大学期末考试材料力学-重学复习
- 格式:doc
- 大小:471.50 KB
- 文档页数:6
《材料力学》综合复习资料第一章绪论一、什么是强度失效、刚度失效和稳定性失效?答案:略二、如图中实线所示构件内正方形微元,受力片变形为图屮虚线的菱形,则微元的剪应变了为_________________________ ?A^ a B、90° -aC、90° - 2aD、la答案:D三、材料力学中的内力是指()。
A、物体内部的力。
B、物体内部各质点间的相互作用力。
C、由外力作用引起的各质点间相互作用力的改变量。
D、由外力作用引起的某一截面两侧各质点I'可相互作用力的合力的改变量。
答案:B四、为保证机械和工程结构的正常工作,其中各构件一般应满足_______________ ______________ 和 ___________ 三方面的要求。
答案:强度、刚度、稳定性五、截面上任一点处的全应力一般可分解为________________ 方向和______________________________________________________ 方向的分量。
前者称为该点的________ ,用______ 表示;后者称为该点的_________ ,用 ______ 表示。
答案:略第二章内力分析画出图示各梁的Q、M图。
2・5kN7・5kN2qaQ图2.5kN.m答案:a> c、c4、影响杆件工作应力的因素有(因索有()o );影响极限应力的因索有();影响许川应力的第三章拉伸与压缩一、概念题1、画出低碳钢拉伸吋:曲线的人致形状,并在图上标出相应地应力特征值。
2、a、b、c三种材料的应力〜应变曲线如图所示。
其屮强度最高的材料是_____________ ;弹性模最最小的材料是 ________ :須性最好的材料是____________3、延伸率公式<5 = (/, -/)//xlOO%中厶指的是 _________________ ?答案:DA、断裂时试件的长度;B、断裂片试件的长度;C、断裂时试验段的长度;D、断裂后试验段的长度。
从图在该段中的变线段(T即为非粮馆举性段, 压液线可看出即整个拉伸过程可分为以下四个阶段。
* /)称线弹性段,其斜率即为弹性模量E,对应的最高应力值 虎克定律(r=Ec 成立。
而ab 段, 在该段内所产生的应变仍是弹性的, 但它与应力已不成正比。
b点相对立白 勺应力第五早材料力学 主讲:钱民刚 第一节 概论材料力学是研究各种类型构件(主要是杆)的强度、刚度和稳定性的学科,它提供 了有关的基本理论、计算方法和试验技术,使我们能合理地确定构件的材料、尺寸 和形状,以达到安全与经济的设计要求。
♦一、材料力学的基本思路 (一)理论公式的建立 理论公式的建立思路如下:(一)低碳钢材料拉伸和压缩时的力学性质低碳钢(通常将含碳量在0.3%以下 的钢称为低碳钢,也叫软钢)材料拉伸和压缩时的 (7- e 曲线如图5-1所示。
陶度箓n------- 搬面设计为确保构件不致因强度/、丸而破坏, 应使其最——该啊瓯丽于材料的极限应力0- u,物出射和 (力与姻(美系)* 变形外力 T ]表小,即临界前载应力力布1£配IX没有屈服阶段,也酸 _ 曲线的一条割线的斜率,作为其弹性模量。
它 1故衡量铸铁拉伸强度的唯一指标就是它被拉断时/,在较小的拉应力作用下即被拉断,且其延伸率很小,故铸铁TE与拉伸相比,可看出这类材料的抗压能力要比抗拉 事蝌性变形也较为蛾显。
破坏断口为斜断面,这表明试件是因m max对于塑性材料制成的杆,通常取屈服极限①良或名义屈服极限(T该段内应力基本上不变,但应变却在迅速增长,而且在该段内所产生的应变 成分,除弹性应变外,还包含了明显的塑性变形,该段的应力最低点 (7S 称为屈服 极限。
这时,试件上原光滑表面将会出现与轴线大致成 45。
的滑移线,这是由于试 件材料在45。
的斜截面上存在着最大剪应力而引起的。
对于塑性材料来说,由于屈 服时所产生的显著的塑性变形将会严重地影响其正常工作,故(7S 是衡量塑性材料强度的一个重要指标。
材料力学1. 材料与构件的许用应力值有关。
2. 切应力互等定理是由单元体静力平衡关系导出的。
3.弯曲梁的变形情况通过梁上的外载荷来衡量。
4.有集中力作用的位置处,其内力的情况为剪力阶跃,弯矩拐点。
5. 在材料力学的课程中,认为所有物体发生的变形都是小变形6. 危险截面是最大应力所在的截面。
7. 杆件受力如图所示,AB段直径为d1=30mm,BC 段直径为d2=10mm,CD段直径为d3=20mm。
杆件上的最大正应力为127.3MPa。
8. 一根两端铰支杆,其直径d=45mm,长度l=703mm,E=210GPa,σp=280MPa,λs=43.2。
直线公式σcr=461-2.568λ。
其临界压力为478kN。
