8.VHDL语言基础(六)
- 格式:ppt
- 大小:1.98 MB
- 文档页数:25
VHDL入门教程VHDL(Very High-speed Integrated Circuit HardwareDescription Language)是一种用于设计数字电路的硬件描述语言。
它是IEEE 1076标准中规定的一种语言,广泛应用于数字电路的设计、仿真和综合等领域。
本文将为大家介绍VHDL的基础知识和入门教程。
一、VHDL的基本概念1. 实体(Entity):VHDL代码的最高层次,用于定义模块的输入、输出和内部信号。
2. 架构(Architecture):定义了实体中的各个信号和组合逻辑的行为。
3. 信号(Signal):表示数据在电路中的传输和操作。
4. 进程(Process):定义了组合逻辑的行为,用于描述信号之间的关系。
5. 实体声明(Entity Declaration):用于描述模块的名称、输入、输出和内部信号。
6. 架构声明(Architecture Declaration):用于描述模块的内部逻辑。
二、VHDL的基本语法1.实体声明语法:```entity entity_name isport ( port_list );end entity_name;```其中,entity_name是实体的名称,port_list是实体的输入、输出和内部信号。
2.架构声明语法:```architecture architecture_name of entity_name issignal signal_list;beginprocess (sensitivity_list)begin--逻辑行为描述end process;end architecture_name;```其中,architecture_name是架构的名称,entity_name是实体的名称,signal_list是架构的内部信号,sensitivity_list是触发事件的信号列表。
三、VHDL的基本例子下面以一个简单的4位加法器为例介绍VHDL的编写和仿真流程。
VHDL语⾔基础VHDL语⾔基础1 数据对象数据对象包括常量、变量、信号和⽂件四种类型1.1 常量常量是对某⼀常量名赋予⼀个固定的值,⽽且只能赋值⼀次。
通常赋值在程序开始前进⾏,该值的数据类型则在声明语句中指明--定义常量语句:--Constant 常数名:数据类型:=表达式Constant Vcc:real:=5.2; --指定Vcc的数据类型是实数,赋值为5.0VConstant bus_width:integer:=8; --定义总线宽度为常数8常量所赋的值应和定义的数据类型⼀致;常量在程序包、实体、构造体或进程的说明性区域必须加以说明。
定义程序包内的常量课提供所包含的任何实体、构造体所引⽤,定义在实体说明内的常量只能在该实体内可见,定义在进程说明内的常量只能在该实体内可见,定义在进程说明区域中的常量只能在该进程内可见1.2 变量变量只能在进程语句、函数语句和过程语句结构中使⽤。
变量的赋值是直接的,⾮预设的。
变量不能表达“连线”或储存原件,不能设置传输延迟量--定义变量语句--Variable 变量名:数据类型:=初始值;Variable count:integer 0 to 255:=20; --定义count整数变量,变化范围0-255,初始值为20--变量赋值语句--⽬标变量名:=表达式;x:=10.0; --实数变量赋值为10.0Y:=1.5+x; --运算表达式赋值,表达式必须与⽬标变量的数据类型相同A(3 to 6):=("1101") --位⽮量赋值1.3 信号信号表⽰逻辑门的输⼊或输出,类似于连接线,也可以表达存储元件的状态。
