组合数学第01讲比赛中的推理(六年级)
- 格式:doc
- 大小:300.50 KB
- 文档页数:25
北师大版数学六年级上册6.6《比赛场次》说课稿一. 教材分析北师大版数学六年级上册6.6《比赛场次》这一节的内容,主要让学生掌握用排列组合的方法解决实际问题。
通过本节课的学习,学生能够理解排列组合的概念,掌握排列组合的计算方法,并能够应用到实际问题中。
教材通过引入比赛场次的问题,让学生在解决实际问题的过程中,体会排列组合的方法,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于简单的一元一次方程和二元一次方程能够理解和掌握。
但是,对于排列组合的概念和计算方法,可能还比较陌生。
因此,在教学过程中,需要引导学生逐步理解排列组合的概念,并通过例题和练习题,让学生掌握排列组合的计算方法。
三. 说教学目标1.知识与技能目标:让学生理解排列组合的概念,掌握排列组合的计算方法,能够应用到实际问题中。
2.过程与方法目标:通过解决比赛场次的问题,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、合作交流的学习习惯。
四. 说教学重难点1.教学重点:排列组合的概念和计算方法。
2.教学难点:排列组合在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件和教学道具进行教学。
六. 说教学过程1.导入新课:通过引入比赛场次的问题,激发学生的兴趣,引导学生思考如何解决实际问题。
2.讲解排列组合的概念和计算方法:通过讲解和示例,让学生理解排列组合的概念,掌握排列组合的计算方法。
3.应用练习:让学生通过练习题,巩固排列组合的计算方法。
4.解决实际问题:让学生应用排列组合的方法,解决比赛场次的问题。
5.总结与拓展:对本节课的内容进行总结,引导学生思考如何将排列组合的方法应用到其他实际问题中。
七. 说板书设计板书设计如下:概念:排列组合是数学中的一种计数方法,用于解决实际问题。
知识图谱组合数学第01讲_比赛中的推理-一、比赛中的推理场次计算总分计算具体赛程积分与名次得失球相关一:比赛中的推理知识精讲比赛中的推理:这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至还有讨论进球数、失球数的.不同类型的问题我们应该用不同的方法来处理.在推理中,画示意图或表格用来分析比赛问题,能够让我们对比赛的情况更为直观明了.1.比赛分类:(1)淘汰赛:每场比赛踢掉一支球队,只取第一名.(2)单循环赛:n支球队,每两队比赛1场,总共比赛场.(3)双循环比赛:n支球队,每两球比赛2场总共比赛场.2.与比赛积分有关的推理问题.两种常见的计分法:(1)2分制计分法:“每场比赛胜者得2分,负者得0分,平局各得1分”.这种情况下,每场比赛无论结果如何,双方总得分都是2分,因此所有选手的总分就等于“比赛场数×2”.(2)3分制计分法:“每场比赛胜者得3分,负者得0分,平局各的1分”.这种情况下,总分就是“胜负场数×3+平局场数×2”,或者写成“比赛场数×2-平局场数”.三点剖析重难点:要注意搞清比赛规则,特别是积分规则,对阵方式,认识总场次、总得分与某个对或人总得分、总场次间的区别与联系..若是画对阵关系图,注意箭头表胜负,虚线表示平局.题模精讲题模一场次计算例1.1.1、某年级8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队每两队之间只进行一场比赛),胜一场得3分,负一场得0分,平一场得1分.某班级共得15分,并以无负局成绩获得冠军,那么该班共胜几场比赛?答案:4解析:该班赛了7场.假设全是平局,应得7分.每将1场平局替换为胜场,总分增分,故该班共胜场.例1.1.2、为弘扬亚运精神,四年级组织了篮球联赛,赛制为单循环制,即每两队之间都要比一场,计划安排15场比赛,应该邀请几个篮球队参加?答案:6解析:由于,故应该邀请6个篮球队参加.例1.1.3、甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了______盘.答案:2解析:由题意可画出比赛图,已赛过的两人之间用线段连接.由图看出小明赛了2盘.例1.1.4、A,B,C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去.最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?答案:23场解析:因为A队胜10场,所以A队休息和被击败的天数的和是.26是个偶数,结合我们在分析中得到的结论,可以知道A队休息的天数与被打败的天数是相同的,所以A队休息了13天.因为一共有36场比赛,所以A队打了23场比赛.例1.1.5、有16位选手参加象棋晋级赛,每两人都只赛一盘.每盘胜者积1分,败者积0分.如果和棋,每人各积0.5分.比赛全部结束后,积分不少于10分者晋级.那么本次比赛后最多有_______为选手晋级.答案:11解析:一共比赛了120场,每场比赛两个选手总分会得到1分,所以共有120分,理论上来讲,最多能有人,但是没有晋级的人同样也消耗了120分钟的若干分,所以不可能这120分全部是这12个人获得,故最多不可能是12人;于是接下来考虑11人的情况,这样是可以实现的,11人只需110分,而剩下来的5人正好消耗分,加起来120分.(具体的一种情况可以使前11人之间均为平局,然后他们都赢了最后5名,则前11人每人得分都为10分).例1.1.6、五支足球队伍比赛,每两个队伍之间比赛一场;胜者得3分,负者得0分,平局各得1分.比赛完毕后,发现各队得分均不超过9分,且恰有两支队伍同分.设五支队伍的得分从高到低依次为、、、、(有两个字母表示的数是相同的).若恰好是15的倍数,那么此次比赛中共有______场平局.3解析:体育比赛得分问题,首先算出比赛一共10场,总分在20到30分之间.五位数是15的倍数,利用整除性可知,可为0或者5,考虑到最小,如果,总分最小为分,不成立,所以,即第五名4场全负积0分.第五名负四场,则平局最多为6场,总分最少为24分.又考虑到分数和为3的倍数,总分可能情况为30,27,24.对三种情况分别讨论:(1)总分30分:即无平局情况,那么前四名队伍得分只可能为9,6,3分.不能在只有两个重复的情况下凑出30.所以总分30分情况不存在.(2)总分27分:经测试,存在,满足题目分数要求,且四个队7场胜3场负,恰好满足第五队的4场负,所以此为一解,比赛3场平局.(3)总分24分:在24分情况下,只有前四名只能各胜1场平2场,但不满足只有两队得分相同.所以总分24分情况不存在.综上,唯一存在总分27分情况下,比赛中共有3场平局.题模二总分计算例1.2.1、6名同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.那么6个人最后得分的总和是_______分.答案:30解析:无论赛果如何,每场共产生2分.6个人共赛了场,因此总分为分.例1.2.2、四支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?答案:4分如果比赛分出胜负,那么双方得分之和就是3分;如果平局,双方得分之和就是2分.4支队之间要进行场比赛,那么总分就要在12分和18分之间.各队的总得分就是6场比赛的总得分,因此四支球队的总分也要在12分和18分之间.由题意,四支球队的得分是4个连续的自然数.而四个连续自然数的和可能是:,,,,……在12分和18分之间的只有14和18,因此这四支球队的得分可能是2分、3分、4分、5分,或者3分、4分、5分、6分.这两种情况都可能出现吗?如果是3分、4分、5分、6分,总分是18分,那么每场比赛都分出了胜负,但这是不可能的,大家自己想想这是为什么?如果是2分、3分、4分、5分,那么第一名得5分,只能是1胜2平;第二名得4分,只能是1胜1平1负;第三名得3分,可能是1胜2负,也可能是3平;第四名得2分,只能是2平1负.其中只有第三名的比赛结果有两种情况.综合考虑第一名、第二名、第四名的胜负情况:他们一共有2胜5平2负.由于总胜场数与总负场数相同,所以第三名只能是3平.第三名没有平局,容易画出四支队之间的比赛胜负关系,如图所示.