新课标人教版小学数学六年级下册二单元《圆锥的体积》教学设计
- 格式:doc
- 大小:28.51 KB
- 文档页数:2
《圆锥的体积》说课稿作为一名默默奉献的教育工作者,很有必要精心设计一份说课稿,借助说课稿可以更好地组织教学活动。
那么大家知道正规的说课稿是怎么写的吗?以下是小编整理的《圆锥的体积》说课稿(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
《圆锥的体积》说课稿1我说课的内容是小学数学(人教课标版)六年级下册第二单元第二节“圆锥的体积”。
本课是在学习了第一课时《圆锥的认识》后通过比较圆柱和圆锥而得出圆锥的体积的计算方法。
下面我将从教材、教法、学法、教学模式、三生培养五方面加以说明。
一、说教材数学课程标准强调,从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力情感态度等方面得到进一步的发展。
“圆锥的体积”是在学习了圆的周长和面积,长方体、正方体、圆柱体的体积计算,以及初步认识圆锥特征的基础上进行教学的。
是本单元的重点。
通过本节课内容的教学,发展学生的操作能力、实践能力,培养创新精神,为今后学生的深层次学习和自主发展打好基础。
六年级是小学阶段的最后一个学年,学生掌握的数学知识有一定的基础,逻辑思维能力有了一定的发展,学生在接受程度上,分析问题的能力上,以及语言表达能力上都有较明显的提高,这为理解本节课的知识提供了有力的条件。
但因学生之间个性差异很大,所以本节课的教学也存在一些障碍。
根据课程标准的要求,教材的编排特点,学生的实际情况我确定的教学目标是:1、情感目标:培养学生的探索精神、合作意识。
2、知识目标:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式,运用公式计算以及解决生活中的问题。
3、能力目标:培养学生的空间想象力,合作交往能力、创新思维以及动手操作能力。
重点:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式。
难点:圆锥体积计算公式的推导过程。
关键:公式推导过程中:圆柱体和圆锥体必须是等底等高,则它们之间才存在必然的关系。
小学六年级数学《圆锥的体积》教案(优秀8篇)小学六年级数学《圆锥的体积》教案篇一教学目标:1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体的体积公式。
2、能运用公式解答有关的实际问题。
3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。
教学重点:通过实验的方法,得到计算圆锥体积的公式。
教学难点:运用圆锥体积公式正确地计算体积。
教学过程:一、创设情境,引发猜想在一个闷热的中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个圆锥形的雪糕,这两个雪糕是等底等高的。
这是狐狸要用它的雪糕和小白兔换。
你觉得小白兔有没有上当?如果狐狸用两个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想法与小组的同学交流一下,再向全班同学汇报。
小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。
二、自主探索,操作实验1、出示学习提纲(1)利用手中的学具,动手操作,通过试验,你发现圆柱的体积与圆锥体积之间有什么关系?(2)你们小组是怎样进行实验的?(3)你能根据实验结果说出圆锥体的体积公式吗?(4)要求圆锥体积需要知道哪两个条件?2、小组合作学习3、回报交流结论:圆锥的体积是等底等高的圆柱体积的1/3.公式:V=1/3Sh4、问题解决小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?5、运用公式解决问题教学例题1和例题2三、巩固练习1、圆锥的底面积是5,高是3,体积是()2、圆锥的底面积是10,高是9,体积是()3、求下面各圆锥的体积.(1)底面面积是7.8平方米,高是1.8米.(2)底面半径是4厘米,高是21厘米.(3)底面直径是6分米,高是6分米.4、判断对错,并说明理由.(1)圆柱的体积相当于圆锥体积的3倍.()(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.()(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.()四、拓展延伸一个圆锥的底面周长是31?4厘米,高是9厘米,它的体积是多少立方厘米?五、谈谈收获六、作业小学六年级数学《圆锥的体积》教案篇二【教学内容】圆锥的体积(1)(教材第33页例2)。
人教版数学六年级下册圆锥的体积教学设计3篇〖人教版数学六年级下册圆锥的体积教学设计第【1】篇〗教学目标:1、通过动手操作实验,推导出圆锥体体积的计算公式。
2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。
3、通过学生动脑、动手,培养学生的观察、分析的综合能力。
教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。
教学过程设计:一、复习旧知,做好铺垫。
1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积高)2、口算下列圆柱的体积。
(1)底面积是5平方厘米,高6厘米,体积=?(2)底面半径是2分米,高10分米,体积=?(3)底面直径是6分米,高10分米,体积=?3、认识圆锥(课件演示),并说出有什么特征?二、沟通知识、探索新知。
教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。