信号通常在构造体、程序包和实体中说明--信号定义语句--Signal 信号名:数据类型:=初始值Signal clock:bit:='0'; --定义时钟信号,初始值为0Signal count:BIT_VECTOR(3 DOWNTO 0); --定义count为4位位⽮量--信号赋值语句⽬标信号名<=表达式;x<=9;Z<=x after 5 ns; --在5ns后将x的值赋给z2 数据类型2.1 VHDL的预定义数据类型类型定义说明布尔(Boolean)TYPE BOOLEAN IS (FALSE,TRUE);取值为FALSE和TRUE,不是数值,不能运算,⼀般⽤于关系运算符位(Bit)TYPE BIT IS ('0','1');取值为0和1,⽤于逻辑运算位⽮量(Bit_Vector)TYPE BIT_VECTOR IS ARRAY(Natural range<>)OF BIT;基于Bit类型的数组,⽤于逻辑运算字符(Character)TYPE CHARACTER IS (NUL,SOH,STX,...,'','!',...);通常⽤''引号引起来,区分⼤⼩写字符串(String)VARIABLE string_var:STRING(1 TO 7);string_var:="A B C D";通常⽤""引起来,区分⼤⼩写整数(Integer)variable a:integer range -63 to 63取值范围 -(231 -1)~(231-1)要求⽤RANGE⼦句为所定义的数限定范围,以便根据范围决定此信号或变量的⼆进制位数实数(Real)-取值范围-1.0E38~+1.0E38,仅可⽤于仿真不可综合时间(Time)-物理量数据,完整的包括整数和单位两个部分,⽤⾄少⼀个空格隔开,仅可⽤于仿真不可综合时间(Time)-开,仅可⽤于仿真不可综合错误等级(SeverityLevel)TYPE severity_level IS (NOTE、WARNING、ERROR、FAILURE);表⽰系统状态,仅可⽤于仿真不可⽤于综合类型定义说明2.2 IEEE预定义标准逻辑位与⽮量标准逻辑类型对数字逻辑电路的逻辑特性描述更加完整、真实,因此在VHDL程序中,对逻辑信号的定义通常采⽤标准逻辑类型标准逻辑位(Std_Logic)符号说明'U'Undefined(未初始化)'X'Forcing Unknown(强未知)'0'Forcing 0(强0)'1'Forcing 1(强1)'Z'High Impedance(⾼阻)'W'Weak Unknown(弱未知)'L'Weak 0(弱0)'H'Weak 1(弱1)'-'Don't Care(忽略)标准逻辑位⽮量(Std_Logic_Vector)基于Std_Logic类型的数组使⽤Std_Logic和Std_Logic_Vector要调⽤IEEE库中的Std_Logic_1164程序包;就综合⽽⾔,能够在数字器件中实现的是“-、0、1、Z”四种状态。
VHDL语言的基本知识点罗列1 VHDL语言的标识符VHDL中的标识符可以是常数、变量、信号、端口、子程序或参数的名字。
使用标识符要遵守如下法则:a)标识符由字母(A…Z;a…z)、数字和下划线字符组成。
任何标识符必须以英文字母开头。
λ末字符不能为下划线。
λb)不允许出现两个连续下划线。
标识符中不区分大小写字母。
λVHDL定义的保留子或称关键字,不能用作标识符。
λc) VHDL中的注释由两个连续的短线(--)开始,直到行尾。
以下是非法标识符:-Decoder —起始不能为非英文字母3DOP —起始不能为数字Large#number —“#”不能成为标识符的构成符号Data__bus —不能有双下划线Copper_ —最后字符不能为下划线On —关键字不能用作标识符。
注:在AHDL语言中标识符要区分大小写,但在VHDL语言中不区分大小写。
所以写程序时,一定要养成良好的书写习惯,应用关键字时用大写,自己定义的标识符用小写。
标识符表示的几种数据对象的详细说明如下:1) 常数(Constant )常数是一个固定的值,主要是为了使设计实体中的常数更容易阅读和修改。
常数一被赋值就不能在改变。
一般格式:CONSTANT 常数名:数据类型:=表达式;例:CONSTANT Vcc: REAL: =5.0;—设计实体的电源电压指定常数所赋得值应与定义的数据类型一致。
常量的使用范围取决于它被定义的位置。
程序包中定义的常量具有最大的全局化特性,可以用在调用此程序包的所有设计实体中;设计实体中某一结构体中定义的常量只能用于此结构体;结构体中某一单元定义的常量,如一个进程中,这个常量只能用在这一进程中。
2) 变量(Variable)变量是一个局部变量,它只能在进程语句、函数语句和进程语句结构中使用。
用作局部数据存储。
在仿真过程中。