9. 一个钢梁,一个铝梁,其尺寸、约束和载荷完全相同,则横截面上的应力分布相同,变形后轴线的形态不相同。
10. 当实心圆轴的直径增加1倍时,其抗扭强度增加到原来的8倍。
11. 材料力学中求内力的普遍方法是截面法。
12. 压杆在材料和横截面面积不变的情况下,采用D 横截面形状稳定性最好。
13. 图形对于其对称轴静矩和惯性矩均不为零。
14. 梁横截面上可能同时存在切应力和正应力。
15. 偏心拉伸(压缩),其实质就是拉压和弯曲的组合变形。
16. 存在均布载荷的梁段上弯矩图为抛物线。
17. 矩形的对角线的交点属于形心点。
18. 一圆轴用碳钢制作,校核其扭转角时,发现单位长度扭转角超过了许用值。
为保证此轴的扭转刚度,应增加轴的直径。
19. T形图形由1和2矩形图形组成,则T形图形关于x轴的惯性矩等于1矩形关于m轴的惯性矩与2矩形关于n轴的惯性矩的合。
20. 材料力学中关心的内力是物体由于外力作用而产生的内部力的改变量。
21.杯子中加入热水爆炸时,是外层玻璃先破裂的;单一载荷作用下的目标件,其上并不只存在一种应力。
22. 单位长度扭转角θ与扭矩、材料性质、截面几何性质有关。
23. 转角是横截面绕中性轴转过的角位移;转角是挠曲线的切线与轴向坐标轴间的夹角;转角是变形前后同一截面间的夹角24.单元体的形状可以改变;单元体上的应力分量应当足以确定任意方向面上的应力25. 可以有效改善梁的承载能力的方法是:加强铸铁梁的受拉伸一侧;将集中载荷改换为均布载荷;将简支梁两端的约束向中间移动。
1、应力 全应力正应力切应力线应变 的大小; 外力偶矩当功率P 当功率拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N FAσ= 3-1式中N F 为该横截面的轴力,A 为横截面面积;正负号规定 拉应力为正,压应力为负; 公式3-1的适用条件:1杆端外力的合力作用线与杆轴线重合,即只适于轴向拉压杆件; 2适用于离杆件受力区域稍远处的横截面;3杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; 4截面连续变化的直杆,杆件两侧棱边的夹角020α≤时 拉压杆件任意斜截面a 图上的应力为平均分布,其计算公式为全应力 cos p ασα= 3-2正应力 2cos ασσα=3-3切应力1sin 22ατα=3-4 式中σ为横截面上的应力;正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负;ασ 拉应力为正,压应力为负;ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负;两点结论:1当00α=时,即横截面上,ασ达到最大值,即()max ασσ=;当α=090时,即纵截面上,ασ=090=0;2当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αατ=1.2 拉压杆的应变和胡克定律 1变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长;如图3-2;图3-2 轴向变形 1l l l ∆=- 轴向线应变 llε∆= 横向变形 1b b b ∆=- 横向线应变 bbε∆'=正负号规定 伸长为正,缩短为负; 2胡克定律当应力不超过材料的比例极限时,应力与应变成正比;即 E σε= 3-5 或用轴力及杆件的变形量表示为 N F ll EA∆=3-6 式中EA 称为杆件的抗拉压刚度,是表征杆件抵抗拉压弹性变形能力的量;公式3-6的适用条件:a 材料在线弹性范围内工作,即p σσ〈;b 在计算l ∆时,l 长度内其N 、E 、A 均应为常量;如杆件上各段不同,则应分段计算,求其代数和得总变形;即1ni ii i iN l l E A =∆=∑3-7 3泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值;即 ενε'=3-8强度计算许用应力 材料正常工作容许采用的最高应力,由极限应力除以安全系数求得; 塑性材料 σ=s s n σ ; 脆性材料 σ=b bn σ其中,s b n n 称为安全系数,且大于1;强度条件:构件工作时的最大工作应力不得超过材料的许用应力; 对轴向拉伸压缩杆件[]NAσσ=≤ 3-9 按式1-4可进行强度校核、截面设计、确定许克载荷等三类强度计算; 2.1 切应力互等定理受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关;2.2纯剪切单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态; 