因此输给了第一名的只有第二名,他得了4分.例1.2.3、10名选手参加象棋比赛,每两名选手间都要比赛一次.已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等.问:前六名的分数各为多少?答案:17分,16分,13分,12分,11分,9分解析:因为前两名选手都没有输过,所以第一名选手的战绩最好是8胜1平,得17分.第二名最多得16分.可知第三名最多得分.后四名选手之间有6场比赛,每场比赛得2分,一共得12分.所以后四名选手总分最少为12分,从而第四名选手最少得12分.考虑到第三名最多得13分,可知第三名得13分,第四名得12分.于是第一名和第二名总分为33分,也就是第一名得17分,第二名得16分.10名选手之间一共有45场比赛,总分是90.第五名和第六名的总分是.考虑到每一个的得分都小于第四名的得分12,可知第五名得11分,第六名得9分.因此前六名的分数分别为17、16、13、12、11、9.例1.2.4、有A、B、C、D、E五个队分在同一个小组进行单循环足球赛(每两队只进行一场比赛),为争夺出线权,比赛规则规定:胜一场得3分,平一场各队各得一分,负一场得0分.小组赛结束后,小组中名次在前的两个队出线,请你解答下列问题:(1)小组赛结束后,若A队的积分为9分,设A队胜m场,平n场,则的值是多少?(2)小组赛结束后,设5个队的积分总和为x,那么x的范围是什么?(3)小组赛结束后,若A队的积分为10分,A队能出线吗?请你对A队能否出线作出分析.答案:(1)9(2)(3)能解析:(1)即为A的总分,故.(2)共赛场,每场最少产生2个积分,最多产生3个积分,故5个队的积分总和x最小为,最多为,且易知此范围内任何一种情况均可达到.因此,x的范围是.(3)假设A无法出线,则至少有两队的得分不低于10分,即此三队总分至少为分,进而另两队总分最多为分.但另两队之间会比一场,不可能都积0分,矛盾.因此假设不成立,即A一定能出线.题模三具体赛程例1.3.1、甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘.问:小强已经赛了几盘?分别与谁赛过?答案:2;甲,乙解析:用5个点代表5人,实线代表两人比过,虚线则为没比过.甲与每人都比过,这样丁只与甲比过,乙未与丁比,与另三人比过,进而丙只与甲、乙比过.最终得小强与甲、乙比过2盘.例1.3.2、今有6支球队进行单循环赛,每两队仅赛一场,胜者得3分,负者得0分,平局各得1分.比赛结束,各队得分由高到低恰好是等差数列(排名相邻两队得分差相等),其中第三名得8分.这次比赛中平局共有几局?答案:3解析:第三名5场得8分,故最多胜2场.假设其只胜1场,则其积分最多为分,矛盾,因此第三名只能为2胜2平1负.共比了场,故所有队总分最多为分.前五名总分为分,进而第六名最多为分,且与第三名差3个公差,只能为2分.这样,所有队总分为分,平局有局.例1.3.3、五个国家足球队A、B、C、D、E进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是A与D,C轮空;第二天A与B比赛,E轮空;第三天A与E 比赛;第四天A与C比赛;B与C的比赛在B与D的比赛之前进行.那么C与E 在哪一天比赛?答案:第五天解析:列表分析,用*表示轮空.题模四积分与名次例1.4.1、A、B、C、D四支球队进行足球比赛,每两队都要比赛一场.已知A、B、C三队的成绩分别是:A队2胜1负,B队2胜1平,C队1胜2负.那么D队的成绩是________胜.答案:解析:D显然有1平.共赛了场,A、B、C共胜5场,再加上1场平局,已经达到6场,因此D没有获胜.例1.4.2、东亚四强赛是由中国、韩国、日本、朝鲜四个国家球队之间进行的一次单循环制比赛,即每支球队都必须分别和其他球队比赛一场.请问:东亚四强赛总共需要比多少场比赛?如果每赢一场得3分,平一场得一分,输一场得0分,那么第一名最多可以的多少分?最少可以得多少分?答案:9;3解析:易知第一名最多为分.若所有比赛均为平局,显然第一名为分.假设某队只得2分、1分或0分,则其至少输了1场,故必有1队至少积3分,因此3分以下不可能为第一名.综上,第一名最多9分,最少3分.例1.4.3、A、B、C、D四支足球队进行一次单循环比赛,赢一场得2分,平局各得1分,输一场不得分.所有比赛结束后,按积分高低排名,A、B两队并列最后一名,C 队第二名,D队第一名.那么A队最多得多少分?答案:2解析:共赛了场,各队总积分为分.A队得分必低于平均分分,即最多2分.易知2分是可达的,如D胜A、B,其余比赛均为平局即可.因此,A队最多得2分.例1.4.4、一张有4人参加的国际象棋单循环比赛的积分表如下,每场比赛胜者得3分,负者减1分,平局则两人各得1分.(1)填出表内空格中的分值.(2)排出这次比赛的名次.答案:(1)见下表(2)余张赵陈解析:若a胜b,则b负于a;若a与b战平,则b与a也战平.由此易将表格补全,进而得到名次.例1.4.5、热火队和雷霆队为了争夺NBA总决赛的冠军,斗得难分难解.在今天晚上的比赛中:(1)两队都没有换过人;(2)除了三名队员外,其他队员得分都互不相同.这三名队员都得了22分,但是不在同一个队中;(3)全场最高个人得分是30分,只有三名队员得分不到20分;(4)热火队中,得分最多和得分最少的球员只相差3分;(5)雷霆队每人的得分正好组成一个等差数列.这场比赛__________队胜,他们的比分是___________________.答案:雷霆,综合条件,可以得到雷霆队得分组成的等差数列的公差只能是4分,队员分别得分为30、26、22、18、14,而热火队得分为22、22、21、20、19.所以雷霆队与热火队的比分是110:104.例1.4.6、世界杯足球小组赛,每组四个队进行单循环比赛(即每个队都与同组的其它三个队各赛一场).每场比赛胜队得3分,败队得0分,若打成平局,则两队各得1分,小组赛全赛完后,总积分高的两个队出线进入下一轮比赛.如果总积分相同,则还要依次按净胜球多少和进球数多少来排序.试问:(1)每组小组赛需要比赛几场?(2)一个队的积分情况有哪几种可能?(3)若某队只积3分,那么该队的输赢情况有哪几种可能(不考虑三场比赛的先后顺序)?(4)若某队只积3分,那么该队有可能出线吗?请简单叙述理由.(5)至少需要积多少分才能保证一定出线?请简单叙述理由.(6)至少需要积多少分才有可能出线?请简单叙述理由.答案:(1)6(2)0至7分及9分均有可能,共9种(3)1胜2负或3平,共2种(4)可能(5)7(6)2解析:(1)场.(2)可能为、、、、、、、、、,共9种.(3),故可能为1胜2负或3平.(4)可能,如6场均为平局,每队均为3分,则必有2只可以出线.(5)7分.9分显然小组第一出现.若为7分,其战胜的两支球队最多为6分,故7分可确保前两名.若1队3负,另3队均为2胜1负,则必有1只积6分的无法出线.(6)2分.若一支球队全胜,另三只均为2平1负,则必有2分的可以出线.而若积1分或0分,其至少输给过2只球队,那两只至少3分,排名一定在前,即此时必无法出线.题模五得失球相关例1.5.1、现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分.图1是一张记有比赛详细情况的表格.但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入图2中.答案:<解析:对于A,赛2场,2胜1平0负,这里至少有一个数字有误,如果只有一个数字有误,那有三种可能:(1)赛3场,2胜0负1平;(2)赛2场,1胜0负1平;(3)赛2场,2胜0负0平.对于(1)、(3)两种情况,后面的积分都是错误的,对于(2)这种情况,后面的进球是错误的,所以对A 来说,至少有两个数字是错误的.对于C,赛1场,0胜2平1负,这里至少有一个数字有误,如果只有一个数字有误,那有两种可能:(1)赛3场,0胜2平1负;(2)赛1场,0胜0平1负.无论哪种情况,后面的积分都是错误的,所以对C来说,也至少有两个数字是错误的.A和C一共至少有4个错误的数字,而总共只有4个数字错误,所以它们各错了两个,B的数字全部正确.三个球队打单循环,每支球队的比赛场数不多于2.对A来说,如果它的两个错误全部出现在前4个数字上,那么它进0球就是对的,所以它没有赢.这时它最多平2场得2分,这样积分出错,矛盾.