它不像信号那样,到了规定的仿真时间才进行赋值,变量的赋值是立即生效的。
变量常用在实现某种算法的赋值语句中。
VHDL语法简单总结一个VHDL程序代码包含实体(entity)、结构体(architecture)、配置(configuration)、程序包(package)、库(library)等。
一、数据类型1.用户自定义数据类型使用关键字TYPE,例如:TYPE my_integer IS RANGE -32 TO 32;–用户自定义的整数类型的子集TYPE student_grade IS RANGE 0 TO 100;–用户自定义的自然数类型的子集TYPE state IS (idle, forward, backward, stop);–枚举数据类型,常用于有限状态机的状态定义一般来说,枚举类型的数据自动按顺序依次编码。
2.子类型在原有已定义数据类型上加一些约束条件,可以定义该数据类型的子类型。
VHDL不允许不同类型的数据直接进行操作运算,而某个数据类型的子类型则可以和原有类型数据直接进行操作运算。
子类型定义使用SUBTYPE关键字。
3.数组(ARRAY)ARRAY是将相同数据类型的数据集合在一起形成的一种新的数据类型。
TYPE type_name IS ARRAY (specification) OF data_type;–定义新的数组类型语法结构SIGNAL signal_name: type_name [:= initial_value];–使用新的数组类型对SIGNAL,CONSTANT, VARIABLE进行声明例如:TYPE delay_lines IS ARRAY (L-2 DOWNTO 0) OF SIGNED (W_IN-1 DOWNTO 0);–滤波器输入延迟链类型定义TYPE coeffs IS ARRAY (L-1 DOWNTO 0) OF SIGNED (W_COEF-1 DOWNTO 0);–滤波器系数类型定义SIGNAL delay_regs: delay_lines; –信号延迟寄存器声明CONSTANT coef: coeffs := ( ); –常量系数声明并赋初值4.端口数组在定义电路的输入/输出端口时,有时需把端口定义为矢量阵列,而在ENTITY中不允许使用TYPE进行类型定义,所以必须在包集(PACKAGE)中根据端口的具体信号特征建立用户自定义的数据类型,该数据类型可以供包括ENTITY在内的整个设计使用。
VHDL语言教程VHDL是一种硬件描述语言,用于描述数字电路和系统,并进行硬件的设计和仿真。
它被广泛应用于数字电路设计、嵌入式系统开发和可编程逻辑控制器等领域。
本教程将介绍VHDL语言的基本概念和语法,帮助您了解和学习这门强大的硬件描述语言。
一、VHDL概述VHDL是Very High Speed Integrated Circuit Hardware Description Language的缩写,意为高速集成电路硬件描述语言。
它是一种硬件描述语言,用于描述数字电路和系统。
与传统的电路设计方法相比,使用VHDL可以更加方便、高效地进行电路设计和测试。
1.VHDL的起源和发展VHDL最早由美国国防部为了解决数字电路设计复杂、效率低下的问题而研发。
后来,VHDL成为了一种IEEE标准(IEEE1076)并被广泛应用于数字电路设计和仿真。
2.VHDL的优点VHDL具有以下几个优点:-高级抽象:VHDL提供了一种高级描述电路的方法,使得设计者能够更加方便地表达复杂的电路结构和行为。
-可重用性:VHDL支持模块化设计,使得设计者可以将电路的不同部分进行抽象和封装,提高了电路的可重用性。
-高效仿真:VHDL可以进行高效的电路仿真和测试,有助于验证电路设计的正确性和可靠性。
-灵活性:VHDL可以应用于各种不同类型和规模的电路设计,从小规模的数字逻辑电路到大规模的系统级设计。
二、VHDL语法和基本概念1.VHDL的结构VHDL程序由程序单元(unit)组成,程序单元是VHDL描述的最小单元。
程序单元包括实体(entity)、结构(architecture)、过程(process)和包(package)等。
2. 实体(entity)实体是VHDL描述电路模块的一个部分,包括输入输出端口、信号声明和实体标识符等。