2.3切应变切应力作用下,单元体两相互垂直边的直角改变量称为切应变或切应变,用τ表示; 2.4 剪切胡克定律在材料的比例极限范围内,切应力与切应变成正比,即 G τγ= 3-10式中G 为材料的切变模量,为材料的又一弹性常数另两个弹性常数为弹性模量E 及泊松比ν,其数值由实验决定;对各向同性材料,E 、 ν、G 有下列关系 2(1)EG ν=+ 3-112.5.2切应力计算公式横截面上某一点切应力大小为 p pT I ρτ=3-12 式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离;圆截面周边上的切应力为 max tTW τ=3-13 式中p t I W R=称为扭转截面系数,R 为圆截面半径;2.5.3 切应力公式讨论(1) 切应力公式3-12和式3-13适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内; (2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3;在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强;因此,设计空心轴比实心轴更为合理;2.5.4强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏;因此,强度条件为[]max maxt T W ττ⎛⎫=≤⎪⎝⎭ 3-14 对等圆截面直杆 []maxmax tT W ττ=≤ 3-15式中[]τ为材料的许用切应力; 3.1.1中性层的曲率与弯矩的关系1zMEI ρ=3-16 式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩; 3.1.2横截面上各点弯曲正应力计算公式 ZMy I σ=3-17 式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处 max max max max z zM My I W σ=•= 3-18 式中,max z z I W y =称为抗弯截面系数;对于h b ⨯的矩形截面,216z W bh =;对于直径为D 的圆形截面,332z W D π=;对于内外径之比为d a D =的环形截面,34(1)32z W D a π=-; 若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大拉应力与最大压应力数值不相等;3.2梁的正应力强度条件梁的最大工作应力不得超过材料的容许应力,其表达式为 []maxmax zM W σσ=≤ 3-19 对于由拉、压强度不等的材料制成的上下不对称截面梁如T 字形截面、上下不等边的工字形截面等,其强度条件应表达为[]maxmax 1l t z M y I σσ=≤ 3-20a []maxmax 2y c zM y I σσ=≤ 3-20b 式中,[][],t c σσ分别是材料的容许拉应力和容许压应力;12,y y 分别是最大拉应力点和最大压应力点距中性轴的距离;3.3梁的切应力 z z QS I bτ*= 3-21式中,Q 是横截面上的剪力;z S *是距中性轴为y 的横线与外边界所围面积对中性轴的静矩;z I 是整个横截面对中性轴的惯性矩;b 是距中性轴为y 处的横截面宽度; 3.3.1矩形截面梁切应力方向与剪力平行,大小沿截面宽度不变,沿高度呈抛物线分布;切应力计算公式 22364Q h y bh τ⎛⎫=- ⎪⎝⎭3-22最大切应力发生在中性轴各点处,max 32QAτ=; 3.3.2工字形截面梁切应力主要发生在腹板部分,其合力占总剪力的95~97%,因此截面上的剪力主要由腹板部分来承担;切应力沿腹板高度的分布亦为二次曲线;计算公式为 ()2222824z Q B b h H h y I b τ⎡⎤⎛⎫=-+-⎢⎥ ⎪⎝⎭⎣⎦3-23近似计算腹板上的最大切应力:dhFs 1max=τd 为腹板宽度 h 1为上下两翼缘内侧距3.3.3圆形截面梁横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈抛物线变化;最大切应力发生在中性轴上,其大小为 2max42483364z z d d Q QS Q d I b Adππτπ*⋅⋅===⨯ 3-25 圆环形截面上的切应力分布与圆截面类似;3.4切应力强度条件梁的最大工作切应力不得超过材料的许用切应力,即 []max max maxz z Q S I bττ*=≤ 3-26式中,max Q 是梁上的最大切应力值;max z S *是中性轴一侧面积对中性轴的静矩;z I 是横截面对中性轴的惯性矩;b 是maxτ处截面的宽度;对于等宽度截面,max τ发生在中性轴上,对于宽度变化的截面,max