因此前4个数字只有一个错误,那它的结果是一胜一平或者两胜.如果A的比赛结果是2胜,那进球数是错的,积分也是错的,一共有3个错误,所以A的比赛结果是一胜一平,另一个错误的数字是进球数.用类似的方法可以写出正确的表格,如图所示.我们还容易看出,A平C而胜了B,B胜了C而负于A,C平了A而负于B.再从C的进球数与失球数就可以判断出三场比赛比分分别是:Avs BAvs CBvs C例1.5.2、A、B、C三队比赛篮球,A队以83∶73战胜B队,B队以88∶79战胜C队,C 队以84∶76战胜A队,三队中得失分率最高的出线.一个队的得失分率为,如,A队得失分率为.三队中__________队出线.答案:A解析:这道题没必要算出三队得失分率,得失分率就是衡量一个球队总共是赢了还是输了.A:赢了10分,输了8分,一共赢了2分.B:赢了9分,输了10分,一共输了1分.C:赢了8分,输了9分,一共输了1分,所以A的得失分率最大.随堂练习随练1.1、6支足球队,每两队间至多比赛一场.如果每队恰好比赛了2场,那么符合条件的比赛安排共有_________种.答案:70解析:把六个球队看做六个点,这之间进行连线.则可能形成一个六边形或者两个三角形.如果形成一个六边形,则有种;如果形成两个三角形,则有种.所以共有种.随练1.2、六个人传球,每两人之间至多传一次,那么最多共进行____次传球.答案:13解析:本题是一道比赛场数计数问题,“每两个之间至多传一次”让六个人最多次地传球,则是5+4+3+2+1=15次.但得看是否可传递回去,在传递过程中同两人是否重复.(15条线,代表传球15次)根据一笔画问题:一笔画要求只有2个奇点(不需要回到出发点时)或0个奇点(需要回到出发点时),行不通.所以应减少奇点个数,共有6个奇点,应该去掉两条两条直线,即去掉了4个奇点,剩下2个奇点,可以传递成功,共15-2=13次传球.随练1.3、五支球队进行足球比赛,每两支队之间都要赛一场,那么每支队要赛几场?一共要进行多少场比赛?若这五支球队进行淘汰赛,为了决出冠军,一共需要进行多少场比赛?答案:4;10;4解析:每支队要赛场,共进行场.淘汰赛每场淘汰1支球队,故为了决出冠军,一共需要进行场淘汰赛.随练1.4、6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.请问:(1)各队总分之和最多是__________分,最少是__________分。
小学数学人教新版六年级上册实用资料逻辑推理内容概述体育比赛形式的逻辑推理问题,其中存在的呼应——“一队的胜、负、平分对应着另一队的负、平、胜”对解题有重要作用,有时宜将比赛情况用点以及连这些点的线来表示.需要从整体考虑,涉及数量比较、整数分解等具有一定综性的逻辑推理问题.典型问题1.共有4人进行跳远、百米、铅球、跳高4项比赛,规定每个单项中,第一名记5分,第二名记3分,第三名记2分,第四名记1分.已知在每一单项比赛中都没有并列名次,并且总分第一名共获17分,其中跳高得分低于其他项得分;总分第三名共获11分,其中跳高得分高于其他项得分.问总分第二名在铅球项目中的得分是多少?【分析与解】每个单项的4人共得分5+3+2+1=11分,所以4个单项的总分为11×4=44分,而第一,三名得分为17、11分,所以第二、四名得分之和为44(1711)16-+=分其中第四名得分最少为4分,此时第二名得分最高,为16-4=12分;又因为第三名为11分,那么第二名最低为12分;那么第二名只能为12分,此时第四名4分.于是,第一、二、三、四名的得分依次为17、12、1l、4分,而17只能是5+5+5+2,4只能是1+1+1+1.不难得到下表:由表知总分第二名在铅球项目中的得分是3分.2.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?【分析与解】四个队共赛了24436 2C⨯==场,6场总分m在12(=6×2)与18(=6×3)之间.由于m是4个连续自然数的和,所以m=2+3+4=5=14或m=3+4+5=18.如果m=18,那么每场都产生3分,没有平局,但5=3+1+1表明两场踢平,矛盾.所以m=14,14=3×2+2×4表明6场中只有2场分出胜负.此时第一、二、三、四名得分依次为5、4、3、2.则第三名与所有人打平,那么第二名没有了平局,只能是第一名与第四名打平,这样第一名还有1局胜,第二名还有1局负,所以第一名胜第二名.即输给第一名的队得4分.如下图所示,在两队之间连一条线表示两队踢平,画一条,A B →,表示A 胜,B 各队用它们的得分来表示.评注:常见的体育比赛模式N 个队进行淘汰赛,至少要打1N -场比赛:每场比赛淘汰一名选手;N 个队进行循环赛,一共要打2(1)2N N N C -=场比赛:每个队要打1N -场比赛. 循环赛中常见的积分方式:①两分制:胜一场得2分,平一场得1分,负一场得0分;核心关系:总积分=2×比赛场次;②三分制:胜一场得3分,平一场得1分,负一场得O 分;核心关系:总计分=3×比赛场次-1×赛平场次.3. 6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.现在比赛已进行了4轮,即每队都已与4个队比赛过,各队已赛4场的得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球踢成平局,那么总得分居第五位的队最多可得多少分?最少可得多少分?【分析与解】 每轮赛3场,最多产生339⨯=分,四轮最多4936⨯=分.现在有4场踢成平局,每平一场少1分,所以总分为364132-⨯=.前三名得分的和至少为78924.++=所以后三名的得分的和至多为32248.-=第5名如果得4分,则后三名的得分的和至少为459,+=这不可能,所以第5名最多得3分,图(a )为取3分时的一种可能的赛况图.显然第5名最少得1分,图(b)为取1分时的一种可能的赛况图.评注:以下由第5名得分情况给出详细赛况:4.某商品的编号是一个三位数.现有5个三位数:874,765,123,364,925,其中每一个数与商品编号,恰好在同一位上有一个相同的数字.那么这个三位数是多少?【分析与解】方法一:每一个与商品编号,恰好在同一位上有一个相同的数字.五个数,就要有五次相同,列出这五个数:874,765, 123,364,925百位上五个数各不相同,十位上有两个6和两个2,个位上有两个4和两个5.因此,商品编号的个位数字一定和给定5个数中的两个个位数字相同,商品编号的十位数字一定和给定5个数中的两个十位数字相同,商品编号的百位数字只能跟5个数中的一个百位数字相同.若商品编号的个位数字是5,我们就把第二个和第五个数拿走,剩下的三个数的十位数字各不相同,无法满足题目的要求(事实上,十位数字只能取7,而十位上只有一个7).若商品编号的个位数字是4,拿走第一和第四个数后,十位上仍有两个2,可取十位数字为2,再拿走第三和第五个数,剩第二个数,它的百位是7,所以商品的编号为724.如果一个数与商品编号在某一位有相同数字,那么这个数与商品编号不会再有另外相同数字.因此解的过程中用“拿走”这一说法是恰当的.方法二:商品编号的个位数字只可能是3、4、5.如果是3,那么874,765,364,925这4个数中至多有三个数与商品编号有相同数字(百位有一个相同,十位有两个相同),还有一个数与商品编号无相同数字,矛盾.如果是5,那么765,925的个位数字是5,从而商品号码的十位数字不是6、2,因此必须是7.这时123、364中至少有一个与商品号码无相同数字,矛盾.所以,该商品号码的个位数字只能是4,而且这个号码应为724.即这个三位数为724.5.某楼住着4个女孩和2个男孩,他们的年龄各不相同,最大的10岁,最小的4岁,最大的女孩比最小的男孩大4岁,最大的男孩比最小的女孩大4岁.求最大的男孩的岁数.【分析与解】本题中最大的孩子,可能是男孩,可能是女孩.-=岁,则4当最大的孩子为女孩时,即最大的女孩为10岁,那么最小的男孩为1046岁定是最小的女孩,那么最大的男孩是4+4:8岁,满足题意;当最大的孩子为男孩时,即最大的男孩为10岁,那么最小的女孩为10—4=6岁.则4岁一定时最小的男孩,那么最大的女孩为4+4=8岁,也就是说4个年龄不同的女孩的年龄在6—8之间,显然得不到满足.于是,最大的男孩为8岁..6.