分数的意义10约分(练习)
- 格式:doc
- 大小:39.00 KB
- 文档页数:2
第四章分数的意义和性质-约分【知识梳理】1.公因数和最大公因数的意义。
几个数公有的因数叫做这几个数的公因数。
其中最大的一个叫做这几个数的最大公因数。
重点提示:每个数的因数的个数是有限的,因此两个数或多个数的公因数的个数也是有限的。
2. 求两个数最大公因数的方法。
(1)列举法:先分别找出两个数的因数,从中找出公因数,再找出公因数中最大的一个。
(2)筛选法:先找出两个数中较小数的因数,从中圈出较大数的因数,再看哪一个因数最大。
(3)分解质因数法:先将这两个数分别分解质因数,再从分解的质因数中找出这两个数公有的质因数,公有的质因数相乘所得的积就是这两个数的最大公因数。
(4)短除法:先把两个数公有的质因数按从小到大的顺序依次作为除数,连续去除这两个数,直到得出的两个商只有公因数1为止,再把所有的除数相乘,所得的积就是这两个数的最大公因数。
方法提示:用列举法和筛选法求两个数的最大公因数,一般适合较小的数,而分解质因数法和短除法适合任意的数。
3.最大公因数的表示方法。
例.20和12的最大公因数是4,可记作:(20,12)=4。
即用小括号将两个数括起来,中间用逗号隔开,小括号后面是等号,将它们的最大公因数写在等号的后面。
4.求两个数最大公因数的特殊情况。
(1)当两个数成倍数关系时,较小数就是它们的最大公因数。
(2)当两个数的公因数只有1时,它们的最大公因数就是1。
5.互质数的意义和判断方法。
公因数只有1的两个数叫做互质数。
判断两个数是不是互质数,要看它们是不是只有公因数1。
易错提示:互质的两个数不一定都是质数。
6.互质数的特殊情况。
(1)1和任意非0的自然数都是互质数。
(2)2和任何奇数都是互质数。
(3)相邻的两个非0自然数是互质数。
(4)相邻的两个奇数是互质数。
(5)不相同的两个质数是互质数。
7.互质数和质数的区别。
质数是一类数,是只有1和它本身两个因数的数;互质数是对于两个数的关系而言的,公因数只有1的两个数是互质数。
五年级数学下册周末练习题10(分数的意义)姓名____________ 家长签名 ____________一、填空。
1、65米表示把( )平均分成( )份, 取这样的( )份。
也表示把( )平均分成( )份, 取这样的( )份。
1米的65是( )。
2、54的分数单位是( ), 89的分数单位是( ), 351的分数单位是( ),再增加( )个分数单位就是最小的合数。
3、把9米长的绳子平均分成6段,每段长( )米,每段占全长( ),5段占全长( )。
4、6个苹果平均分给3个小朋友,每人分得这些苹果的( ),也就是( )个. 5个苹果平均分给3个小朋友,每人分得这些苹果的( ),也就是( )个。
5、在分数5a 中(a 为非零自然数),当a( )时,它是真分数,最大是( );当a( )时,它是假分数,最小是( );当a ( )时,它能化成最小的带分数,即( )。
6、35= )(10 = 12)( = 13)( 352读作( ). 7、159的分子减去6后,要使分数的大小不变,分母要减去( )。
8、24和36的公因数有( ),最大公因数是( )。
9、把一个分数化成和( )相等,但分子和分母( )的分数,叫做约分。
10、把2416约分时,用分子和分母的最大公因数( )去除,得到最简分数( ),这是根据( )。
11、在下面的括号里填上适当的填上真分数或带分数。
124cm=( )m 19dm=( )m 76分钟=( )小时2070ml=( )L 3m24cm=( )m 7角 =( )元。
12、比较大小。
(填上“﹥”、“﹤”、“=”)73○75 53○73 4○312 183○91 543○585 34○132 二 、判断.对的打“√”,错的打“×”。
1、分数的分子和分母同时乘上或除以同一个数,分数的大小不变。
( )2、两个分数相等,它们的分数单位一定相等。
( )3、分数约分时只改变了分子和分母的大小,没改变分数值的大小。
分数的意义和基本性质经典练习j分数的意义1、我们可以把1个物体看作一个整体,也可以把许多物体看成一个整体。
将一个物体或是许多物体看成一个整体,通常我们把它叫做单位“1” .2、把单位“1”平均分成若干份,表示这样1份或者儿份的数,叫做分数。
其中,表示一份的数叫做它的分数单位。
如:41的分数单位是77注意:一定要平均分,分母表示平均分的份数,分子表示取的份数。