τ不一定发生在中性轴上; 4.2剪切的实用计算名义切应力:假设切应力沿剪切面是均匀分布的 ,则名义切应力为 AQ=τ 3-27 剪切强度条件:剪切面上的工作切应力不得超过材料的 许用切应力[]τ,即 []ττ≤=AQ3-285.2挤压的实用计算名义挤压应力 假设挤压应力在名义挤压面上是均匀分布的,则 []bsbs bs bsP A σσ=≤ 3-29 式中,bs A 表示有效挤压面积,即挤压面面积在垂直于挤压力作用线平面上的投影;当挤压面为平面时为接触面面积,当挤压面为曲面时为设计承压接触面面积在挤压力垂直面上的 投影面积;挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力 []bs bsbs A Pσσ≤=3-30 1, 变形计算圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角;相距为l 的两个横截面的相对扭转角为dx GI TlP⎰=0ϕ rad 4.4 若等截面圆轴两截面之间的扭矩为常数,则上式化为PGI Tl=ϕ rad 4.5 图4.2式中P GI 称为圆轴的抗扭刚度;显然,ϕ的正负号与扭矩正负号相同;公式4.4的适用条件:(1) 材料在线弹性范围内的等截面圆轴,即P ττ≤;(2) 在长度l 内,T 、G 、P I 均为常量;当以上参数沿轴线分段变化时,则应分段计算扭转角,然后求代数和得总扭转角;即 ∑==ni P i ii iI G l T 1ϕ rad 4.6 当T 、P I 沿轴线连续变化时,用式4.4计算ϕ; 2, 刚度条件扭转的刚度条件 圆轴最大的单位长度扭转角max 'ϕ不得超过许可的单位长度扭转角[]'ϕ,即[]''maxmax ϕϕ≤=PGI T rad/m 4.7 式 []'180'max max ϕπϕ≤⨯=︒P GI T m /︒ 4.82,挠曲线的近似微分方程及其积分在分析纯弯曲梁的正应力时,得到弯矩与曲率的关系EIM=ρ1对于跨度远大于截面高度的梁,略去剪力对弯曲变形的影响,由上式可得()()EIx M x =ρ1 利用平面曲线的曲率公式,并忽略高阶微量,得挠曲线的近似微分方程,即 ()EIx M =''ω 4.9 将上式积分一次得转角方程为 ()C dx EIx M +==⎰'ωθ 4.10再积分得挠曲线方程 ()D Cx dx dx EI x M ++⎥⎦⎤⎢⎣⎡=⎰⎰ω 4.11 式中,C,D 为积分常数,它们可由梁的边界条件确定;当梁分为若干段积分时,积分常数的确定除需利用边界条件外,还需要利用连续条件; 3,梁的刚度条件限制梁的最大挠度与最大转角不超过规定的许可数值,就得到梁的刚度条件,即 []ωω≤max ,[]θθ≤max 4.12 3,轴向拉伸或压缩杆件的应变能在线弹性范围内,由功能原理得 l F W V ∆==21ε 当杆件的横截面面积A 、轴力F N 为常量时,由胡克定律EAlF l N =∆,可得 EA l F V N 22=ε 4.14杆单位体积内的应变能称为应变能密度,用εV 表示;线弹性范围内,得 σεε21=V 4.15 4,圆截面直杆扭转应变能 在线弹性范围内,由功能原 ϕe r M W V 21== 将T M e =与P GI Tl =ϕ代入上式得 Pr GI lT V 22= 4.16图4.5根据微体内的应变能在数值上等于微体上的内力功,得应变能的密度r V : r V r τ21= 4.175,梁的弯曲应变能在线弹性范围内,纯弯曲时,由功能原理得 将M M e =与EIMl=θ代入上式得 EI l M V 22=ε 4.18图4.6横力弯曲时,梁横截面上的弯矩沿轴线变化,此时,对于微段梁应用式4.18,积分得全梁的弯曲应变能εV ,即()⎰=lEI dxx M V 22ε 4.192.截面几何性质的定义式列表于下:静 矩 惯性矩惯性半径惯性积 极惯性矩3.惯性矩的平行移轴公式静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示; 定义式: ⎰=Ay zdA S ,⎰=Az ydA S Ⅰ-1量纲为长度的三次方;由于均质薄板的重心与平面图形的形心有相同的坐标C z 和C y ;则由此可得薄板重心的坐标 C z 为 AS A zdA z yAC==⎰同理有 A S y zC =所以形心坐标 A S z y C =,ASy z C = Ⅰ-2或 C y z A S ⋅=,C z y A S ⋅=由式Ⅰ-2得知,若某坐标轴通过形心轴,则图形对该轴的静矩等于零,即0=C y ,0=z S ;0=C z ,则 0=y S ;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心;静矩与所选坐标轴有关,其值可能为正,负或零;如一个平面图形是由几个简单平面图形组成,称为组合平面图形;设第 