某次考试满分是100分,A,B,C,D,E这5个人参加了这次考试.A说:“我得了94分.”B说:“我在5个人中得分最高.”C说:“我的得分是A和D的平均分,且为整数.”D说:“我的得分恰好是5个人的平均分.”E说:“我比C多得了2分,并且在5个人中居第二.”问这5个人各得了多少分?【分析与解】 B、E分别为第一、二名,C介于A、D之间,则当A为第三时,C为第四,D为第五,得5人平均分的人为最后一名,显然不满足.于是D、C、A只能依次为第三、四、五名,有B、E、D、C、A依次为第一、二、三、四、五名,A为94分,C为D、A得平均分,且为整数,所以D的得分为偶数,只可能为98或96(如果为100,则B、E无法取值),D、C、A得分依次为98、96、94或96、95、94,有E 比C高2分,则E、D、C、A得分依次为98、98、96、94或97、96、95、94.对应5个人的平均分为98或96,而B的得分对应为104或98,显然B得不到104分.所以B、E、D、C、A的得分只能依次是98、97、96、95、94.7.在一次射击练习中,甲、乙、丙3位战士各打了4发子弹,全部中靶.其命中情况如下:①每人4发子弹所命中的环数各不相同;②每人4发子弹所命中的总环数均为17环;③乙有2发命中的环数分别与甲其中的2发一样,乙另2发命中的环数与丙其中的2发一样:④甲与丙只有1发环数相同;⑤每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?【分析与解】条件较多,一次直接求出满足所有条件的情况有些困难,争把条件分类,再逐个满足之.第一步:使用枚举法找出符合每发最多不超过7环、四发子弹命中的环型不相同,和为17环的所有情况;第二步:在这些情况中去掉不符合条件③、④的,剩下的就是符合全部条利的情况,即为答案.满足条件①、②、⑤的只有如下四种情况:甲乙.763117()17 .754117()AB+++=⎫⎬+++=⎭杯都有和;杯丙.753217()45 .654217()CD+++=⎫⎬+++=⎭杯都有和杯从上述四个式子中看出式A与式B有数字1、7相同;式B与式D有数字4和5相同.式B 既与式A有两个数字相同,又与式D有两个数字相同,式B就是乙.式A与式D对应为甲和丙.式A与式D相同的数字是6,所以甲和丙相同的环数是6.。
小学奥数创新体系6年级(上册授课课本)最 新 讲 义小学奥数第一讲比赛中的推理这一讲我们学习的主要内容是与比赛有关的逻辑推理问题.这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至还有讨论进球数、失球数的.不同类型的问题我们应该用不同的方法来处理.在逻辑推理中,特别有用的方法是画示意图或表格,这种方法相信大家并不陌生,用它来分析比赛问题,能够让我们对比赛的情况更为直观明了.例题1编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号一样,那么编号为6的同学赛了几盘?「分析」为了让问题更加直观,我们可以画出一个示意图,用6个点来表示这6个同学.如果两个同学之间比赛过,则把对应的两个点用实线连起来,如果没比赛过,则用虚线连起来.练习1A、B、C、D、E五所小学,每所小学派出1支足球队,共5支足球队进行友谊比赛.不同学校间只比赛1场,比赛进行了若干天后,A校的队长发现另外4支球队赛过的场数依次为4、3、2、1.问:这时候A校的足球队已赛过的场数?例题2A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C.那么第五天与A队比赛的是那个队?A B C D E F1 D B2 E C3 F D4 C B5「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示.如图,第二列从上到下依次表示A在5天中分别遇到的对手,第三列表示B在5天中遇到的对手,依此类推.观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什么特点?练习2五个国家足球队A、B、C、D、E进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是A与D,C轮空;第二天A与B比赛,E轮空;第三天A与E比赛;第四天A与C比赛;B与C的比赛在B与D的比赛之前进行.那么C与E在哪一天比赛?例题3甲、乙、丙、丁四个同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得了多少分?「分析」(1)每两人之间都比赛一场,总比赛场数就是从四个人中挑出两人的方法数;(2)比赛的胜负情况有很多种可能?那么总分也有很多种可能吗?大家考虑一下每场比赛,比赛双方的得分之和就知道了;(3)乙、丙最后的分数一样,由于总分是固定的,这个相同的分数既不能太大,也不能太小,那么会是多少呢?练习3有A、B、C、D四支足球队进行单循环比赛,每两队都比赛一场.比赛规定:胜一场得2分,平局各得1分,负一场得0分.全部比赛结束后,A、B两队的总分并列第一名,C队第二名,D队第三名,C队最多得多少分?。
北师大版数学六年级上册6.6《比赛场次》说课稿 (3)一. 教材分析北师大版数学六年级上册6.6《比赛场次》这一节内容,主要让学生通过实际的比赛场次问题,进一步理解和掌握排列组合的知识,提高解决实际问题的能力。
教材通过具体的实例,引导学生发现和总结排列组合的规律,从而解决复杂的比赛场次问题。
二. 学情分析六年级的学生已经掌握了基本的排列组合知识,对于简单的排列组合问题能够独立解决。
但是,对于稍微复杂一些的比赛场次问题,还需要进一步的引导和训练。
因此,在教学过程中,我要充分考虑学生的实际情况,通过合理的教学设计,帮助学生理解和掌握比赛场次问题的解决方法。
三. 说教学目标1.知识与技能目标:学生能够理解和掌握排列组合在解决比赛场次问题中的应用。
2.过程与方法目标:学生能够通过实际问题,培养观察、分析、归纳的能力。
3.情感态度与价值观目标:学生能够体验到数学与生活的紧密联系,增强学习数学的兴趣。
四. 说教学重难点1.教学重点:学生能够理解和掌握排列组合在解决比赛场次问题中的应用。
2.教学难点:学生能够对于复杂一些的比赛场次问题,独立思考和解决。
五.说教学方法与手段在教学过程中,我将采用引导发现法、讨论法、练习法等教学方法,并结合多媒体教学手段,引导学生通过观察、思考、讨论,自主探索排列组合在解决比赛场次问题中的应用。
六. 说教学过程1.导入新课:通过一个学校运动会比赛场次的实际问题,引导学生思考如何安排比赛场次。
2.探究新知:学生独立思考,尝试解决实际问题,教师引导学生发现和总结排列组合的规律。
3.合作交流:学生分组讨论,分享解决问题的方法,教师引导和总结。
4.练习巩固:学生独立解决一些类似的比赛场次问题,教师给予指导和反馈。
5.总结拓展:学生总结本节课的学习内容,教师给予评价和鼓励。
七. 说板书设计板书设计要简洁明了,能够突出本节课的主要内容和知识点。
我将设计如下板书:比赛场次问题排列组合的应用八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况和练习册的完成情况来进行。