3. 结构(architecture)结构描述了实体的具体电路结构和行为,包括组件声明、信号赋值和行为描述等。
VHDL入门教程VHDL(Very High-Speed Integrated Circuit HardwareDescription Language)是一种硬件描述语言,用于设计数字电路和系统。
它是由美国国防部在20世纪80年代早期开发的,并由IEEE 1076标准化。
VHDL可以用于描述电路结构、电路行为和模拟。
一、VHDL概述VHDL是一种硬件描述语言,它允许工程师以更高级的语言编写硬件描述。
它可以描述电路结构、电路行为和模拟。
VHDL可以应用于各种电子系统的设计,从简单的数字逻辑门到复杂的处理器。
二、VHDL基本结构VHDL的基本结构包括实体声明、体声明和结构化代码。
实体声明描述了电路的接口,包括输入和输出。
主体声明描述了电路的行为。
结构化代码定义了电路的结构。
三、VHDL数据类型VHDL提供了多种数据类型,包括标量类型(比如整数和实数)、数组类型和记录类型。
每种类型都有其特定的操作和范围。
四、VHDL信号VHDL中的信号用于在电路中传递信息。
信号可以在过程中赋值,并且具有各种延迟属性。
信号还可以连接到模块的输入和输出端口,以实现电路之间的通信。
五、VHDL实体和体VHDL设计包含实体和体。
实体描述了电路的接口和连接,而体描述了电路的行为。
实体和体之间使用端口来传递信息。
六、VHDL组件VHDL中的组件用于将电路模块化,以实现更高层次的设计和复用。
组件可以在实体中声明,并在体中实例化。
七、VHDL并发语句VHDL中的并发语句用于描述电路中多个同时运行的过程。
并发语句包括并行语句、过程、并行块和并行时钟。
八、VHDL测试VHDL测试包括自动测试和手动测试。
自动测试使用测试工具和仿真器来验证电路的正确性。
手动测试包括使用仿真器进行手工测试和调试。
九、VHDL实例以下是一个简单的VHDL实例,实现了一个4位二进制加法器:```vhdllibrary IEEE;use IEEE.STD_LOGIC_1164.all;entity binary_adder isporta : in std_logic_vector(3 downto 0);b : in std_logic_vector(3 downto 0);sum : out std_logic_vector(4 downto 0);carry : out std_logicend binary_adder;architecture behavior of binary_adder isbeginprocess(a, b)variable temp_sum : std_logic_vector(4 downto 0);variable temp_carry : std_logic;begintemp_sum := ("0000" & a) + ("0000" & b);temp_carry := '0' when temp_sum(4) = '0' else '1';sum <= temp_sum;carry <= temp_carry;end process;end behavior;```上述VHDL代码定义了一个名为`binary_adder`的实体,它有两个4位输入`a`和`b`,一个5位输出`sum`和一个单一位输出`carry`。
第1章VHDL语言基础1.1 概述硬件描述语言(hardware description language,HDL)是电子系统硬件行为描述、结构描述、数据流描述的语言。
目前,利用硬件描述语言可以进行数字电子系统的设计。
随着研究的深入,利用硬件描述语言进行模拟电子系统设计或混合电子系统设计也正在探索中。
国外硬件描述语言种类很多,有的从Pascal发展而来,也有一些从C语言发展而来。
有些HDL成为IEEE标准,但大部分是企业标准。
VHDL来源于美国军方,其他的硬件描述语言则多来源于民间公司。
可谓百家争鸣,百花齐放。
这些不同的语言传播到国内,同样也引起了不同的影响。
在我国比较有影响的有两种硬件描述语言:VHDL语言和Verilog HDL语言。
这两种语言已成为IEEE标准语言。