I 块分图形的面积为 i A ,形心坐标为Ci Ci z y , ,则其静矩和形心坐标分别为 Ci i n i z y A S 1=∑=,Ci i ni y z A S 1=∑= Ⅰ-3∑∑====ni ini Cii z C AyA AS y 11,∑∑====ni ini cii y C AzA AS z 11 Ⅰ-4§Ⅰ-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示;⎰=Ay dA z I 2,⎰=Az dA y I 2 Ⅰ-5量纲为长度的四次方,恒为正;相应定义AI i y y =,AI i zz =Ⅰ-6 为图形对 y 轴和对 z 轴的惯性半径;组合图形的惯性矩;设 zi yi I I , 为分图形的惯性矩,则总图形对同一轴惯性矩为yi ni y I I 1=∑=,zi ni z I I 1=∑= Ⅰ-7若以ρ表示微面积dA 到坐标原点O 的距离,则定义图形对坐标原点O 的极惯性矩⎰=Ap dA I 2ρ Ⅰ-8因为 222z y +=ρ所以极惯性矩与轴惯性矩有关系 ()z y Ap I I dA z yI +=+=⎰22Ⅰ-9式Ⅰ-9表明,图形对任意两个互相垂直轴的轴惯性矩之和,等于它对该两轴交点的极惯性矩;下式 ⎰=Ayz yzdA I Ⅰ-10定义为图形对一对正交轴 y 、z 轴的惯性积;量纲是长度的四次方; yz I 可能为正,为负或为零;若 y ,z 轴中有一根为对称轴则其惯性积为零;§Ⅰ-3平行移轴公式由于同一平面图形对于相互平行的两对直角坐标轴的惯性矩或惯性积并不相同,如果其中一对轴是图形的形心轴()c cz ,y时,如图Ⅰ-7所示,可得到如下平行移轴公式⎪⎩⎪⎨⎧+=+=+=abA II A b I I Aa I I C C C C z y yzz z y y 22 Ⅰ-13 简单证明之: 其中⎰AC dA z 为图形对形心轴 C y 的静矩,其值应等于零,则得同理可证I-13中的其它两式;结论:同一平面内对所有相互平行的坐标轴的惯性矩,对形心轴的最小;在使用惯性积移轴公式时应注意 a ,b 的正负号;把斜截面上的总应力p 分解成与斜截面垂直的正应力n σ和相切的切应力n τ图222123n l m n σσσσ=++ 2222222123n n l m n τσσσσ=++-在以n σ为横坐标、n τ截面上的正应力n σ和切应力n τ区域图13.2中阴影中的一点;由图13.2显见。
二、计算题:1。
梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。
2。
铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心.已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。
试求:①画梁的剪力图、弯矩图.②按正应力强度条件校核梁的强度。
3。
传动轴如图所示.已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa.试求:①力偶M的大小;②作AB轴各基本变形的内力图.③用第三强度理论设计轴AB的直径d。
4.图示外伸梁由铸铁制成,截面形状如图示。
已知I z=4500cm4,y1=7.14cm,y2=12。
86cm,材料许用压应力[σc]=120MPa,许用拉应力[σt]=35MPa,a=1m。
试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
5。
如图6所示,钢制直角拐轴,已知铅垂力F1,水平力F2,实心轴AB的直径d,长度l,拐臂的长度a。
试求:①作AB轴各基本变形的内力图。
②计算AB轴危险点的第三强度理论相当应力.6.图所示结构,载荷P=50KkN,AB杆的直径d=40mm,长度l=1000mm,两端铰支。
已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1。
12MPa,稳定安全系数n st=2.0,[σ]=140MPa.试校核AB杆是否安全。
7.铸铁梁如图5,单位为mm,已知I z=10180cm4,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa,试求:①画梁的剪力图、弯矩图.②按正应力强度条件确定梁截荷P。
8.图所示直径d=100mm的圆轴受轴向力F=700kN与力偶M=6kN·m的作用。
已知M=200GPa,μ=0.3,[σ]=140MPa。
材料力学期末复习重点第一章绪论及基本概念P1构件正常工作的要求。
P5可变形固体的三个基本假设。