第一讲比赛中的推理这一讲我们学习的主要内容是与比赛有关的逻辑推理问题.这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至还有讨论进球数、失球数的.不同类型的问题我们应该用不同的方法来处理.在逻辑推理中,特别有用的方法是画示意图或表格,这种方法相信大家并不陌生,用它来分析比赛问题,能够让我们对比赛的情况更为直观明了.例题1编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号一样,那么编号为6的同学赛了几盘?「分析」为了让问题更加直观,我们可以画出一个示意图,用6个点来表示这6个同学.如果两个同学之间比赛过,则把对应的两个点用实线连起来,如果没比赛过,则用虚线连起来.练习1A、B、C、D、E五所小学,每所小学派出1支足球队,共5支足球队进行友谊比赛.不同学校间只比赛1场,比赛进行了若干天后,A校的队长发现另外4支球队赛过的场数依次为4、3、2、1.问:这时候A校的足球队已赛过的场数?例题2A 、B、C 、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C.那么第五天与A队比赛的是那个队?A B C D E F1D B2E C3F D4C B5「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示.如图,第二列从上到下依次表示A在5天中分别遇到的对手,第三列表示B在5天中遇到的对手,依此类推.观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什么特点?练习2五个国家足球队A、B、C、D、E进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是A与D,C轮空;第二天A与B比赛,E轮空;第三天A与E比赛;第四天A与C比赛;B与C的比赛在B与D的比赛之前进行.那么C与E在哪一天比赛?例题3甲、乙、丙、丁四个同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得了多少分?「分析」(1)每两人之间都比赛一场,总比赛场数就是从四个人中挑出两人的方法数;(2)比赛的胜负情况有很多种可能?那么总分也有很多种可能吗?大家考虑一下每场比赛,比赛双方的得分之和就知道了;(3)乙、丙最后的分数一样,由于总分是固定的,这个相同的分数既不能太大,也不能太小,那么会是多少呢?练习3有A、B、C、D四支足球队进行单循环比赛,每两队都比赛一场.比赛规定:胜一场得2分,平局各得1分,负一场得0分.全部比赛结束后,A、B两队的总分并列第一名,C队第二名,D队第三名,C队最多得多少分?例题44支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?「分析」4支球队之间一共比赛了多少场?所有比赛的总分最多是多少,最少是多少?你能由此推断出各队的得分吗?练习4甲、乙、丙、丁4个队举行足球单循环赛.规定:每场比赛胜者得3分,负者得0分,平局各得1分.已知:(1)比赛结束后4个队的得分都是奇数;(2)甲队总分超过其他各队,名列第一;(3)乙队恰有两场平局,并且其中一场是与丙队平局.那么丁队得了多少分?例题5A、B、C、D四个足球队进行循环比赛,赛了若干场后,A、B、C三队的比赛情况如下:场数胜平负进球失球A321020B211043C200236D问:D赛了几场?D所参与的各场比赛的比分分别是什么?「分析」对于整个表格来说总进球数等于总失球数.总胜场应当等于总负场,平局数为偶数场.另外表格中的A很特别,两胜一平却只进两个球,这说明什么呢?例题6A、B、C、D、E五位同学分别从不同的途径打听到五年级那位获得数学竞赛第一名的同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.实际上该同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?「分析」每个同学打听到的消息都只有一项正确,可谓相当的少!个判断,一共才5个正确的,其中关于姓氏、性别、年龄、地区的判断各有几项是正确的呢?课堂内外足球世界杯世界杯(World Cup,FIFA World Cup),世界足球锦标赛是世界上最高荣誉、最高规格、最高水平的足球比赛,与奥运会并称为全球体育两大顶级赛事,是影响力、转播覆盖率很高的全球体育盛事.世界杯是全球各个国家最梦寐以求的神圣荣耀,哪一支国家足球队能得到它,就是名正言顺的世界第一.整个世界都会为之疯狂沸腾,世界杯上发挥出色的球员都会被该国家奉为民族英雄永载史册,所以它亦代表了各个足球运动员的终极梦想.世界杯每四年举办一次,任何国际足联会员国(地区)都可以派出代表队报名参加这项赛事.世界杯的奖杯为大力神杯,它采用意大利人加扎尼亚的设计方案——两个大力士双手举起地球的设计方案.这个造形象征着世界第一运动的规模.该杯高36.8厘米,重6.175公斤,其中4.97公斤的主体由纯金铸造.底座由两层孔雀石构成,珍贵无比.1974年第十届世界杯赛,德国队作为冠军第一次领取了该杯.国际足联规定新杯为流动奖品,不论哪个队获得多少冠军,也不能永久占有此杯.在大力神杯的底座下面有能容纳镌刻17个冠军队名字的铭牌——可以持续使用到2038年.世界杯32支队伍,在小组赛阶段进行的是单循环比赛,16强阶段进行的是淘汰赛,积分规则是3分制.大力神杯作业:1.A、B、C、D四支球队进行足球比赛,每两队都要比赛一场.已知A、B、C三队的成绩分别是:A队二胜一负,B队二胜一平,C队一胜二负.那么D队的成绩是什么?2.6名同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)6个人最后得分的总和是多少?(3)得分最高的三名同学的分数之和最多是多少?3.六个人参加乒乓球比赛,每两人之间都要比赛一场,胜者得2分,负者得0分,没有平局.比赛结束时发现,有两人并列第二名,两人并列第五名.那么第一名和第四名各得了多少分?4.足球甲A联赛共有12个足球俱乐部参加,实行主客场双循环赛制,即任何两队分别在主场和客场各比赛一场,胜一场得3分,平一场各得1分,负一场得0分,在联赛结束后按积分的高低排出名次.那么,在积分榜上第一名与第二名的积分差距最多可达多少分?5.A、B、C、D四个足球队进行循环比赛,赛了若干场后,A、B、C三队的比赛情况如下:场数胜平负进球失球A330030B320141C200204D问:D赛了几场?D所参与的各场比赛的比分分别是什么?第一讲 比赛中的推理 【答案详解版】例1. 答案:3详解:5号已经赛过5盘,说明他和其他5个人都已经赛过了.而1号只赛了一盘,所以1号这一盘是同5号赛的,他同其他四个人都没有赛过,如图1所示.再看4号,他赛过4盘,且同1号没有赛过,所以4号赛过的同学是除1号以外的4个人.而2号只赛过两盘,所以2号只同5号、4号赛过,如图2所示.3号赛过3盘,而且他同1号、2号没有赛过,那么同3号赛过的就是4号、5号和6号,如图3所示.于是我们知道同6号赛过的有3号、4号和5号.他赛了3盘.例2.答案:B 详解:如图4,列出表格后发现,每行、每列各有6个字母,而且同一行或列的6个字母互不相同,只需用这一原则把表格补充完整即可.首先可以确定(2,D )处应填A .这是因为第2行已经有E 和C ,第4列已经有D 、B 和F ,所以这一个格不能填这些字母,只能填A .由于第二天A 与D 比赛,那么对应地(2,A )处也应填D .第二天余下的一场就是B 对F ,因而(2,B )处应填F ,(2,F )处应填B .我们用类似的方法推理各行、列,最终把整个表格填出来,得到图5.于是,第五天与A 比赛的球队是B .例3.答案:6;12;3 详解:(1)6;(2)12;(3)3.(1)详解:从四个人中选出两人,有246C 种方法.每两人之间比赛一场,那么一共就有6场比6号1号2号3号 5号4号图16号 1号2号3号 5号4号图26号1号2号3号5号4号图3A B C D E F 1 D B 2 D F E A C B 3 F D 4 C B 5图4A B C D E F 1 E D F B A C 2 D F E A C B 3 C E A F B D 4 F C B E D A 5BAD CFE图5赛;(2)详解:不论胜负还是平局,每场比赛两人得分之和都是2分.一共6场比赛,所以四个人最后得分的总和就是2612⨯=分;(3)详解:四个人得分之和是12分,甲得分最高,丁得分最低,而乙、丙得分相同.如果乙、丙得分是4分,则甲得分超过4分,这三人的得分之和已经超过12分,与题意矛盾.因此乙、丙得分最多是3分.如果乙、丙得分是2分,则丁最多得了1分,而甲至少得了122217---=分.但是连胜3场也只能得6分,不可能达到7分,因此乙、丙得分至少是3分.所以乙、丙得分就是3分.例4.答案:4详解:如果比赛分出胜负,那么双方得分之和就是3分;如果平局,双方得分之和就是2分.4支球队之间要进行246C =场比赛,所以总分就要在12分和18分之间. 由题意,四支球队的得分是4个连续的自然数.而四个连续自然数的和可能是:01236+++=,123410+++=,234514+++=,345618+++=,…… 在12分和18分之间的只有14和18.如果是3分、4分、5分、6分,总分是18分,那么每场比赛都分出了胜负,但这是不可能的(大家自己想想这是为什么).