这节课我们就来研究圆锥的体积。
(板书课题)1、探讨圆锥的体积计算公式。
教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?学生回答,教师板书:圆柱------(转化)------长方体圆柱体积计算公式--------(推导)长方体体积计算公式教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。
你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。
(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)(学生得出:底面积相等,高也相等。
)教师:底面积相等,高也相等,用数学语言说就叫等底等高。
(板书:等底等高)(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用底面积高来求圆锥体体积行不行?(不行,因为圆锥体的体积小)教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)用水和圆柱体、圆锥体做实验。
人教版数学六年级下册圆锥的体积教案(推荐3篇)人教版数学六年级下册圆锥的体积教案【第1篇】教材分析《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。
本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。
为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。
学情分析六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。
学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。
因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。
但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。
教学目标1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。
2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。
3、体会数学与生活的密切联系,感受探究成功的快乐。
教学重点和难点重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。
难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。
教学过程一、复习准备1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?2、圆锥有什么特点?(同时出示幻灯)3、在这个圆锥体中,几号线段是圆锥体的高。
4、引入:看来,同学们对于圆锥体的特征掌握得很好。
你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。
2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。
3.学生手势出示4.想复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。
人教版数学六年级下册圆锥的体积教案范文推荐3篇〖人教版数学六年级下册圆锥的体积教案范文第【1】篇〗教学要求:l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:长方体、正方体、圆柱体等,根据教材第14页练一练第1题自制的圆锥,演示测高、等底、等高的教具演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:掌握圆锥的特征。
教学难点:理解和掌握圆锥体积的计算公式。
教学过程:一、复习引新1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。
在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。
这些物体的形状都是圆锥体,简称圆锥。
我们教材中所讲的圆锥,都是直圆锥。
今天这节课,就学习圆锥和圆锥的体积。
(板书课题)二、教学新课1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。
(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?4.学生练习。
5.教学圆锥高的测量方法。
(见课本第13页有关内容)6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。
(具体方法可见教材第14页上面的图)(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。
(用有色水演示也可)从倒的次数看你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。
《圆锥的体积》教学设计(精选13篇)《圆锥的体积》篇1指导思想与理论依据:本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。
因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。
教学背景分析:(一)教学内容分析:1、教材内容:本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。