第二章轴向拉伸与压缩P10截面法、轴力及轴力图例题:2-1P15最大正应力公式(2-3)例题:2-2P20 拉压杆伸长公式(2-5b)例题2-5P39强度条件(2-13)*例题2-8-2-10第三章扭转P62 扭矩及扭矩图例题3-1P67扭转最大切应力公式(3-7)P68 切应力互等定理式(3-12)P72 强度条件式(3-14)例题3-4第四章弯曲应力P100 梁的剪力和弯矩例题4-1P102剪力方程与弯矩方程4-2-4-6P109弯矩、剪力与分布荷载集度间的微分关系及其应用例题4-9P116按叠加原理作弯矩图例题4-10P123任意点处的正应力(4-5)P125最大正应力(4-7b)例题4-13P126梁的正应力强度条件式(4-9)例题4-14-4-16P132 任意点的切应力式(4-10)P133 矩形截面最大切应力式(4-11)P134 工字形截面最大切应力式(4-13)例题4-17P138切应力强度条件式(4-17)例题4-18第五章梁弯曲时的位移P159梁的挠曲性近似微分方程式(5-2b)例题5-1-5-2P162积分常数的几何意义P165按叠加原理计算梁的挠度和转角例题5-5P173梁的刚度校核式(5-11)第六章简单的超静定问题P184 超静定问题及其解法6-1节,能识别超静的次数第七章应力状态和强度理论P214任意斜截面的应力(7-1)-(7-2)式P214 应力圆P216主应力与主平面(7-3)-(7-5)式例题7-2P223 空间应力状态的最大正应力(7-6)式,最大切应力(7-7)例题7-3P226广义胡克定律(7-8)式例题7-5P234 强度理论及其相当应力第一-第四强度理论及适用条件例题7-7附录I 截面的几何性质P334组合截面的静矩(I-3)式和形心(I-4)式例题I-2P336 极惯性矩、惯性矩、惯性积和惯性半径计算例题I-3P339 移轴公式(I-10)熟练利用移轴公式计算组合截面的惯性矩例题I-5-I-6。
1、材料力学得任务:强度、刚度与稳定性;应力单位面积上得内力。
平均应力(1、1)全应力(1、2)正应力垂直于截面得应力分量,用符号表示。
切应力相切于截面得应力分量,用符号表示。
应力得量纲:线应变单位长度上得变形量,无量纲,其物理意义就是构件上一点沿某一方向变形量得大小。
外力偶矩传动轴所受得外力偶矩通常不就是直接给出,而就是根据轴得转速n与传递得功率P来计算。
当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为拉(压)杆横截面上得正应力拉压杆件横截面上只有正应力,且为平均分布,其计算公式为 (3 -1)式中为该横截面得轴力,A为横截面面积。
正负号规定拉应力为正,压应力为负。
公式(3-1)得适用条件:(1)杆端外力得合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处得横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化得直杆,杆件两侧棱边得夹角时拉压杆件任意斜截面(a图)上得应力为平均分布,其计算公式为全应力 (3-2)正应力(3-3)切应力(3-4)式中为横截面上得应力。
正负号规定:由横截面外法线转至斜截面得外法线,逆时针转向为正,反之为负。
拉应力为正,压应力为负。
对脱离体内一点产生顺时针力矩得为正,反之为负。
两点结论:(1)当时,即横截面上,达到最大值,即。
当=时,即纵截面上,==0。
(2)当时,即与杆轴成得斜截面上,达到最大值,即1.2 拉(压)杆得应变与胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形轴向线应变横向变形横向线应变正负号规定伸长为正,缩短为负。
(2)胡克定律当应力不超过材料得比例极限时,应力与应变成正比。
即(3-5)或用轴力及杆件得变形量表示为 (3-6)式中EA称为杆件得抗拉(压)刚度,就是表征杆件抵抗拉压弹性变形能力得量。
材料力学性能1.填空题:30个15分2.判断题:20个10分3.名词解释 10个20分4.问答题:6个35分5.计算题:2个20分第一章单向静拉伸力学性能一、解释下列名词。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
11.韧脆转变温度:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这个温度称为韧脆转变温度。
15.解理刻面:在解理断裂中具有低指数,表面能低的晶体学平面叫解理面。
这种大致以晶粒大小为单位的解理面称为解理刻面。
17.约比温度:材料的实验温度与熔点的比值。
高于这个温度的环境叫高温环境,材料的性能会随时间和温度而变化。
18.松弛稳定性:金属抵抗应力松弛的性能。