所以四个连续的分数为2分、3分、4分、5分.于是第一名得5分,只能是1胜2平;第二名得4分,只能是1胜1平1负;第三名得3分,可能是1胜2负,也可能是3平;第四名得2分,只能是2平1负.其中只有第三名的比赛结果有两种情况.综合考虑第一名、第二名、第四名的胜负情况:他们一共有2胜5平2负.由于总胜场数与总负场数相同,所以第三名只能是3平.容易画出四支队之间的比赛胜负关系,如图6所示.因此输给了第一名的只有第二名,他得了4分.例5.答案:3,A :D =1:0,B :D =4:3,C :D=3:5详解:首先A 两场胜场均为1比0胜出,平局为0比0,而且一定是A 以1比0胜C ,同样以1比0胜D ,0比0平B ,而B 胜的那场胜场以4:3胜出,C 的负场以3比5败北,所以不能是B 胜C ,那么一定是B 胜D ,D 胜C ,所以,D 参加了3场比赛.分别是A :D =1:0,B :D =4:3,C :D=3:5.例6.答案:海淀区,12岁详解:5420⨯=个判断,一共才5个正确的,可以推断出第一名同学的姓名、性别、年龄、城区,分别有1项、2项、1项、1项是正确的.先来看性别,有2项正确,那么第一名是女同学;再来看年龄,2个人说是13岁,2个人说是11岁,只有1个人说是12岁,由于只有1项消息正确,则第一名是12岁;再看城区,3人说东城区,1人说海淀区,1人说西城区,那么第一名在海淀区或第一名1胜2平 第二名 1胜1平1负第三名3平 第四名 2平1负 图6者西城区;类似地,可以分析出第一名同学姓李,或姓陈,或姓黄.综合考虑第一名同学的姓名与城区,就很容易判断出唯一的答案:姓黄,是女同学,12岁,海淀区.练习答案:练习1答案:赛2场简答:连线,从胜得最多的和胜得最少的队伍入手分析.练习2答案:第五天简答:列表分析,用*表示轮空,可得下图.练习3答案:3简答:四人总得分是12分,其中C 的分数肯定小于1234÷=分,所以得分不多于3分.四人分别得4分、4分、3分、1分是容易构造出来的,所以C 队得分最多就是3分.练习4答案:3简答:先推断出各队得分分别为7分、5分、3分、1分,然后分析胜负情况即可.A B C D E 1D E * A B 2B A DC * 3E C B * A 4C * A ED 5 * D EB C 图1作业:6.答案:一平二负.简答:B队有一平,只可能平D,所以对A、C是二胜.于是A的两胜是赢了C和D.故C的一胜是胜D,于是D的成绩是一平二负.7.答案:(1)15;(2)30;(3)24.简答:(1);(2);(3).8.答案:10;4.简答:并列第五名的两人至少要各赢1场,所以第四名至少要赢2场,并列第二名至少要各赢3场,第一名至少要赢4场.,而一共要进行15场比赛,所以只能是第一名赢5场得10分,第四名赢2场得4分.9.答案:46.简答:第一名要积分多,最好是要22场全胜,得66分.剩下的11支球队还要比赛(场),每场比赛两队合起来至少得2分,于是剩下11队总共至少得220分.因此得分最多的队伍至少有分,当这11队全平时,第二名只能得20分,因此分差最大为46分.10.答案:2;A与D是1:0、B与D是1:0.简答:由A全胜,且进球数为3,可知A与其他三队的比分都是1:0.B赛了三场,且两胜一负,所以B胜C,而C只比了两场,进球数为0,所以B与C的比分是3:0;而B与D只能是1:0.。
组合数学论文竞赛数学中的组合数学问题20075251徐海波竞赛数学中的组合数学问题组合数学是上个世纪五十年代后逐步建立和完善起来的一门数学分支,组合数学也称为组合学、组合论,组合分析。
教科书上对组合分析的定义:按某种要求把一些元素构成有限集合的研究叫做组合分析。
这种研究比传统的数学讨论的对象更广泛,在实际生活和实践活动中应用性更大。
这种研究一般讨论以下问题:在一定的约束条件下,对象——构成的存在性(有与没有、能与不能)问题;构成的分类与计数;构成的方法(构造方法)及最优化方法。
人们常把竞赛中某些问题称为杂题,又称为组合数学问题。
为什么?中学数学竞赛中的一些问题,很难把它们归类为代数问题或几何问题,但它们涉及到的解题目标和解题方法可以归入组合问题和组合分析;当然一些组合数学的习题也直接用作竞赛题。
初等数学竞赛中的组合问题与组合分析常用的方法有抽屉原理、递推(归)原理、容斥原理、染色方法等,这些原理方法都很一般,重要的是经验和技巧——应用的能力。
本文重点研究竞赛数学中的组合数学计数问题。
计数问题组合数学中的计数问题,数学竞赛题中的熟面孔,看似司空见惯,不足为奇.很多同学认为只要凭借课内知识就可左右逢源,迎刃而解.其实具体解题时,时常会使你挖空心思,也无所适从。
对于这类问题往往首先要通过构造法描绘出对象的简单数学模型,继而借助在计数问题中常用的一些数学原理方可得出所求对象的总数或其范围。
1、计数中求最大值:第一步:分类讨论(1)情况一,推出目标数f ≤m1;(2)情况二,推出目标数f ≤m2;…(s)情况s,推出目标数f ≤m s;第二步:m0=max{m1,m2,…,m s},则f ≤m0;第三步:构造模型使计数恰好等于常数m0,则常数m0即为最大值。
另一种叙述:第1步:由目标数f≤m推出可以符合条件;第2步:由f =m+1推出是不能符合条件;所以f max = m 。
2、计数中求最小值:第一步:分类讨论(1)情况一,推出目标数f ≥m1;(2)情况二,推出目标数f ≥m2;…(s)情况s,推出目标数 f ≥m s;第二步:m0=min{m1,m2,…,m s},则f ≥m0;第三步:构造模型使计数恰好等于常数m0,则常数m0即为最小值。
第一讲比赛中的推理本讲中咱们学习的主要内容是与比赛有关的逻辑推理问题,这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至有讨论进球数、失球数的。
不同类型的问题我们都可能用图表法来处理。
例题1:编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘,现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号一样,那么编号为6的同学赛了几盘?[分析] 为了让问题更加直观,我们可以用6个点来分别表示这6个同学,比赛过的两个同学之间就把对应的点用线连起来,标出各自比赛的盘数,使抽象的问题变得直观。
练习1A、B、C、D、E五所小学,每所小学派出1支足球队,共5支足球队进行友谊比赛,不同学校间只比赛1场,比赛进行若干天后,A校的队长发现另外4支球队赛过的场数依次为4、3、2、1。
这时候A校足球队已赛过多少场?例题2 A、B、C、D、E、F六年国家的足球队进行单循环比赛(每队都与其他球队赛一场),每天同时在3个场地各进行一场比赛。
已知第一天B对D,第二天C对E,第三天D对F,第四天B对C。
那么第五天与A队比赛的是哪个队?[分析] 题目的条件比较多,如何才能化繁为简呢?这种问题我们通常可以运用列表法来分析。
如图,第二列从上到下依次表示A在5天分别遇到的对手,第三列表示B在5天中遇到的对手,依此类推,观察表格,这个表格中的每行有几个字母?每列有几个字母?每行、每列的字母有什么特点?练习2 五个国家足球队A、B、C、D、E进行单循环比赛,每天进行两场比赛,一队轮空。
已知第一天比赛的是A与D,C轮空;第二天A与B比赛,E轮空;第三天A与E比赛;第四天A与C比赛;B与以的比赛在B与D的比赛之间进行,那么C与E在哪一天比赛?例题3 甲、乙、丙、丁四个同学进行象棋比赛,每两人都比赛一场,比赛规定:胜者得2分,平局各得1分,输者得0分。
请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、两并列第二,丁最后一名,那么乙得了多少分?[分析](1)每两人之间都比赛一场,总比赛场数就是从四人中挑出两人的方法数(四选二);(2)比赛的胜负情况有多少种可能?那么总分也有多少种可能呢?只要稍加考虑每场比赛双方得分之和就清楚了;(3)乙、丙最后的分数一样,由于总分是固定的,这个相同的分数既不能太大,也不能太小,那么会是多少呢?练习3 有A、B、C、D四支足球队进行单循环比赛,每两队比赛一场,比赛规定:胜一场得2分,平局各得1分,负一场得0分。