电子设计自动化(electronic design automation,EDA)技术的理论基础、设计工具、设计器件应是这样的关系:设计师用硬件描述语言HDL描绘出硬件的结构或硬件的行为,再用设计工具将这些描述综合映射成与半导体工艺有关的硬件配置文件,半导体器件FPGA 则是这些硬件配置文件的载体。
当这些FPGA器件加载、配置上不同的文件时,这个器件便具有了相应的功能。
在这一系列的设计、综合、仿真、验证、配置的过程中,现代电子设计理论和现代电子设计方法贯穿于其中。
以HDL语言表达设计意图,以FPGA作为硬件实现载体,以计算机为设计开发工具,以EDA软件为开发环境的现代电子设计方法日趋成熟。
在这里,笔者认为,要振兴我国电子产业,需要各相关专业的人士共同努力。
HDL语言的语法语义学研究与半导体工艺相关联的编译映射关系的研究,深亚微米半导体工艺与EDA设计工具的仿真、验证及方法的研究,这需要半导体专家和操作系统专家共同努力,以便能开发出更加先进的EDA工具软件。
软件、硬件协同开发缩短了电子设计周期,加速了电子产品更新换代的步伐。
毫不夸张地说,EDA工程是电子产业的心脏起搏器,是电子产业飞速发展的原动力。
实验六基于VHDL语言的分频器设计与实现报告一、实验目的1、进一步掌握VHDL语言的基本结构及设计的输入方法。
2、掌握VHDL基本逻辑电路的综合设计应用。
二、实验原理在数字电路系统中,分频电路应用得十分广泛。
例如,工程人员常常使用分频电路来得到数字通信中的帧头信号、选通信号以及中断信号等。
因此,分频电路在数字电路系统的设计中也应该作为重要的基本电路来掌握,从而给今后的一些设计带来方便。
三、实验内容1、设计并实现一个6分频的分频电路,要求其输出信号的占空比为50%。
请分析分频电路设计原理并编写VHDL语言程序,利用Max+PlusII开发软件对其进行编译和仿真。
6分频电路实现程序代码如下:2、在实际数字电路设计过程中,往往需要得到占空比不是1:1的分频时钟,方法是:首先描述一个计数器电路,然后根据计数器电路的并行输出信号来决定输出时钟的高低电平。
请设计、编写VHDL 语言程序实现分频后时钟信号的占空比为1:15的16分频电路,并利用Max+PlusII开发软件对其进行编译和仿真。
四、实验设计1.程序代码:图library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity clk_div6 isport(clk:in std_logic;clk_out:out std_logic);end clk_div6;architecture rtl of clk_div6 issignal clk_temp:std_logic;beginprocess(clk)variable counter:integer range 0 to 15;constant md:integer:=2;beginif clk'event and clk='1'thenif counter=md thencounter:=0;clk_temp<=not clk_temp;elsecounter:=counter+1;end if;end if;end process;clk_out<=clk_temp;end rtl;2.仿真结果:五、实验结果分析本实验利用VHDL语言设计分频电路,目的在于进一步掌握VHDL语言的基本结构及设计的输入方法,掌握VHDL基本逻辑电路的综合设计应用。
VHDL语言简介VHDL(VHSIC Hardware Description Language)即可高速集成电路硬件描述语言,是一种用于描述数字系统和电路的硬件描述语言。
它在1981年由美国国防部的高速集成电路联合委员会(VHSIC)开发,用于设计大规模集成电路。
VHDL是一种面向对象的语言,可以用于描述各种数字系统,从简单的逻辑门到复杂的处理器。
它提供了丰富的语法和语义,使得设计人员可以准确地描述他们的电路和系统。
VHDL的优势VHDL作为一种硬件描述语言,在数字系统设计中具有许多优势。
1.可重用性:VHDL允许设计人员创建可重用的模块和子系统,这些模块和子系统可以在不同的项目中重复使用,提高了设计效率和可维护性。
2.仿真和验证:VHDL具有强大的仿真和验证能力,可以在设计之前对系统进行全面的仿真和验证。