19.低周疲劳:金属材料在循环载荷作用下,疲劳寿命为102-104次的疲劳断裂叫低周疲劳。
四、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。
上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。
八、什么是包申格效应,如何解释,它有什么实际意义?包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
二、计算题:1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。
2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。
已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa.试求:①画梁的剪力图、弯矩图。
②按正应力强度条件校核梁的强度。
3.传动轴如图所示。
已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa.试求:①力偶M的大小;②作AB轴各基本变形的内力图。
③用第三强度理论设计轴AB的直径d。
4.图示外伸梁由铸铁制成,截面形状如图示.已知I z=4500cm4,y1=7.14cm,y2=12.86cm,材料许用压应力[σc]=120MPa,许用拉应力[σt]=35MPa,a=1m.试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
5.如图6所示,钢制直角拐轴,已知铅垂力F1,水平力F2,实心轴AB的直径d,长度l,拐臂的长度a。
试求:①作AB轴各基本变形的内力图.②计算AB轴危险点的第三强度理论相当应力.6。
图所示结构,载荷P=50KkN,AB杆的直径d=40mm,长度l=1000mm,两端铰支。
已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=2。
0,[σ]=140MPa。
试校核AB杆是否安全。
7.铸铁梁如图5,单位为mm,已知I z=10180cm4,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa,试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
8。
图所示直径d=100mm的圆轴受轴向力F=700kN与力偶M=6kN·m的作用。
已知M=200GPa,μ=0。
一、选择题。
1、低碳钢进行拉伸实验时,滑移现象产生在 阶段。
A .比例极限; B .屈服; C .硬化;D .颈缩。
2、某点为平面应力状态(如图所示),该点的主应力分别为 。
A .MPa 501=σ、MPa 02=σ、MPa 03=σ;
B .MPa 501=σ、MPa 502=σ、MPa 03=σ;
C .MPa 01=σ、MPa 502=σ、MPa 03=σ;
D .MPa 01=σ、MPa 02=σ、MPa 503=σ。
3、轴向拉伸细长杆件(如右图)__________。
A .1-1、2-2面上应力皆均匀分布;
B .1-1面上应力非均匀分布,2-2面上应力均匀分布;
C .1-1面上应力均匀分布,2-2面上应力非均匀分布;
D .1-1、2-2面上应力皆非均匀分布。
4、在梁的正应力公式z
I y
M ⋅=
σ 中,z I 为梁横截面对于 的惯性矩。
A 形心轴 B 对称轴 C 中性轴 D 主惯性轴。
5、如图所示的平板,两端受轴向拉力F 作用后变形。
若变形前在板面上划上两条平行线AB 和CD ,则变形后 。
A .AB//CD ,α角减小;
B .AB//CD ,α角不变;
C .AB//C
D ,α角增大; D .AB 不平行于CD 。
6、两细长压杆的长度、横截面积、约束状态及材料均相同,其中a 截面为圆形,b 为正方形,则两压杆的临界压力 。
A .b cr a cr F F >;
B .b cr a cr F F <;
C .b
cr a cr F F =; D .无可比性。
7、在如图所示的十字形截面上,剪力为s F ,欲求m m -线上的切应力,则公式中b
I S F z s ⋅=
)
(ωτ, 。
A .)(ωz S 为截面的阴影部分对'z 轴的静矩,δ4=b ;
B .)(ωz S 为截面的阴影部分对'z 轴的静矩,δ=b ;
C .)(ωz S 为截面的阴影部分对z 轴的静矩,δ4=b ;
D .)(ωz S 为截面的阴影部分对z 轴的静矩,δ=b 。
8、图中板和铆钉为同一材料,已知[][]τσ2=bs 。
为了充分提高材料的利用率,则铆钉的直径
