曲线的参数方程可以表示为:\[ x = a \sec(t) \]\[ y = b \tan(t) \]7. 圆锥曲线的几何特征:- 椭圆的长轴和短轴是对称的,且椭圆是封闭的。
圆锥曲线的方程与性质圆锥曲线是数学中研究的重要内容之一,它是由一个固定点(焦点)和到这个点的固定距离之比保持不变的点(动点)所生成的曲线。
根据固定点与动点之间的位置关系,圆锥曲线可分为椭圆、双曲线和抛物线三类。
本文将介绍圆锥曲线的方程与性质。
一、椭圆椭圆是圆锥曲线中最基本的一种形式,它具有以下方程:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$其中,a和b分别代表椭圆的长半轴和短半轴。
椭圆具有以下性质:1. 椭圆是一个对称图形,其对称轴是x轴和y轴。
2. 椭圆的中心位于原点(0,0)。
3. 椭圆的焦点位于x轴上,距离中心的距离为c,满足$c^2 = a^2 -b^2$。
4. 椭圆上任意一点到焦点和到直线半长轴的距离之和是一个常数,满足Kepler定律。
二、双曲线双曲线是另一种常见的圆锥曲线,它具有以下方程:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$其中,a和b分别代表双曲线的长半轴和短半轴。
双曲线具有以下性质:1. 双曲线是一个对称图形,其对称轴是x轴和y轴。
2. 双曲线的中心位于原点(0,0)。
3. 双曲线的焦点位于x轴上,距离中心的距离为c,满足$c^2 = a^2 + b^2$。
4. 双曲线上任意一点到焦点和到直线半长轴的距离之差是一个常数。
三、抛物线抛物线是圆锥曲线中最特殊的一种形式,它具有以下方程:$$y^2 = 4ax$$其中,a代表抛物线的焦点到抛物线的距离。
抛物线具有以下性质:1. 抛物线是一个对称图形,其对称轴是y轴。
2. 抛物线的焦点位于焦点到抛物线的距离上方的点(a, 0)。
3. 抛物线的开口方向由系数a的正负决定,当a>0时开口向右,当a<0时开口向左。
4. 抛物线上任意一点到焦点的距离等于该点到直线准线的距离。
总结圆锥曲线是一类重要的数学曲线,包括椭圆、双曲线和抛物线。
它们都具有特殊的方程和性质,通过研究这些方程和性质,可以更加深入地理解曲线的形态和特性。
圆锥曲线的性质与方程圆锥曲线是平面几何中重要的一类曲线,包括抛物线、椭圆和双曲线。
它们在数学、物理、工程等领域有着广泛的应用。
本文将介绍圆锥曲线的性质以及它们的方程。
一、抛物线的性质与方程抛物线是最简单的圆锥曲线,其性质和方程如下:1. 对称性:抛物线具有关于焦点对称的性质,即从焦点到抛物线上任意一点的距离与该点在水平直线上的投影之间的距离相等。
2. 焦点与准线:抛物线上的每个点到焦点的距离与该点到准线的距离相等。
焦点和准线都是抛物线的重要几何特征。
3. 方程形式:一般来说,抛物线的标准方程为y^2=4ax,其中a是抛物线的焦点到准线的距离,x和y分别表示坐标轴上的点。
二、椭圆的性质与方程椭圆是圆锥曲线中的另一种形式,其性质和方程如下:1. 对称性:椭圆具有关于两个焦点和两条主轴的对称性。
每个点到两个焦点的距离之和是一个常数。
2. 长轴与短轴:两焦点之间的距离等于椭圆的长轴长度,长轴的中点称为椭圆的中心。
3. 方程形式:一般来说,椭圆的标准方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)是椭圆的中心坐标,a和b分别是长轴和短轴的长度。
三、双曲线的性质与方程双曲线是另一种重要的圆锥曲线,其性质和方程如下:1. 对称性:双曲线有两个焦点,对于每个点到两个焦点的距离之差是一个常数。
2. 极限性质:双曲线的曲线趋向于两条互相平行的渐近线,与渐近线的距离越远,曲线越陡峭。
双曲线上的点的坐标差的绝对值等于常数。