如果只取1份,也就是它的分数单位。
3、分数与除法的关系例如:把3米长的绳子半均分成4份,每份的长度是多少米?3 (米):这是求每份是多少,应该用总长*份数,求出每一份41的长度(也就是“3米的”)。
如果用分数的意义來讲,可以说成:把1米平均分成441133份,一份就是米,3个米就是米,也就是说“1米的”。
4444331因此我们可以把米说成是1米的,也可以说成是3米的。
4443观察34-4=,可以知道分数可以表示两数相除的结果,被除数相当于分数的分子,4用除法列式为:3E4二除数相当于分数的分母。
被除数弓除数二被除数(除数H0),如果用a表示被除数,b表除数示除数,分数与除法的关系可以表示为:a*b二a (bHO) b2,它表示以鸡的只数作为标520 5注意:如果说兔有2只,鸡有5只, 那兔的只数就是鸡的准,把鸡的只数看作单位“1”,兔的只数相当于鸡的5份中的2份。
列成式子是24-5=求甲数是乙数的几分之几,是把乙数看作单位“1”,用甲数三乙数得出的。
记住:是谁的几分之几,谁就是单位“1”,作除数或分母。
4、真分数和假分数①分子比分母小的分数叫做真分数:分子比分母大或者分子分母相等的分数叫做假分数:由整数和真分数组合成的叫做带分数。
②真分数都小于1,假分数可能等于1或者大于1,带分数都大于1;假分数都比真分数大。
二、分数的基本性质1、分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
我们可以利用分数的基本性质对分数进行约分和通分。
分数的意义专项练习题1、把单位“1”平均分成若干份,表示这样的…份或儿份的数叫做分数。
表示其中一份的数就是分数单位。
2、分数与除法的关系:分数是一种数,除法是一种运算。
除法中被除数相当于分数的分子,除数相当于分数的分母,商相当丁•分数值。
3真分数——分子比分母小假分数——分子比分母大或等于分母由分数和整数组成的分数叫带分数。
4、分数的基本性质:分数的分子和分母同时乘或除以相同的数,分数的大小不变。
5、最简分数:分数的分子和分母的公因数只有1,这样的分数叫做最简分数。
6、约分:把一个分数化成同它相等,但分子分母都比较小的分数,这个过程叫做约分。
通过约分可将一个分数化成最简分数。
7、通分:把异分母分数分别化成和原来分数相等的同分母分数的过程叫通分。
8、分数大小的比较:分母相同,分子大的这个分数就大;分子相同,分母小的这个分数就大;分母或分子不同的分数,一般先通分再比较。
9、分数与小数互化1)分数化成小数的方法:运用分数与除法的关系,用分子除以分母2)小数化成分数的方法:把小数改写成分母是10、100、1000, ??的分数,再约分成最简分数。
典型试题一、填空1.用分数表示下列各图中的阴影部分。
2.在括号里填上适当的分数。
400千克=吨75厘米=米15分=吋50平方分米=平方米30时=日3.把一根5米铁丝平均截成8段,每段占全长的,3 段占全长的,每段长米。
4.的分数单位是,它有个这样的分数单位,再加个这样的分数单位后为2.5.把3米长的铁丝平均截成7段,每段长米,每段长是3米的。
796.和9相比较,分数值大的是,分数单位大的是。
17.和1米的相等,11小吋的和2小吋的相等。
318•分数单位是的最简真分数有,分子是5的假分数有,其屮最大的是,最小的5是。
9.甲数=2X2X3X5,乙数=2X3X3,甲乙两数的最大公约数是,最小公倍数是。
10•甲=2X5XA,乙=2X7XA,甲、乙两个数的最小公倍数是210, A是。
第五单元 分数的意义㈠分数的再认识整体“1”的含义:一个物体或一些物体都可以看作一个整体,这个整体可以用自然数“1”来表示,通常叫做整体“1”。
分数的意义:把整体“1”平均分成若干份,其中的一份或几份,可以用分数表示。
分母是几,整体就被分成了几份,分子是几,就表示其中的几份。
分数对应的“整体”不同,分数所表示的部分的大小或具体数量也不一样,即分数具有相对性。
同一个分数对应的整体大,表示的具体数量就大;对应的整体小,表示的具体数量就小。
同一个分数表示的具体数量大,对应的整体就大;表示的具体数量小,对应的整体就小。
㈡(真分数与假分数)理解真分数、假分数、带分数的意义。
像 21 、32 、97,…这样的分数叫作真分数。
特点:分子都比分母小;分数值小于1。
像 415 、 23 、 56…这样的分数叫作假分数。
特点:分子比分母大,或者分子与分母相等;分数值大于或等于1。