应该是 。
A .δ2=d ;
B .δ4=d ;
C .π
δ
4=
d ; D .π
δ
8=
d 。
9.低碳钢的应力~应变曲线如图所示,其上( )点的纵坐标值为该钢的屈服极限σs 。
(A)e ; (B)f ; (C) h ; (D) g 。
10. 一受扭圆棒如上图所示,其m —m 截面上的扭矩等于( )。
;2M T A m m =-、 ;0=-m m T B 、 ;M T C m m =-、 ;M T D m m -=-、
11.实心圆轴,两端受扭转外力偶矩作用。
直径为D 时,设轴内的最大剪应力为τ,若轴的直径改为2D ,其他条件不变,则轴内的最大剪应力变为( )。
A .1/6τ B .1/4τ C .1/8τ D .1/2τ
12.若构件内危险点的应力状态为二向等拉应力状态,则除( )强度理论以外,利用其他三个强度理论得到的相当应力是相等的。
(A)第一; (B)第二; (C)第三; (D)第四。
13. 图示应力状态,用第三强度理论校核时,其相当应力为( )。
A 3r στ=
B 3r σ=
C 3r σ=
D 32r στ= 14.图示应力圆对应于应力状态( )。
15.实心圆轴,两端受扭转外力偶矩作用。
直径为D 时,设轴内的最大剪应力为τ,若轴的直
径改为1/2D ,其他条件不变,则轴内的最大剪应力变为( )。
A .2τ B .4τ C .6τ D .8τ
16.三种材料的应力—应变曲线分别如图所示。
其中强度最高、刚度最大、塑性最好的材料分
别是( )。
A a 、b 、c ;
B b 、c 、a ;
C b 、a 、c ;
D c 、b 、a 。
17.对于不同柔度的塑性材料压杆,其最大临界应力将不超过材料的( )。
A 比例极限σP B 弹性极限σe C 屈服极限σS D 强度极限σb 二、填空题
1.下图所示:四根压杆的材料与横截面均相同,最易失稳的是杆 。
2.杆件的基本变形有 、 、 及 变形四种。
3.四个常用的材料破坏理论是: 、最大线应变理论、 和畸变能密度理论。
4.如图所示,直径为d 的圆形对坐标轴z 的惯性矩 为 。
5.构件在外荷载作用下具有抵抗破坏的能力为材料的强度;具有一定的抵抗变形
的能力为材料的 ;保持其原有平衡状态的能力为材料的 。
6. 外径为D 、内外径之比为α的圆环形截面的抗弯截面系数为 。
7. 一般截面,最大切应力发生在 绝对值最大的截面的 处,最大正应力发生在 绝对值最大的截面的 上。
8.图示应力状态下,其最大切应力m ax τ= 。
9.梁受力如图所示,指定截面C 上的剪力SC F = ,弯矩C M = ;指定截面E 上的剪力SE F = ,弯矩E M = 。
10. 工程构件正常工作的条件是 、 、 。
11. 工程上将延伸率≥δ 的材料称为塑性材料。
12. 如图所示支承物为刚体,销钉为变形体,受F 力作用,
则销钉的剪切面面积为 ,挤压面面积 。
13. 工程构件在实际工作环境下所能承受的应力称为 ,工件中最大工作应力不能超
过此应力,超过此应力时称为 。
14. 一般截面,最大切应力发生在 绝对值最大的截面的 处,最大正应力发生在 绝对值最大的截面的 上。
15. 外径为D 、内外径之比为α的圆环形截面的抗弯截面系数为 。
三、如图示结构,杆1和杆2的强性模量均为E ,横截面面积均为A ,杆长均为l 。
梁BC 为刚
体,载荷KN F 20=,许用拉应力[]MPa t 160=σ,许用压应力[]MPa c 110=σ。
试确定
各杆的横截面面积A 。
四、铸铁梁受力及截面尺寸如图所示。
已知m KN M ⋅=40,许用拉应力[]MPa t 30=σ,许用
压应力[]MPa c 90=σ。
若要截面最为合理,试确定T 形截面的尺寸1b ,并校核此梁的强度。
五、T 型截面铸铁梁,截面尺寸如图所示。
MPa t 40][=σ,MPa c 70][=σ。
试校核梁的强度。
六、有一低碳钢制成的构件,其危险点处的应力状态如图。
(1) 求主应力及所在主平面的方位,并在微体中绘出主应力微体; (2) 求最大切应力值。
七、作出图示梁的剪力、弯矩图(须标出各节点的数值和单位)。
八、试绘制图示外伸梁的剪力图和弯矩图,m KN q /10=,m KN m ⋅=15,m a 1=。
九、如图所示传动轴的转速rpm n 250=,从主动轮2上输入功率KW 60,由从动轮1、3、4、5输出的功率分别为KW 12、KW 10、KW 20和KW 18。
已知材料的许用应力
M P a 50][=τ,剪切弹性模量GPa G 80=,已知m /1][ =θ。
试选定轴的直径。
十、空心钢圆轴的外径D=100mm ,内径d=50mm 。
已知间距为L=2.7m 的两横截面间的相对扭转角
8.1=φ材料的剪切弹性模量G=80GPa 。
试求轴内最大剪切应力。