3. 方程形式:一般来说,双曲线的标准方程为(x-h)^2/a^2 - (y-k)^2/b^2 = 1,其中(h,k)是双曲线的中心坐标,a和b分别是双曲线的焦点到准线距离的一半。
综上所述,圆锥曲线是平面几何中重要且有趣的一类曲线。
抛物线、椭圆和双曲线分别具有自己独特的性质和方程形式。
它们的研究和应用不仅在数学领域有着重要作用,还在物理、工程等领域得到广泛的应用。
对于理解和运用圆锥曲线,掌握其性质与方程是非常关键的。
圆锥曲线的性质及推广运用翁其明(福建省平潭岚华中学ꎬ福建福州350400)摘㊀要:会运用已知条件求解曲线的标准方程㊁焦点及与直线的位置关系ꎬ培养学生提出问题和解决问题的能力ꎬ增加学生的逻辑思维能力.关键词:圆锥曲线ꎻ性质应用ꎻ标准方程中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)19-0034-03收稿日期:2023-04-05作者简介:翁其明(1969.11-)ꎬ男ꎬ福建省平潭人ꎬ本科ꎬ从事高中数学教学研究.㊀㊀解析几何的重要内容就是圆锥曲线ꎬ并用代数的方法解决此类问题ꎬ也是高考数学考查的重难点ꎬ本文将从三个方面来阐述圆锥曲线的性质并做到举一反三.1圆锥曲线的性质1.1椭圆(1)概念:平面内的任意一点M到两个固定的点F1ꎬF2的距离之和等于常数(大于|F1F2|)的点的运动轨迹ꎬ有|MF1|+|MF2|=2a.(2)标准方程:(焦点在x轴)x2a2+y2b2=1(a>b>0)ꎬ(焦点在y轴)y2a2+x2b2=1(a>b>0)ꎬ其中由分子x2ꎬy2对应的分母的大小确定焦点的位置.(3)离心率:e=ca(0<e<1).1.2双曲线(1)概念:平面内的任意一点P到两个固定的点F1ꎬF2的距离之差等于非零常数(小于|F1F2|)的点的运动轨迹ꎬ有||PF1|-|PF2||=2aꎬ其中由分子x2ꎬy2对应的分母的正负确定焦点的位置.(2)标准方程:(焦点在x轴)x2a2-y2b2=1(a>0ꎬb>0)ꎬ(焦点在y轴)y2a2-x2b2=1(a>0ꎬb>0)(3)离心率:e=ca(e>1).1.3抛物线(1)概念:平面内到定点F和定直线l(不经过点F)的距离相等的点的运动轨迹ꎬ其中焦点的位置由一次项对应的变量决定.(2)标准方程:y2=2px(p>0)(焦点在x轴正半轴)ꎬy2=-2px(p>0)(焦点在x轴负半轴)ꎬx2=2py(p>0)(焦点在y轴正半轴)ꎬx2=-2py(p>0)(焦点在y轴负半轴).2圆锥曲线的性质应用2.1求解三角形面积问题例1㊀如图1ꎬ已知F1ꎬF2是椭圆x2a2+y2b2=1(a>b>0)的焦点ꎬP是椭圆上一点ꎬ且øF1PF2=αꎬ求әF1PF2的面积.解析㊀设PF1=r1ꎬPF2=r2ꎬ依题意有r1+r2=2aꎬr21+r22-2r1r2 cosα=4c2ꎬ{①②①2-②ꎬ得2r1r2(1+cosα)=4(a2-c2).43图1㊀例1图即r1r=4b22(1+cosα).所以SәF1PF=12r1r2sinα=b2sinα1+cosα=b2tanα2.例2㊀设P为双曲线x2-y212=1上的一点ꎬF1ꎬF2是焦点ꎬ若PF1ʒPF2=3ʒ2ꎬ求әF1PF2的面积.解析㊀依据定义有PF1-PF2=2a=2.由PF1ʒPF2=3ʒ2ꎬ得PF1=6ꎬPF2=4.又F1F22=(2c)2=4ˑ13=52ꎬ所以PF12+PF22=F1F22.所以cosøF1PF2=0.即PF1ʅPF2.所以SәF1PF=12PF1 PF2=12ˑ6ˑ4=12.2.2求解离心率问题例3㊀如图2ꎬ椭圆上的点P和左焦点F1ꎬ右顶点A和上顶点Bꎬ当PF1ʅAF1ꎬPOʊAB时ꎬ求椭圆的离心率.图2㊀例3图解析㊀设椭圆方程为x2a2+y2b2=1(a>b>0)ꎬ因为F1(-cꎬ0)ꎬc2=a2-b2ꎬ则P(-cꎬb1-c2a2)ꎬ即P(-cꎬb2a).