像 281,365这样的分数叫作带分数。
特点:由整数和真分数两部分组成的;分数值大于1。
带分数的读法:241读作:二又四分之一。
★补充知识点:分子是分母倍数的假分数可以化成整数; 分子不是分母倍数的假分数可以化成带分数。
㈢分数与除法理解分数与除法的关系:被除数÷除数=分子÷分母 (除数不为0)。
分数的分母不能是0。
因为在除法中,0不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是0。
可以用分数来表示两数相除的商。
分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号,分数的值相当于商。
根据分数与除法的关系把假分数化成带分数的方法:用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。
把带分数化成假分数的方法:将整数与分母相乘的积加上原来的分子作分子,分母不变。
㈣分数基本性质分数的分子和分母都乘上或除以相同的数(0除外),分数的大小不变。
分数的意义和性质练习题分数的意义一、填空:1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用来表示。
2、一个物体、一些物体等都可以看作一个,把这个整体分成若干份,这样的一份或几份都可以用分数来表示。
、一个整体可以用自然数1来表示,通常把它叫做。
34、表示单位“1”分成份,表示其中4份的数。
5、一堆糖,平均分成2分,每份是这堆糖的;平均分成4份,3份是这堆糖的;平均分成7份,5份是这堆糖的。
6、把单位“1”平均分成若干份,表示其中一份的数叫做。
任何一个分数的分数单位的分子都是,分母不变。
练习十一1、用分数表死下面各图中涂色的部分。
2、每个茶杯是这套茶杯的。
每块月饼是这盒月饼的。
每袋粽子是这些粽子的。
3、按要求涂色。
1涂上红色,其余的图上3你喜欢的颜色。
1图上你喜2欢的颜色。
4、一包饼干有12块,3个小朋友平均分,每人分包,分到块。
5、读出下面的分数,说说他们的具体含义。
1头部的高度约占身高的。
811读作。
表示。
83长江干流约的水体受到不同程度的污染。
533读作。
表示。
53死海表层的水中含盐量达到1033读作。
表示1010。
6、读出下面的分数,并说出每一个分数的分数单位。
124读作读作读作。
715113读作。
读作。
16100124的分数单位是。
的分数单位是。
的分数6715单位是。
113的分数单位是。
的分数单位是。
161007、任选一个分数,在图中涂色表示出来。
111、、3411、12分数与除法块。
2、分数与除法的关系:被除数相当于、除数相当于。
被除数被除数÷除数= 。
用字母表示a÷b=除数3、小新家养鹅7只,养鸭10 。
4、在下面的里填上适当的数。
57÷13= = ÷ ÷7=845、动物园里有大象9头,金丝猴4只,金丝猴的数量是大象的。
练习十二1、这些葡萄干平均装在2个袋子里,每袋多少千克?平均装在3个袋子中呢?2、一个3m2的花坛,种4种花,每种花平均占地多少平方米?5种呢?3、 cm= dmdm= m0cm=m1、把3块月饼平均分给4人,每人分得9cm2=3dm133dm3= m3ml=L4、81个月球的质量和一个地球的重量一样重。
小学数学分数的意义和性质练习题全分数的意义和性质练题填空:1.把3米平均分成4份,每份占1米的长度,是0.75米。
2.5/8的分母加上40,要使分数的大小不变,分子应加上20.3.40平方分米=0.004平方米,75厘米=0.75米,350千克=0.35吨。
4.分数a/b(b不等于0),当a>b时,它是假分数;当a<b 时,它是真分数;当a是b的倍数时,它是这个分数的分数单位;当a和b互质时,它是最简分数。
5.修一条4千米长的水渠,5天修完,平均每天修0.8千米,相当于1千米的五分之四。
6.18/20的分数单位是十分之九,再加上1个这样的单位是1.7.“一块菜地的1/6种了黄瓜”中,把1看作单位“1”,平均分成6份,种黄瓜的是这样的1份。
8.“红气球是气球总数的5/6”中,把1看作单位“1”,平均分成6份,红气球是这样的5份。
9.把8公顷地平均分成15份,每份是这块地的0.5333公顷,每份是5333平方米。
10.在括号里填上适当的分数。