这有助于检测和纠正潜在的问题,并确保系统在硬件实现之前达到预期的功能。
3.抽象级别:VHDL允许设计人员在不同的抽象级别上描述系统,从高级的行为级别到底层的结构级别。
这使得设计人员可以根据需要在不同的级别上工作,并且可以更容易地进行系统级别的优化。
4.灵活性和可扩展性:VHDL支持灵活的设计方法和工作流程,并允许设计人员在设计过程中进行迭代和修改。
它还可以与其他常用的设计工具和方法集成,以满足特定的需求。
VHDL语言的基本结构VHDL语言由模块、实体、架构以及信号和过程等基本元素组成。
模块(Module)模块是VHDL中描述数字系统的最基本单位。
一个模块可以包含多个实体和架构,并通过连接信号进行通信。
每个模块都有一个顶层实体和一个或多个架构。
实体(Entity)实体是描述模块的接口和行为的抽象。
它定义了输入输出端口,以及模块对外部环境的接口。
一个实体可以有一个或多个架构。
架构(Architecture)架构描述模块的具体行为和内部结构。
它定义了模块的内部信号和过程,以及对外部信号和过程的接口。
《VHDL语言程序设计》课程教学大纲课程简介课程简介:本课程为软件工程专业嵌入式专业方向的专业课,是开发基于FPGA/CPLD嵌入式系统的必备基础。
主要内容包括FPGA/CPLD目标器件的结构和工作原理、EDA技术和工作流程、VHDL基础知识、VHDL实用方法和设计深入、原理图输入法、LPM宏功能模块实用方法、状态机设计以及EDA优化设计。
目的是为后续课程的学习和嵌入式系统的设计作必须的基础准备。
课程大纲一、课程的性质与任务:本课程是软件工程专业的专业方向课程。
教学任务主要包括使学生了解EDA技术的工作流程,正确使用开发平台,掌握以VHDL为代表的硬件描述语言的基本知识、编程实用方法和工程设计方法,掌握原理图设计法、状态机设计法,能够正确使用IP Core和LPM等宏功能模块。
本课程是软件工程专业嵌入式专业方向的第一门专业方向课,是后续课程的必备基础,具有较重要的地位。
二、课程的目的与基本要求:本课程涉及到的学科基础知识面广,要求软硬件兼备,需要较好的学科基础。
通过本课程的学习,最终达到能够设计基于FPGA/CPLD的ASIC,并能进行EDA优化的目的。
三、面向专业:软件工程四、先修课程:《计算系统基础》五、本课程与其它课程的联系:本课程的先行课程是计算系统基础。
服务的主要后续课程包括基于FPGA的嵌入式软件开发、基于ARM的嵌入式软件开发等。
六、教学内容安排、要求、学时分配及作业:第一章概述(2学时)1.1 EDA技术及其发展(C)1.2 硬件描述语言硬件描述语言种类、自顶向下设计方法、EDA工程设计流程。
(A)1.3 面向FPGA/CPLD的开发流程设计输入、分析综合、布局布线、仿真、下载和硬件测试。
(A)1.4 IP Core 及EDA技术发展趋势。
(C)第二章 FPGA硬件特性与编程技术(8学时)2.1 PLD发展历程及其分类(c)2.2 低密度PLD工作原理PROM、PLA、PAL、GAL。
GDOU-B-11-213《VHDL语言程序设计》课程教学大纲课程简介课程简介:本课程为软件工程专业嵌入式专业方向的专业课,是开发基于FPGA/CPLD嵌入式系统的必备基础。
主要内容包括FPGA/CPLD目标器件的结构和工作原理、EDA技术和工作流程、VHDL基础知识、VHDL实用方法和设计深入、原理图输入法、LPM宏功能模块实用方法、状态机设计以及EDA优化设计。
目的是为后续课程的学习和嵌入式系统的设计作必须的基础准备。
课程大纲一、课程的性质与任务:本课程是软件工程专业的专业方向课程。
教学任务主要包括使学生了解EDA技术的工作流程,正确使用开发平台,掌握以VHDL为代表的硬件描述语言的基本知识、编程实用方法和工程设计方法,掌握原理图设计法、状态机设计法,能够正确使用IP Core和LPM等宏功能模块。
本课程是软件工程专业嵌入式专业方向的第一门专业方向课,是后续课程的必备基础,具有较重要的地位。
二、课程的目的与基本要求:本课程涉及到的学科基础知识面广,要求软硬件兼备,需要较好的学科基础。
通过本课程的学习,最终达到能够设计基于FPGA/CPLD的ASIC,并能进行EDA优化的目的。