因为POʊABꎬ所以kPO=kAB.即-ba=-b2ac.所以b=c.又因为a=c2+b2=2bꎬ所以e=ca=b2b=22.例4㊀如图3ꎬ已知椭圆x2a2+y2b2=1(a>b>0)ꎬ与x轴正半轴相交于点Aꎬ与y轴正半轴相交于点Bꎬ左焦点为Fꎬ且ABʅBFꎬ求椭圆的离心率.图3㊀例4图解析㊀由题知A(aꎬ0)ꎬB(0ꎬb)ꎬF(-cꎬ0)ꎬ因为ABʅBFꎬ所以kAB kBF=-1.又kAB=-baꎬkBF=bcꎬ代入上式ꎬ得-ba bc=-1.利用b2=a2-c2ꎬ代入消掉b2ꎬ得c2+ac-a2=0.即(ca)2+ca-1=0.由e2+e-1=0ꎬ解得e=-1ʃ52.因为1>e>0ꎬ所以e=-1+52.2.3求解圆锥曲线的最值问题例5㊀如图4ꎬ已知抛物线方程y2=4xꎬ焦点为Fꎬ定点A(5ꎬ3)ꎬ若点P在抛物线上运动ꎬ则AP+PF的最小值为.图4㊀例5图解析㊀点P在准线上的射影为Dꎬ由已知得PF=PD.53所以AP+PF=AP+PD.即当DꎬPꎬA共线时ꎬAP+PF取得最小值.抛物线的准线方程为x=-1ꎬ所以AP+PD=AD=5-(-1)=6.所以(AP+PF)min=6.例6㊀已知椭圆x2a2+y2b2=1(a>b>0)ꎬAB为过中心的弦ꎬ焦点F(cꎬ0)(c>0)ꎬ求әFAB的最大面积[1].解析㊀设Ax1ꎬy1()ꎬ则由椭圆的对称性得B-x1ꎬ-y1().则SәABF=SәAOF+SBOF=12OF y1+OF -y1()=OF y1.因为y1ɤbꎬ所以SәABFɤbc.所以(SәFAB)max=bc.2.4圆锥曲线光学性质的应用例7㊀如图5ꎬ已知F1ꎬF2是椭圆x2a2+y2b2=1(a>b>0)的焦点ꎬP1ꎬP2分别是F1ꎬF2在椭圆上任一切线CD上的射影ꎮ(1)求证:F1P F2P为定值(2)求P1ꎬP2的轨迹方程图5㊀例7图解析㊀(1)设Q为切点ꎬ由椭圆光学性质得øF1QP1=øF2QP2ꎬ设为αꎬ则F1P1=F1QsinαꎬF2P2=F2Qsinαꎬ所以F1P1 F2P2=F1Q F2Qsin2α.又øF1QF2=180ʎ-2αꎬ则在ΔF1QF2中ꎬF1F22=F1Q2+F2Q2-2F1QF2Qcos(180ʎ-2α)=(F1Q+F2Q)2-2F1Q F2Q(1-cos2α)=(2a)2-2F1Q F2Q[1-(1-2sin2α)]=4a2-4F1Q F2Qsin2α=4a2-4F1P1 F2P2.则4F1P1 F2P2=4a2-F1F22=4a2-4c2=4b2.所以F1P F2P1=b2为常数ꎬ即为定值[2].(2)设点O在CD上的射影为点Mꎬ则OM是直角梯形F1F2P2P1的中位线ꎬ于是有OM=12(F1P1+F2P2).在RtәOP1M中ꎬOP12=MP12+OM2=P1P22æèçöø÷2+F1P1+F2P22æèçöø÷2=14[F2N22+(F1P12+F2P22)=14[F1F22+(F1P1-F2P2)2+(F1P1-F2P2)2]=14(4c2+4F1P1 F2P2)=14(4c2+4b2)=a2.同理OP2=a2.所以F1ꎬF2的轨迹是以O为圆心ꎬa为半径的圆ꎬ方程为x2+y2=a2.综上ꎬ本文共阐述了四大类解决圆锥曲线的相关问题ꎬ此类解题方法帮助学生加强对圆锥曲线的学习ꎬ并能更加有效地帮助学生打开解决此类问题的思路.参考文献:[1]丁振年ꎬ张传伟.对圆锥曲线两个性质的推广的再推广[J].昭通师范高等专科学校学报ꎬ2003(05):18-20.[2]段惠民.一个圆锥曲线性质的推广[J].中学数学月刊ꎬ2006(07):22-23.[责任编辑:李㊀璟]63。
圆锥曲线知识点整理圆锥曲线是数学中的重要概念之一,是一个由一个动点和一个定点之间的线段所确定的曲线。
它包括椭圆、双曲线和抛物线这三种基本形式。
圆锥曲线在几何学、物理学、工程学等领域均有广泛的应用,掌握圆锥曲线的知识对于深入学习和应用这些领域的知识至关重要。