组合数学第01讲_比赛中的推理知识图谱组合数学第01讲_比赛中的推理-一、比赛中的推理场次计算总分计算具体赛程积分与名次得失球相关一:比赛中的推理知识精讲比赛中的推理:这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至还有讨论进球数、失球数的.不同类型的问题我们应该用不同的方法来处理.在推理中,画示意图或表格用来分析比赛问题,能够让我们对比赛的情况更为直观明了.1.比赛分类:(1)淘汰赛:每场比赛踢掉一支球队,只取第一名.(2)单循环赛:n支球队,每两队比赛1场,总共比赛场.(3)双循环比赛:n支球队,每两球比赛2场总共比赛场.2.与比赛积分有关的推理问题.两种常见的计分法:(1)2分制计分法:“每场比赛胜者得2分,负者得0分,平局各得1分”.这种情况下,每场比赛无论结果如何,双方总得分都是2分,因此所有选手的总分就等于“比赛场数×2”.(2)3分制计分法:“每场比赛胜者得3分,负者得0分,平局各的1分”.这种情况下,总分就是“胜负场数×3+平局场数×2”,或者写成“比赛场数×2-平局场数”.三点剖析重难点:要注意搞清比赛规则,特别是积分规则,对阵方式,认识总场次、总得分与某个对或人总得分、总场次间的区别与联系..若是画对阵关系图,注意箭头表胜负,虚线表示平局.题模精讲题模一场次计算例、某年级8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队每两队之间只进行一场比赛),胜一场得3分,负一场得0分,平一场得1分.某班级共得15分,并以无负局成绩获得冠军,那么该班共胜几场比赛答案:4解析:该班赛了7场.假设全是平局,应得7分.每将1场平局替换为胜场,总分增分,故该班共胜场.例、为弘扬亚运精神,四年级组织了篮球联赛,赛制为单循环制,即每两队之间都要比一场,计划安排15场比赛,应该邀请几个篮球队参加答案:6解析:由于,故应该邀请6个篮球队参加.例、甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了______盘.答案:2解析:由题意可画出比赛图,已赛过的两人之间用线段连接.由图看出小明赛了2盘.例、A,B,C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去.最后结果是A 队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛答案:23场解析:因为A队胜10场,所以A队休息和被击败的天数的和是.26是个偶数,结合我们在分析中得到的结论,可以知道A队休息的天数与被打败的天数是相同的,所以A队休息了13天.因为一共有36场比赛,所以A 队打了23场比赛.例、有16位选手参加象棋晋级赛,每两人都只赛一盘.每盘胜者积1分,败者积0分.如果和棋,每人各积分.比赛全部结束后,积分不少于10分者晋级.那么本次比赛后最多有_______为选手晋级.答案:11解析:一共比赛了120场,每场比赛两个选手总分会得到1分,所以共有120分,理论上来讲,最多能有人,但是没有晋级的人同样也消耗了120分钟的若干分,所以不可能这120分全部是这12个人获得,故最多不可能是12人;于是接下来考虑11人的情况,这样是可以实现的,11人只需110分,而剩下来的5人正好消耗分,加起来120分.(具体的一种情况可以使前11人之间均为平局,然后他们都赢了最后5名,则前11人每人得分都为10分).例、五支足球队伍比赛,每两个队伍之间比赛一场;胜者得3分,负者得0分,平局各得1分.比赛完毕后,发现各队得分均不超过9分,且恰有两支队伍同分.设五支队伍的得分从高到低依次为、、、、(有两个字母表示的数是相同的).若恰好是15的倍数,那么此次比赛中共有______场平局.答案:3解析:体育比赛得分问题,首先算出比赛一共10场,总分在20到30分之间.五位数是15的倍数,利用整除性可知,可为0或者5,考虑到最小,如果,总分最小为分,不成立,所以,即第五名4场全负积0分.第五名负四场,则平局最多为6场,总分最少为24分.又考虑到分数和为3的倍数,总分可能情况为30,27,24.对三种情况分别讨论:(1)总分30分:即无平局情况,那么前四名队伍得分只可能为9,6,3分.不能在只有两个重复的情况下凑出30.所以总分30分情况不存在.(2)总分27分:经测试,存在,满足题目分数要求,且四个队7场胜3场负,恰好满足第五队的4场负,所以此为一解,比赛3场平局.(3)总分24分:在24分情况下,只有前四名只能各胜1场平2场,但不满足只有两队得分相同.所以总分24分情况不存在.综上,唯一存在总分27分情况下,比赛中共有3场平局.题模二总分计算例、6名同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.那么6个人最后得分的总和是_______分.答案:30解析:无论赛果如何,每场共产生2分.6个人共赛了场,因此总分为分.例、四支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少答案:4分解析:如果比赛分出胜负,那么双方得分之和就是3分;如果平局,双方得分之和就是2分.4支队之间要进行场比赛,那么总分就要在12分和18分之间.各队的总得分就是6场比赛的总得分,因此四支球队的总分也要在12分和18分之间.由题意,四支球队的得分是4个连续的自然数.而四个连续自然数的和可能是:,,,,……在12分和18分之间的只有14和18,因此这四支球队的得分可能是2分、3分、4分、5分,或者3分、4分、5分、6分.这两种情况都可能出现吗如果是3分、4分、5分、6分,总分是18分,那么每场比赛都分出了胜负,但这是不可能的,大家自己想想这是为什么如果是2分、3分、4分、5分,那么第一名得5分,只能是1胜2平;第二名得4分,只能是1胜1平1负;第三名得3分,可能是1胜2负,也可能是3平;第四名得2分,只能是2平1负.其中只有第三名的比赛结果有两种情况.综合考虑第一名、第二名、第四名的胜负情况:他们一共有2胜5平2负.由于总胜场数与总负场数相同,所以第三名只能是3平.第三名没有平局,容易画出四支队之间的比赛胜负关系,如图所示.因此输给了第一名的只有第二名,他得了4分.例、10名选手参加象棋比赛,每两名选手间都要比赛一次.已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等.问:前六名的分数各为多少答案:17分,16分,13分,12分,11分,9分解析:因为前两名选手都没有输过,所以第一名选手的战绩最好是8胜1平,得17分.第二名最多得16分.可知第三名最多得分.后四名选手之间有6场比赛,每场比赛得2分,一共得12分.所以后四名选手总分最少为12分,从而第四名选手最少得12分.考虑到第三名最多得13分,可知第三名得13分,第四名得12分.于是第一名和第二名总分为33分,也就是第一名得17分,第二名得16分.10名选手之间一共有45场比赛,总分是90.第五名和第六名的总分是.考虑到每一个的得分都小于第四名的得分12,可知第五名得11分,第六名得9分.因此前六名的分数分别为17、16、13、12、11、9.例、有A、B、C、D、E五个队分在同一个小组进行单循环足球赛(每两队只进行一场比赛),为争夺出线权,比赛规则规定:胜一场得3分,平一场各队各得一分,负一场得0分.小组赛结束后,小组中名次在前的两个队出线,请你解答下列问题:(1)小组赛结束后,若A队的积分为9分,设A队胜m场,平n场,则的值是多少(2)小组赛结束后,设5个队的积分总和为x,那么x的范围是什么(3)小组赛结束后,若A队的积分为10分,A队能出线吗请你对A队能否出线作出分析.答案:(1)9(2)(3)能解析:(1)即为A的总分,故.(2)共赛场,每场最少产生2个积分,最多产生3个积分,故5个队的积分总和x最小为,最多为,且易知此范围内任何一种情况均可达到.因此,x的范围是.(3)假设A无法出线,则至少有两队的得分不低于10分,即此三队总分至少为分,进而另两队总分最多为分.但另两队之间会比一场,不可能都积0分,矛盾.因此假设不成立,即A一定能出线.题模三具体赛程例、甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘.问:小强已经赛了几盘分别与谁赛过答案:2;甲,乙解析:用5个点代表5人,实线代表两人比过,虚线则为没比过.