让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。
教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
2、研读完教材后,自己的几个问题:(1)在教学的过程中如何将圆锥体积推导过程与圆柱构建起联系,还不会使学生感到生硬?(2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。
(3)大家都知道本节课必少不了学生的操作,怎么操作才是有效操作?怎么操作才能满足学生的求知欲?怎么操作才能使学生更好体验这个过程?(4)本节课的教学内容只能挖掘到圆锥的体积吗?能不能再深入一些?3、自己的创新认识:首先,研读教材后,我认为这几个问题的根本是一致的都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。
其次,是要提供给同学们一个可操作的空间。
(二)学情分析:1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。
尤其是对于高年级段的同学来讲他们获取知识的渠道十分丰富,自己又有一定探究能力,对于圆锥体积的知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。
《圆锥的体积》数学教案(优秀9篇)【教学目标:】1、使学生探索并初步掌握圆锥体积的计算方法和推导过程;2、使学生会应用公式计算圆锥的体积并解决一些实际问题;3、提高学生实践操作、观察比较、抽象概括的能力,发展空间观念;【教学重点:】使学生初步掌握圆锥体积的计算方法并解决一些实际问题。
【教学难点:】探索圆锥体积的计算方法和推导过程。
【教具准备:】1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱,沙、米,实验报告单;【教学过程:】一、创设情境,发现问题1、故事引入:爱迪生是一位伟大的发明家,他的一生有1000多项发明,当人们都说他是天才的时候,他却谦虚的说:天才=99%的汗水和1%的灵感。
孩子们,请记住这句话吧,你的未来一定会很出色的哦。
今天这节课我们就从爱迪生的一个小故事开始吧,有一天爱迪生让他的助手测量一个灯泡的体积,由于灯泡的形状很不规则,助手苦苦思考,还是没有答案,爱迪生用了一个非常巧妙的办法他将灯泡里装满水,然后将水倒入量筒中(教师拿出圆柱体量筒作演示),就得出了灯泡的体积。
你能说说爱迪生这样做的理由吗?师:因为圆柱体的体积等于底面积高。
(板书)2、提出问题,明确方向。
爱迪生帮他的助手解决了这个问题,现在请同学们帮打谷场上的农民伯伯们一个忙(用多媒体显示一堆圆锥体的小麦堆)请大家算算这堆小麦的体积。
看看谁是未来的爱迪生生:利用爱迪生的方法,利用一个圆柱体或长方体大桶来装这堆谷子,就能求出这堆谷子的体积了。
师:长方体的体积公式是什么呢?生:长宽高师:非常棒,其实呀不管是爱迪生,还是未来的爱迪生都是运用转化这一重要的数学思想来解决新的问题,今天我们同样能不能用转化的数学思想找到一种简单而又科学合理的方法计算出圆锥的体积的计算公式呢?板书:圆锥体积二、讨论问题,提出方案1、现在请同桌互相讨论一下,可以采取什么办法找到手中圆锥的体积。
比一比,哪个学习小组的方法多,方法好。
各小组汇报:把圆锥投入装了水的长方体、正方体或圆柱体的容器中,求出上升部分水的体积。
人教版数学六年级下册圆锥的体积教学设计精选3篇〖人教版数学六年级下册圆锥的体积教学设计第【1】篇〗教学内容:九年义务教育六年制小学数学第十二册P32页。
教学目标:1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。
2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。
3、进一步培养学生将所学知识运用和服务于生活的能力。
教学重点:灵活运用圆柱圆锥的有关知识解决实际问题。
教学难点:同教学难点。
设计理念:练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。
力求使不同层次的学生都学有收获。
教学步骤、教师活动、学生活动一、复习铺垫、内化知识。
1. 圆锥体的体积公式是什么?我们是如何推导的?2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。
(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。
(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。
圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
3.求下列圆锥体的体积。
(1)底面半径4厘米,高6厘米。
(2)底面直径6分米,高8厘米。
(3)底面周长31.4厘米.高12厘米。
4、教师根据学生练习中存在的问题,集体评讲。
同座位的同学先说一说圆锥体积公式的推导过程。
学生独立练习,互相批改,指出问题。
学生交流一下这几题在解题时要注意什么?二、丰富拓展、延伸练习。
1.拓展练习:(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?2.完成31页第5题。
讨论下列问题:(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?学生分组讨论,教师参与其中,以有疑问的方式参与讨论。
小学六年级数学《圆锥的体积计算》教案设计(精选5篇)《圆锥体积的计算》教学设计篇一教学目标1、通过练习学生进一步理解、掌握圆锥的特征及体积计算公式。
2、能正确运用公式计算圆锥的体积,并解决一些简单的实际问题。
3、培养学生认真审题,仔细计算的习惯。