以下是圆锥曲线的一些常见知识点整理:1. 椭圆:椭圆是一个闭合的曲线,它有两个焦点和一个长轴。
定义椭圆的一个特性是到两个焦点的距离之和等于常数,这个常数被称为椭圆的短轴长度。
椭圆的方程可以表示为(x/a)² + (y/b)² = 1,其中a和b分别代表椭圆的半长轴和半短轴。
2. 双曲线:双曲线是一个开放的曲线,它有两个分离的分支。
双曲线的定义也与焦点有关,但与椭圆的定义不同,双曲线的焦点之间的距离差等于常数。
双曲线的方程可以表示为(x/a)² - (y/b)² = 1,其中a和b分别代表双曲线的半长轴和半短轴。
3. 抛物线:抛物线是一个开放的曲线,它有一个焦点和一个直线称为准线。
抛物线的定义与焦点和准线之间的距离以及焦点到曲线上任意一点的距离有关。
抛物线的方程可以表示为y = ax² + bx + c,其中a、b和c分别代表抛物线的系数。
4. 圆锥曲线的性质:圆锥曲线具有许多有趣的性质和特点。
例如,椭圆的离心率小于1,而双曲线的离心率大于1。
抛物线的离心率等于1,它在焦点上有对称性。
此外,圆锥曲线还具有切线、法线、渐近线等几何性质,这些性质在解题和实际应用中非常重要。
5. 圆锥曲线的应用:圆锥曲线在许多领域都有广泛的应用。
在天文学中,行星的轨道可以用椭圆来描述;在工程学中,双曲线常用于天线的设计和无线通信的信号传播;在物理学中,抛物线可用于描述物体在重力作。
圆锥曲线的例子鸟巢摘要:一、圆锥曲线的定义和性质1.圆锥曲线的概念2.圆锥曲线的分类3.圆锥曲线的性质二、鸟巢建筑与圆锥曲线的关系1.鸟巢建筑的设计理念2.鸟巢建筑的结构特点3.圆锥曲线在鸟巢建筑中的应用三、圆锥曲线在现实生活中的应用1.工程设计领域2.自然界中的现象3.其他实际应用案例正文:圆锥曲线是一种数学曲线,它在许多领域中都有广泛的应用。
本文将介绍圆锥曲线的定义和性质,并探讨鸟巢建筑与圆锥曲线的关系,以及圆锥曲线在现实生活中的应用。
一、圆锥曲线的定义和性质1.圆锥曲线的概念圆锥曲线是指在平面上,到定点(圆锥顶点)的距离与到定直线(圆锥轴线)的距离之比为常数的点的轨迹。
根据这个比例系数,圆锥曲线可以分为椭圆、双曲线、抛物线和它们的简化形式:圆和直线。
2.圆锥曲线的分类根据椭圆、双曲线和抛物线的具体形状和参数,圆锥曲线可以进一步细分为多种类型。
3.圆锥曲线的性质圆锥曲线具有很多优美的性质,如焦点、准线、离心率等,这些性质为实际应用提供了理论基础。
二、鸟巢建筑与圆锥曲线的关系1.鸟巢建筑的设计理念鸟巢建筑是中国建筑师隈研吾设计的,它的设计灵感来源于鸟巢的结构。
鸟巢建筑以钢结构和透明材料为主要材料,呈现出一种轻盈、自然的视觉效果。
2.鸟巢建筑的结构特点鸟巢建筑的结构特点是将许多钢柱按照椭圆形状排列,形成一个巨大的鸟巢状结构。
这种结构使得鸟巢建筑具有很好的稳定性和观赏性。
3.圆锥曲线在鸟巢建筑中的应用在鸟巢建筑中,椭圆形状的钢柱构成了建筑的主体结构,这种结构使得鸟巢建筑呈现出一种优美的椭圆曲线。
这种椭圆曲线正是圆锥曲线的一种,它使得鸟巢建筑成为了一个典型的圆锥曲线应用实例。
三、圆锥曲线在现实生活中的应用1.工程设计领域在工程设计领域,圆锥曲线被广泛应用于桥梁、隧道、飞机翼等结构的设计。
通过运用圆锥曲线的优美性质,可以提高这些结构的稳定性和性能。
2.自然界中的现象在自然界中,很多现象都遵循圆锥曲线的规律,如行星的轨道、植物的生长等。