甲与每人都比过,这样丁只与甲比过,乙未与丁比,与另三人比过,进而丙只与甲、乙比过.最终得小强与甲、乙比过2盘.例、今有6支球队进行单循环赛,每两队仅赛一场,胜者得3分,负者得0分,平局各得1分.比赛结束,各队得分由高到低恰好是等差数列(排名相邻两队得分差相等),其中第三名得8分.这次比赛中平局共有几局答案:3解析:第三名5场得8分,故最多胜2场.假设其只胜1场,则其积分最多为分,矛盾,因此第三名只能为2胜2平1负.共比了场,故所有队总分最多为分.前五名总分为分,进而第六名最多为分,且与第三名差3个公差,只能为2分.这样,所有队总分为分,平局有局.例、五个国家足球队A、B、C、D、E进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是A与D,C轮空;第二天A与B比赛,E轮空;第三天A与E比赛;第四天A与C比赛;B与C的比赛在B与D的比赛之前进行.那么C与E在哪一天比赛答案:第五天解析:列表分析,用*表示轮空.题模四积分与名次例、A、B、C、D四支球队进行足球比赛,每两队都要比赛一场.已知A、B、C 三队的成绩分别是:A队2胜1负,B队2胜1平,C队1胜2负.那么D队的成绩是________胜.答案:解析:D显然有1平.共赛了场,A、B、C共胜5场,再加上1场平局,已经达到6场,因此D没有获胜.例、东亚四强赛是由中国、韩国、日本、朝鲜四个国家球队之间进行的一次单循环制比赛,即每支球队都必须分别和其他球队比赛一场.请问:东亚四强赛总共需要比多少场比赛如果每赢一场得3分,平一场得一分,输一场得0分,那么第一名最多可以的多少分最少可以得多少分答案:9;3解析:易知第一名最多为分.若所有比赛均为平局,显然第一名为分.假设某队只得2分、1分或0分,则其至少输了1场,故必有1队至少积3分,因此3分以下不可能为第一名.综上,第一名最多9分,最少3分.例、A、B、C、D四支足球队进行一次单循环比赛,赢一场得2分,平局各得1分,输一场不得分.所有比赛结束后,按积分高低排名,A、B两队并列最后一名,C队第二名,D队第一名.那么A队最多得多少分答案:2解析:共赛了场,各队总积分为分.A队得分必低于平均分分,即最多2分.易知2分是可达的,如D胜A、B,其余比赛均为平局即可.因此,A队最多得2分.例、一张有4人参加的国际象棋单循环比赛的积分表如下,每场比赛胜者得3分,负者减1分,平局则两人各得1分.(1)填出表内空格中的分值.(2)排出这次比赛的名次.答案:(1)见下表(2)余张赵陈解析:若a胜b,则b负于a;若a与b战平,则b与a也战平.由此易将表格补全,进而得到名次.例、热火队和雷霆队为了争夺NBA总决赛的冠军,斗得难分难解.在今天晚上的比赛中:(1)两队都没有换过人;(2)除了三名队员外,其他队员得分都互不相同.这三名队员都得了22分,但是不在同一个队中;(3)全场最高个人得分是30分,只有三名队员得分不到20分;(4)热火队中,得分最多和得分最少的球员只相差3分;(5)雷霆队每人的得分正好组成一个等差数列.这场比赛__________队胜,他们的比分是___________________.答案:雷霆,解析:综合条件,可以得到雷霆队得分组成的等差数列的公差只能是4分,队员分别得分为30、26、22、18、14,而热火队得分为22、22、21、20、19.所以雷霆队与热火队的比分是110:104.例、世界杯足球小组赛,每组四个队进行单循环比赛(即每个队都与同组的其它三个队各赛一场).每场比赛胜队得3分,败队得0分,若打成平局,则两队各得1分,小组赛全赛完后,总积分高的两个队出线进入下一轮比赛.如果总积分相同,则还要依次按净胜球多少和进球数多少来排序.试问:(1)每组小组赛需要比赛几场(2)一个队的积分情况有哪几种可能(3)若某队只积3分,那么该队的输赢情况有哪几种可能(不考虑三场比赛的先后顺序)(4)若某队只积3分,那么该队有可能出线吗请简单叙述理由.(5)至少需要积多少分才能保证一定出线请简单叙述理由.(6)至少需要积多少分才有可能出线请简单叙述理由.答案:(1)6(2)0至7分及9分均有可能,共9种(3)1胜2负或3平,共2种(4)可能(5)7(6)2解析:(1)场.(2)可能为、、、、、、、、、,共9种.(3),故可能为1胜2负或3平.(4)可能,如6场均为平局,每队均为3分,则必有2只可以出线.(5)7分.9分显然小组第一出现.若为7分,其战胜的两支球队最多为6分,故7分可确保前两名.若1队3负,另3队均为2胜1负,则必有1只积6分的无法出线.(6)2分.若一支球队全胜,另三只均为2平1负,则必有2分的可以出线.而若积1分或0分,其至少输给过2只球队,那两只至少3分,排名一定在前,即此时必无法出线.题模五得失球相关例、现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分.图1是一张记有比赛详细情况的表格.但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入图2中.答案:<解析:对于A,赛2场,2胜1平0负,这里至少有一个数字有误,如果只有一个数字有误,那有三种可能:(1)赛3场,2胜0负1平;(2)赛2场,1胜0负1平;(3)赛2场,2胜0负0平.对于(1)、(3)两种情况,后面的积分都是错误的,对于(2)这种情况,后面的进球是错误的,所以对A来说,至少有两个数字是错误的.对于C,赛1场,0胜2平1负,这里至少有一个数字有误,如果只有一个数字有误,那有两种可能:(1)赛3场,0胜2平1负;(2)赛1场,0胜0平1负.无论哪种情况,后面的积分都是错误的,所以对C来说,也至少有两个数字是错误的.A和C一共至少有4个错误的数字,而总共只有4个数字错误,所以它们各错了两个,B的数字全部正确.三个球队打单循环,每支球队的比赛场数不多于2.对A来说,如果它的两个错误全部出现在前4个数字上,那么它进0球就是对的,所以它没有赢.这时它最多平2场得2分,这样积分出错,矛盾.因此前4个数字只有一个错误,那它的结果是一胜一平或者两胜.如果A的比赛结果是2胜,那进球数是错的,积分也是错的,一共有3个错误,所以A的比赛结果是一胜一平,另一个错误的数字是进球数.用类似的方法可以写出正确的表格,如图所示.我们还容易看出,A平C而胜了B,B胜了C而负于A,C平了A而负于B.再从C的进球数与失球数就可以判断出三场比赛比分分别是:Avs BAvs CBvs C例、A、B、C三队比赛篮球,A队以83∶73战胜B队,B队以88∶79战胜C队,C队以84∶76战胜A队,三队中得失分率最高的出线.一个队的得失分率为,如,A队得失分率为.三队中__________队出线.答案:A解析:这道题没必要算出三队得失分率,得失分率就是衡量一个球队总共是赢了还是输了.A:赢了10分,输了8分,一共赢了2分.B:赢了9分,输了10分,一共输了1分.C:赢了8分,输了9分,一共输了1分,所以A 的得失分率最大.随堂练习随练、6支足球队,每两队间至多比赛一场.如果每队恰好比赛了2场,那么符合条件的比赛安排共有_________种.答案:70解析:把六个球队看做六个点,这之间进行连线.则可能形成一个六边形或者两个三角形.如果形成一个六边形,则有种;如果形成两个三角形,则有种.所以共有种.随练、六个人传球,每两人之间至多传一次,那么最多共进行____次传球.答案:13解析:本题是一道比赛场数计数问题,“每两个之间至多传一次”让六个人最多次地传球,则是5+4+3+2+1=15次.但得看是否可传递回去,在传递过程中同两人是否重复.(15条线,代表传球15次)根据一笔画问题:一笔画要求只有2个奇点(不需要回到出发点时)或0个奇点(需要回到出发点时),行不通.所以应减少奇点个数,共有6个奇点,应该去掉两条两条直线,即去掉了4个奇点,剩下2个奇点,可以传递成功,共15-2=13次传球.随练、五支球队进行足球比赛,每两支队之间都要赛一场,那么每支队要赛几场一共要进行多少场比赛若这五支球队进行淘汰赛,为了决出冠军,一共需要进行多少场比赛答案:4;10;4解析:每支队要赛场,共进行场.淘汰赛每场淘汰1支球队,故为了决出冠军,一共需要进行场淘汰赛.随练、6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.请问:(1)各队总分之和最多是__________分,最少是__________分。