概率密度函数的估计优秀课件
- 格式:ppt
- 大小:1.20 MB
- 文档页数:24
第四章 概率密度函数的估计4.1 引言 一般情况:p(ωi),p(x|ωi)已知,设计分类 器. 实际中: p(x|ωi)未知. 例如: 癌细胞识别 细胞病理检查设计结果大致经验正常 异常p(ωi)估计正常、异常细胞染色图片样本p(ωi),p(x|ωi)分类器的设计第一步:利用样本估计 ˆ (ωi ), p ˆ (x | ωi ) 表示 p p(ωi),p(x|ωi) 设计推断中的估计理论ˆ (ωi ), p ˆ (x | ωi ) 第二步:将 p 要求:N →∞ N →∞判决规则分类结果ˆ ( x | ωi ) = p( x | ωi ) lim p ˆ (ωi ) = p (ωi ) lim p从样本集推断总体概率分布p(x|ωi)的方法(1)监督参数估计——样本所属的类别及类 条件总体概率密度书的形式已知。
而表征概 率密度函数的某些参数未知x∈ωi p(x|ωi)形 式已知,如果p(x|ωi)∽N(μ,σ2) 由已知样本集 某些参数 估计推断 (2)非监督参数估计——样本所属类别未 知,总体概率密度形式已知,x∈ωi未知, 估计参数 p(x|ωi)形式已知从样本集推断总体概率分布p(x|ωi)的方法 (3)非参数估计——已知样本所属类别, 但未知总体概率密度的形式, x∈ωi已 知, p(x|ωi)形式未知。
方法: parzem窗法,KN近邻法,正交级数法, 逼近法。
参数估计的基本概念 统计量——假定每一个训练样本 Xk(k=1,2,…,N)都包含着总体的某些信息, 为了估计未知参数,把有用信息抽取出来 构造出样本的某种函数。
参数空间——未知参数θ的可取值的集 合,记为Θ 点估计、估计量、估计值——针对某未知 参数θ构造一个统计量作为θ的估计 θˆ 为θ的估计量, θˆ 的具体值 点估计, θˆ 为估计值参数估计的基本概念 区间估计——在一定置信度的条件下,估 计某一未知参数θ的取值范围,称为置信 区间。
Xuegong Zhang, Tsinghua University贝叶斯决策: 已知)(i P ω和)|(i p ωx ,对未知样本分类(设计分类器) 实际问题: 已知一定数目的样本,对未知样本分类(设计分类器)怎么办? 一种很自然的想法:首先根据样本估计)|(i p ωx 和)(i P ω,记)|(ˆi p ωx 和)(ˆi P ω 然后用估计的概率密度设计贝叶斯分类器。
——(基于样本的)两步贝叶斯决策“模式识别基础”教学课件希望:当样本数∞→N 时,如此得到的分类器收敛于理论上的最优解。
为此, 需 )|()|(ˆi N i p pωωx x ⎯⎯→⎯∞→)()(ˆi N iP P ωω⎯⎯→⎯∞→ 重要前提:z 训练样本的分布能代表样本的真实分布,所谓i.i.d 条件 z 有充分的训练样本本章研究内容:① 如何利用样本集估计概率密度函数?Xuegong Zhang, Tsinghua University“模式识别基础”教学课件3.2参数估计的基本概念和方法 (part1)参数估计(parametric estimation):z已知概率密度函数的形式,只是其中几个参数未知,目标是根据样本估计这些参数的值。
几个名词:统计量(statistics):样本的某种函数,用来作为对某参数的估计θ∈参数空间(parametric space):待估计参数的取值空间ΘXuegong Zhang, Tsinghua University ② 各类样本集i X ,c i ,,1L =中的样本都是从密度为)|(i p ωx 的总体中独立抽取出来的,(独立同分布,i.i.d.)③ )|(i p ωx 具有某种确定的函数形式,只其参数θ未知 ④ 各类样本只包含本类分布的信息其中,参数θ通常是向量,比如一维正态分布),(21σµi N ,未知参数可能是⎥⎦⎤⎢⎣⎡=2i i i σµθ此时)|(i p ωx 可写成),|(i i p θωx 或)|(i p θx 。