圆锥曲线的经典结论一、椭圆1.点 P 处的切线 PT平分△ PF1F2 在点 P 处的外角 . (椭圆的光学性质)2.PT 平分△ PF1F2 在点 P处的外角,则焦点在直线 PT 上的射影 H点的轨迹是以长轴为直径的圆,除去长轴的两个端点 . (中位线)3.以焦点弦 PQ为直径的圆必与对应准线相离 . 以焦点半径 PF1 为直径的圆必与以长轴为直径的圆内切 . (第二定义)4.若 P0 ( x0,y0 )x2y21x0 x y0 y1.(求在椭圆b2上,则过 P0的椭圆的切线方程是b2a2a2导)5.若 P0 ( x0,y0 )x2y21外,则过 Po 作椭圆的两条切线切点为P1、P2,则切点在椭圆b2a2弦 P1P2 的直线方程是x0x y0 y 1. (结合 4)a2b26.椭圆 x2y2 1 (a > b > 0) 的左右焦点分别为F1 , F 2 ,点 P 为椭圆上任意一点a2b2F1 PF2,则椭圆的焦点角形的面积为S F1PF2b2 tan . (余弦定理 +面积公式 +2半角公式)7.x2y21( a> b> 0)的焦半径公式:椭圆2 b2a|MF1| a ex0 , | MF2 | a ex0 (F1 ( c,0) , F2 (c,0) M ( x0 , y0 ) ). (第二定义)8.设过椭圆焦点F 作直线与椭圆相交P 、 Q两点, A 为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点 F 的椭圆准线于M、 N两点,则M F⊥ NF9. 过椭圆一个焦点F 的直线与椭圆交于两点P、Q, A1、 A2 为椭圆长轴上的顶点,A1P和A2Q交于点 M,A2P 和 A1Q交于点 N,则 MF⊥ NF. MN 其实就在准线上,下面证明他在准线上根据第 8 条,证毕10. AB 是椭圆x2 y21 的不平行于对称轴的弦, M(x0 , y0 ) 为 AB 的中点,则a2 b2k OM k ABb2a2 ,即K AB b2x0 。
圆锥曲线性质一览表圆锥曲线性质一览表:椭圆:定义:点P到两个焦点的距离之和等于常数2a。
简图:标准方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ (a>b>0)范围:$|x|\leq a。
|y|\leq b$性质:对称轴:x轴、y轴中心对称:原点(0,0)焦点:F1(-c,0)、F2(c,0) (c=\sqrt{a^2-b^2})顶点:A1(-a,0)、A2(a,0)焦半径:p=\frac{b^2}{a}准线:y=\pm\frac{b}{a}x焦参数:e=\frac{c}{a}离心率:e=\frac{\sqrt{a^2-b^2}}{a}渐近线:y=\pm\frac{b}{a}x通径:长度为2b的线段,连接椭圆上相对的两点切线:斜率为$\frac{-b^2x}{a^2y}$的直线弦长:$2\sqrt{a^2-y^2}$双曲线:定义:点P到两个焦点距离之差的绝对值等于常数2a。
简图:标准方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ (a>0,b>0)范围:$|y|<\frac{b}{a}|x|$性质:对称轴:x轴、y轴中心对称:原点(0,0)焦点:F1(-c,0)、F2(c,0) (c=\sqrt{a^2+b^2})顶点:无焦半径:p=\frac{b^2}{a}准线:y=\pm\frac{a}{b}x焦参数:e=\frac{c}{a}离心率:e=\frac{\sqrt{a^2+b^2}}{a}渐近线:y=\pm\frac{b}{a}x通径:长度为2b的线段,连接双曲线上相对的两点切线:斜率为$\frac{b^2x}{a^2y}$的直线弦长:$2\sqrt{a^2+y^2}$抛物线:定义:点P到定点F和定直线d的距离相等。
简图:标准方程:$y^2=2px$ (p>0)范围:$y\geq 0$性质:对称轴:x轴中心对称:焦点F焦点:F(p,0)顶点:A(0,0)焦半径:p准线:y=0焦参数:e=1离心率:e=1渐近线:无切线:斜率为$\frac{y}{2p}$的直线弦长:$2\sqrt{2py}$总结:以上三种圆锥曲线的性质有很多相似之处,但也有一些不同。