7厘米=0.07米,35立方分米=0.035立方米53秒=0.时,25公顷=2500平方千米29时=1740分,9分=0.15时119平方分米=0.0119平方米,3083毫升=0.升11.一堆煤平均分7次运完,每次运这堆煤的1/7,5次运这堆煤的2/7.12.8和9的最大公因数是1,最小公倍数是72.12和72的最大公因数是12,最小公倍数是72.13.一个数3、5、7分别除都余1,这个数最小是106.14.两个数的最小公倍数是180,最大公因数是30,其中一个数是90,另一个数是60.15.a和b是互质数,它们的最大公因数是1,最小公倍数是a*b。
16.一台碾米机30分碾米50千克,平均每分碾米1.67千克,照这样算,碾1千克米要0.6分。
应用题:1.三根铁丝长分别为15米、18米、27米,它们截成同样长的小段,不许有剩余,每段最长为3米。
2.可以裁成6张正方形纸,每张纸的边长为12厘米。
分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
(也就是把什么平均分什么就是单位“1”。
)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
如54的分数单位是51。
4、分数与除法A ÷B=B A (B ≠0,除数不能为0,分母也不能够为0) 例如: 4÷5=54 5、真分数和假分数、带分数1、真分数:分子比分母小的分数叫真分数。
真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。
假分数≧13、带分数:带分数由整数和真分数组成的分数。
带分数>1.4、真分数<1≤假分数 真分数<1<带分数6、假分数与整数、带分数的互化(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子, 如:510=10÷5=2 521=21÷5=451(2)整数化为假分数,用整数乘以分母得分子 如:把2化成分母是4的假分数;2=48)( 2×4=8 (8作分子) (3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如: 551=526)( 5×5+1=26 (4)1等于任何分子和分母相同的分数。
如: 1=22=33=44=55=…=100100=… 7、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。
反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
【数学】分数的意义和性质经典测试题一、分数的意义和性质1.的分子加上6,要使分数的大小不变,分母应加上________.【答案】10【解析】【解答】解:3+6=9,9÷3=3;5×3-5=10,分母应加上10。
故答案为:10【分析】先计算现在的分子,然后计算分子扩大的倍数,根据分数的基本性质把分母也扩大相同的倍数后计算分母应加上的数即可。
2.一个分数的分子加1,这个分数是1.如果把这个分数的分母加1,这个分数就是,原来的这个分数是________?【答案】【解析】【解答】解:分母加1,分母就比分子大2,2÷(8-7)=2,,分母减去1就是原来的分数。
故答案为:【分析】原来分母比分子多1,分母再加上1,现在分母就比分子多2,这样就能计算出约分时分子和分母同时除以2;把现在的分数的分子和分母同时乘2,然后把分母减去1就是原来的分数。
3.食堂有6吨煤,13天烧完,平均每天烧这堆煤的,每天烧________吨煤.【答案】【解析】【解答】解:6 13= (吨)答:每天烧吨煤4.在长240米的马路两旁每隔4米载着一棵树(首尾都栽),现在要改成每隔6米栽一棵。
共有________棵不需要移栽。
【答案】 42【解析】【解答】解:4和6的最小公倍数是12,公路一旁不需要移栽的棵树:240÷12+1=21(棵)公路两旁不需要移栽的棵树:21×2=42(棵)故答案为:42。
【分析】先算出4和6的最小公倍数是12,即可得出改成间隔4米或间隔6米会重复栽的棵树是间隔12米栽的树木,再按照植树问题中栽的棵树=总长度÷间隔数+1解答即可。
5.和这两个分数()。
A. 意义相同B. 分数单位相同C. 大小相同【答案】 C【解析】【解答】和这两个分数的意义和分数单位都不同,但是它们的大小相同。
故答案为:C。
【分析】根据题意可知,这两个分数的分母不同,所以分数的意义和分数单位都不同,将约分可得,据此解答。