重点:进一步掌握圆锥的体积计算及应用难点:圆锥体积公式的灵活运用教学过程一、知识回顾1、前几节课我们认识了哪两个图形?你能说说有关它们的知识吗?2、学生说,教师板书:圆锥圆柱特征1个底面2个扇形侧面展开长方形体积V=1/3SHV=SH二、提出本节课练习的内容和目标三、课堂练习(一)、基本训练1、填空课本1----2(独立完成后校对)2、圆锥的体积计算已知:底面积、直径、周长与高求体积(小黑板出示)(二)、综合训练:1、判断(1)圆锥的体积等于圆柱的1/3(2)长方体、正方体、圆柱和圆锥的体积公式都可用V=SH(3)一个圆柱形容器盛满汽油有2.5升,这个容器的容积就是2.5升(4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米2、应用:练习四第45题任选一题3、发展题:独立思考后校对四课堂小结:说说本节课的收获《圆锥的体积》教案篇二1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出来圆锥的体积计算公式。
原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥与圆柱体积之间的关系,教师预设学生可能粗略地知道有“三分之一”这一关系,“那么三分之一这一关系怎样推导呢”引起以下怎样推导圆锥的体积这一过程。
(2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进行实验,让学生更有目的性,也非常方便,有操作性。
(3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。
(4)公式推导完之后的一个反例子(出示一个非常大的圆柱和一个非常小的圆锥),让学生明确并不是所有的圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。
人教版数学六年级下册圆锥的体积教学设计(精选3篇)〖人教版数学六年级下册圆锥的体积教学设计第【1】篇〗圆锥的体积》教学设计【教材分析】本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。
这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.【设计理念】数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
【教学目标】1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
【教学重点】圆锥体积公式的理解,并能运用公式求圆锥的体积。
【教学难点】圆锥体积公式的推导【学情分析】学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。
所以对于新的知识教学,他们一定能表现出极大的热情。
【教法学法】试验探究法小组合作学习法【教具学具准备】多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)【教学课时】2课时【教学流程】第一课时一、回顾旧知识1、你能计算哪些规则物体的体积?2、你能说出圆锥各部分的名称吗?【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。
新课标人教版小学数学六年级下册二单元《圆锥的体积》
教学设计
教学目标:
1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义,
2、培养学生自主探究的精神,在生活中发现数学问题,经历“类比猜想—验证说明”的探究过程,推导出圆锥体积公式并能利用公式解决一些简单的实际问题。
教学重点:
利用圆锥公式解决问题。
教学难点:
圆锥公式的推导过程。
教学用具:
学生:把圆柱形的胡萝卜削成圆锥,削去部分也带来。
沙子。
教师:四人一组,一个圆锥体,与圆锥等底等高、底相等高不等的圆柱各一个。
教学过程:
一、发现问题,提出猜想:
1、昨天我们已经共同认识了一种新的立体图形—圆锥。
出示课本11页主题图,想一想:要求这对小麦的体积是多少,实际是求什么形体的体积?你怎样才能知道这个圆锥的体积呢?下面,咱们就共同来研究一下圆锥体积的计算公式。
(板书课题)
2、请同学们拿出准备好的胡萝卜,请同学们大胆猜测一下,圆锥的体积是圆柱的几分之几?
3、说说猜测的依据。
二、探索问题,验证猜想:
1、老师这儿有一些圆锥,以小组为单位选择一个最喜欢的拿回去,便于同学们研究。
根据我们以往研究几何形体的经验,你打算怎样研究圆锥的体积呢?提示(转化是我们学习、研究数学,尤其是几何形体的一种重要思想。
)
2、分小组用不同的圆柱和圆锥用沙子进行三次试验,来验证同学们的猜想。
小组汇报,三次试验有什么发现?
3、圆锥与圆柱在体积上存在的不同关系是由什么决定的?引导学生说出结论:只有等底等高的圆柱和圆锥,圆锥的体积才是圆柱的三分之一。
4、在学生的交流中,逐步完善圆锥体积的计算公式。
V=1/3sh
三、解决问题
1、下面就应用我们自己总结出来的圆锥体积的计算公式,计算一下课本中的这个圆锥的体积。
(底面半径=2米,高=1.5米)(出示投影)
2、引导学生用公式来计算,并且提醒计算时要仔细。
四、巩固练习
判断对错:
1、圆锥的体积是圆柱体积的1/3。
2、一个圆柱与一个圆锥的底面积相等,他们的体积也一定相等。
3、圆柱的体积比他等底等高的圆锥少多2倍。
算一算:
1、一个圆锥的体积是40立方厘米,圆柱的体积是多少?
2、一个圆柱的体积是120立方厘米,与它等底等高的圆锥的体积是多少?
五、全课总结:
通过对圆锥体积的研究,你的最大收获是什么?其实,世间万物都是普遍联系的,在学习、研究过程中,只要我们抓住事物之间的本质联系,大胆探索、勇于实践,成功就会永远属于我们。
六、作业:
数学书12页第一题三个小题。