圆锥曲线之性质一、单选题1.已知F是椭圆的左焦点,设动点P在椭圆上,若直线FP的斜率大于,则直线OP(O为原点)的斜率的取值范围是()A. B. C. D.2.若曲线C1:y2=2px(p>0)的焦点F恰好是曲线的右焦点,且C1与C2交点的连线过点F,则曲线C2的离心率为()A. B. C. D.3.已知实数p>0,直线4x+3y﹣2p=0与抛物线y2=2px和圆(x﹣)2+y2= 从上到下的交点依次为A,B,C,D,则的值为()A. B. C. D.4.已知椭圆(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若△ABF2的面积是△BCF2的面积的2倍,则椭圆的离心率为()A. B. C. D.5.P为椭圆+=1(a>b>0)上异于左右顶点A1,A2的任意一点,则直线PA1与PA2的斜率之积为定值﹣,将这个结论类比到双曲线,得出的结论为:P为双曲线﹣=1(a>0,b>0)上异于左右顶点A1,A2的任意一点,则()A. 直线PA1与PA2的斜率之和为定值B. 直线PA1与PA2的斜率之积为定值C. 直线PA1与PA2的斜率之和为定值D. 直线PA1与PA2的斜率之积为定值6.设双曲线的左,右焦点分别为,过的直线l交双曲线左支于A,B两点,则的最小值为( )A. B. 11 C. 12 D. 16二、填空题7.若(k2+k﹣2)x2+(k+3)y2=1表示焦点在y轴上的双曲线,则k的取值范围是________.8.已知双曲线与抛物线y2=8x有一个公共的焦点F.设这两曲线的一个交点为P,若|PF|=5,则点P的横坐标是________;该双曲线的渐近线方程为________.9.若双曲线﹣=1(a>0,b>0)的一条渐近线与+ =1的交点在x轴上的射影恰为该椭圆的焦点,则双曲线的离心率为________.10.已知双曲线:=1,(a>0,b>0)的左、右焦点分别为F1,F2,焦距为2c,直线y=(x+c)与双曲线的一个交点M满足∠MF1F2=2∠MF2F1,则双曲线的离心率为________.三、综合题11.已知椭圆E:=1(a>b>0)的左、右焦点分别为F1、F2,A为椭圆E的右顶点,B,C分别为椭圆E的上、下顶点.线段CF2的延长线与线段AB交于点M,与椭圆E交于点P.(1)若椭圆的离心率为,△PF1C的面积为12,求椭圆E的方程;(2)设S =λ•S ,求实数λ的最小值.12.双曲线x2﹣=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b= ,若l的斜率存在,M为AB的中点,且=0,求l的斜率.答案解析部分一、单选题1.【答案】A【考点】椭圆的简单性质【解析】【解答】解:由,得a2=4,b2=3,∴.则F(﹣1,0),如图:过F作垂直于x轴的直线,交椭圆于A(x轴上方),则x A=﹣1,代入椭圆方程可得.当P为椭圆上顶点时,P(0,),此时,又,∴当直线FP的斜率大于时,直线OP的斜率的取值范围是.故选:A.【分析】由题意画出图形,得到满足直线FP的斜率大于的P的范围,则直线OP的斜率的取值范围可求.2.【答案】B【考点】双曲线的简单性质【解析】【解答】解:由题意,不妨得出C1与C2交点为(,p),代入双曲线方程得:﹣=1,∵曲线C1:y2=2px(p>0)的焦点F恰好是曲线的右焦点,∴=c∴﹣4 =1,根据b2=c2﹣a2,化简得c4﹣6a2c2+a4=0∴e4﹣6e2+1=0e2=3+2 =(1+ )2∴e= +1故选B.【分析】先根据抛物线方程得到焦点坐标和交点坐标,代入双曲线方程,结合a,b,c的关系得到关于离心率e的方程,进而可求得e.3.【答案】C【考点】抛物线的简单性质【解析】【解答】解:设A(x1,y1),D(x2,y2),抛物线的焦点为F,由题意得|BF|=|CF|=由抛物线的定义得:|AC|=|AF|+|CF|= +x1+ =x1+p,同理得|BD|=x2+p.联立直线4x+3y﹣2p=0与抛物线y2=2px且消去x得:2y2+3py﹣2p2=0解得:y1= ,y2=﹣2p,所以x1= ,x2=2p所以= = .故选:C.【分析】设A(x1,y1),D(x2,y2),抛物线的焦点为F,由题得|BF|=|CF|= .由抛物线的定义得:|AC|=|AF|+|CF|= +x1+ =x1+p,同理得|BD|=x2+p.联立直线4x+3y﹣2p=0与抛物线y2=2px且消去x解出y1= ,y2=﹣2p,所以x1= ,x2=2p,进而得到答案.4.【答案】A【考点】椭圆的简单性质【解析】【解答】解:设椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),由x=﹣c,代入椭圆方程可得y=± ,可设A(﹣c,),C(x,y),由△ABF2的面积是△BCF2的面积的2倍,可得=2 ,即有(2c,﹣)=2(x﹣c,y),即2c=2x﹣2c,﹣=2y,可得x=2c,y=﹣,代入椭圆方程可得,+ =1,由e= ,b2=a2﹣c2,即有4e2+ ﹣e2=1,解得e= .故选:A.【分析】设椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),设x=﹣c,代入椭圆方程,求得A的坐标,设出C(x,y),由△ABF2的面积是△BCF2的面积的2倍,可得=2 ,运用向量的坐标运算可得x,y,代入椭圆方程,运用离心率公式,解方程即可得到所求值.5.【答案】D【考点】椭圆的简单性质【解析】【解答】解:设P(x0,y0)为双曲线﹣=1(a>0,b>0)上异于左右顶点A1,A2的任意一点,则A1(﹣a,0),A2(a,0),∴又P(x0,y0)在双曲线﹣=1上,∴,∴∴直线PA1与PA2的斜率之积为定值.故选:D.【分析】由已知椭圆的性质类比可得直线PA1与PA2的斜率之积为定值.然后加以证明即可.6.【答案】B【考点】双曲线的定义,双曲线的简单性质,双曲线的应用【解析】【解答】由题意,得:,显然,AB最短即通径,,故,故选B。
【分析】中档题,涉及双曲线的焦点弦问题,一般要考虑双曲线的定义,结合其它条件,建立方程组求解。
二、填空题7.【答案】(﹣2,1)【考点】双曲线的简单性质【解析】【解答】解:∵(k2+k﹣2)x2+(k+3)y2=1表示焦点在y轴上的双曲线,∴,解得﹣2<m<1,∴实数k的取值范围是(﹣2,1).故答案为:(﹣2,1)【分析】由(k2+k﹣2)x2+(k+3)y2=1表示焦点在y轴上的双曲线,得x2的系数小于0,y2的系数大于0,由此列不等式组能求出实数k的取值范围.8.【答案】3;y=± x【考点】双曲线的简单性质【解析】【解答】解:抛物线y2=8x的焦点为(2,0),即有双曲线的右焦点为(2,0),即c=2,a2+b2=4,①又抛物线的准线方程为x=﹣2,由抛物线的定义可得|PF|=x P+2=5,可得x P=3,则P(3,),代入双曲线的方程可得﹣=1,②由①②解得a=1,b= ,则双曲线的渐近线方程为y=± x,即为y=± x.故答案为:3,y=± x.【分析】求出抛物线的焦点和准线方程,运用抛物线的定义,结合条件可得P的横坐标,进而得到P的坐标,代入双曲线的方程和a,b,c的关系,解方程可得a,b,即可得到所求双曲线的渐近线方程.9.【答案】【考点】双曲线的简单性质【解析】【解答】解:椭圆+ =1的焦点坐标为(±1,0),设渐近线y= x与椭圆+ =1交于A(x1,y1),B(﹣x1,﹣y1)两点,则x1=1,解得:y1= ,则A(1,),代入渐近线方程整理得:= ,双曲线的离心率e= = = ,故答案为:.【分析】设渐近线y= x与椭圆+ =1交于A(x1,y1),B(﹣x1,﹣y1)两点,由题意求得A点坐标,代入渐近线方程,求得= ,根据双曲线的离心率公式率e= = ,即可求得双曲线的离心率.10.【答案】1+【考点】双曲线的简单性质【解析】【解答】解:∵直线y= (x+c)过左焦点F1,且其倾斜角为60°,∠MF1F2=2∠MF2F1,∴∠MF1F2=60°,∠MF2F1=30°.∴∠F1MF2=90°,即F1M⊥F2M.∴|MF1|= |F1F2|=c,|MF2|=|F1F2|sin600= c,由双曲线的定义有:|MF2|﹣|MF1|= c﹣c=2a,∴离心率e= = = +1.故答案为:1+ .【分析】由已知直线过左焦点F1,且其倾斜角为60°,∠MF1F2=2∠MF2F1,可得∠MF1F2=60°,∠MF2F1=30°,即F1M⊥F2M,运用直角三角形的性质和双曲线的定义,由离心率公式计算即可得到所求值.三、综合题11.【答案】(1)解:由椭圆的离心率e= = ,则a= c,b2=a2﹣c2=c2,∴△F1CF2是等腰直角三角形,丨PF1丨+丨PF2丨=2a,则丨PF2丨=2a﹣丨PF1丨,由勾股定理知,丨PF1丨2=丨CF1丨2+丨CP丨2,丨PF1丨2=a2+(a+丨PF2丨2)2,则丨PF1丨2=a2+(3a﹣丨PF1丨2)2,解得:丨PF1丨= ,丨PF2丨= ,丨PC丨= ,∴△PF1C的面积为S= ×a× =12,即a2=18,b2=9.∴椭圆E的方程为(2)解:设P(x,y),因为直线AB的方程为y=﹣x+b,直线PC的方程为y= ﹣b,所以联立方程解得M(,).因为S =λ•S ,所以丨CM丨=λ丨CP丨,所以=λ ,∴(,)=λ(x,y+b),则x= ,y= ,代入椭圆E的方程,得+ =1,即4c2+[2a﹣λ(a+c)]2=λ2(a+c)2,∴λ= = =1+e+ ﹣2≥2 ﹣2=2 ﹣2,因为0<e<1,1<e+1<2,∴当且仅当e+1= ,即e= ﹣1时,∴取到最小值2 ﹣2.【考点】椭圆的简单性质【解析】【分析】(1)由题意可知b=c,则△F1CF2是等腰直角三角形,利用勾股定理及椭圆的定义,求得丨PF1丨= ,丨PF2丨= ,丨PC丨= ,根据三角形的面积公式,即可求得椭圆E的方程;(2)求得直线AB及PC的方程,联立求得M点坐标,由题意可知:丨CM丨=λ丨CP丨,根据向量数量积求得P点坐标,代入椭圆方程,利用基本不等式性质即可求得λ的最小值.12.【答案】(1)解:双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,a=1,c2=1+b2,直线l过F2且与双曲线交于A,B两点,直线l的倾斜角为,△F1AB是等边三角形,可得:A(c,b2),可得:,∴3b4=4(a2+b2),即3b4﹣4b2﹣4=0,b>0,解得b2=2.所求双曲线方程为:x2﹣=1,其渐近线方程为y=± x(2)解:b= ,双曲线x2﹣=1,可得F1(﹣2,0),F2(2,0).设A(x1,y1),B(x2,y2),直线的斜率为:k= ,直线l的方程为:y=k(x﹣2),由直线与双曲线联立消去y可得:(3﹣k2)x2+4k2x﹣4k2﹣3=0,△=36(1+k2)>0,可得x1+x2= ,则y1+y2=k(x1+x2﹣4)=k(﹣4)= .M为AB的中点,且=0,可得:(x1+x2+4,y1+y2)•(x1﹣x2,y1﹣y2)=0,可得x1+x2+4+(y1+y2)k=0,得+4+ •k=0可得:k2= ,解得k=± .l的斜率为:±【考点】双曲线的定义,双曲线的标准方程,双曲线的简单性质【解析】【分析】(1)利用直线的倾斜角,求出AB,利用三角形是正三角形,求解b,即可得到双曲线方程.(2)求出左焦点的坐标,设出直线方程,推出A、B坐标,利用向量的数量积为0,即可求值直线的斜率.。