三、面向专业:软件工程四、先修课程:《计算系统基础》五、本课程与其它课程的联系:本课程的先行课程是计算系统基础。
服务的主要后续课程包括基于FPGA的嵌入式软件开发、基于ARM的嵌入式软件开发等。
六、教学内容安排、要求、学时分配及作业:第一章概述(2学时)1.1 EDA技术及其发展(C)1.2 硬件描述语言硬件描述语言种类、自顶向下设计方法、EDA工程设计流程。
(A)1.3 面向FPGA/CPLD的开发流程设计输入、分析综合、布局布线、仿真、下载和硬件测试。
(A)1.4 IP Core 及EDA技术发展趋势。
(C)第二章 FPGA硬件特性与编程技术(8学时)2.1 PLD发展历程及其分类(c)2.2 低密度PLD工作原理PROM、PLA、PAL、GAL。
VHDL语言入门教程VHDL是一种硬件描述语言,主要用于设计数字电路和系统。
它是由美国国防部门于1980年代初开发的,目的是为了改进电子设计自动化(EDA)工具的开发效率和设计文档的可重复性。
VHDL广泛应用于数字信号处理(DSP)、嵌入式系统、通信系统和各种ASIC(专用集成电路)和FPGA(现场可编程门阵列)的设计。
本教程将介绍VHDL的基础知识,包括语法、数据类型和常见的建模技术。
一、VHDL的语法VHDL的语法由标识符、关键字、运算符和分隔符组成。
其中,标识符用于给变量、信号和实体命名,关键字用于定义语言特定的操作,运算符用于数学和逻辑运算,分隔符用于分隔语句。
VHDL中的代码以一个实体(entity)的声明开始,然后是体(architecture)的声明,最后是信号声明和进程(process)的描述。
以下是一个简单的例子:```vhdlentity AND_gate isportA, B: in std_logic;C: out std_logicend entity AND_gate;architecture Behavior of AND_gate isbeginC <= A and B;end architecture Behavior;```在这个例子中,我们声明了一个名为AND_gate的实体,它有两个输入信号A和B,一个输出信号C。
然后我们定义了一个名为Behavior的体,它描述了AND门的行为:C等于A与B的逻辑与运算结果。
二、VHDL的数据类型VHDL支持许多数据类型,包括标量类型、数据类型、自定义类型和引用类型。
标量类型包括bit、bit_vector、integer、real、std_logic和std_ulogic等。
其中,bit_vector是一组连续的位,std_logic和std_ulogic用于表示单个信号。
数据类型是由标量类型和数组类型组成的。
数组类型可以是一维、二维或更高维的,用于存储多个数据。
VHDL语言VHDL(Very High Speed Integrated Circuit Hardware Description Language),超高速集成电路硬件描述语言。
VHDL语言基础主要构件:一、实体(Entity)二、结构体(Architecture)三、程序包(Package)四、库(Library)五、配置(Configuration)一、实体(Entity)1、功能:实现设计单元的端口说明。
2、语法结构:ENTITY 实体名 ISPORT(端口名{,端口名}:端口模式数据类型;端口名{,端口名}:端口模式数据类型);END实体名;1)、端口名:每个引脚的名称2)、端口模式:引脚上数据传输的方向3)、常用端口模式:3、样例:ENTITY and_2 ISPORT(a,b:IN STD_LOGIC;y:OUT STD_LOGIC);END and_2;实体and_2输入a,b;输出y二、结构体(Architecture)1、功能:描述设计单元内部结构和行为,建立输入输出关系。
2、语法结构:ARCHITECTURE 结构体名 OF 实体名 IS[结构体说明语句]BEGIN[功能描述语句]END 结构体名;1)、结构体说明语句:结构体功能描述语句,其中要用到内部信号、常数、数据类型、函数(无时可省略)。
2)、功能描述语句:用并行语句形式描述设计单元功能。
3)、并行语句类型:a、进程语句(PROCESS)b、块描述语句(BLOCK)c、信号赋值语句d、子程序调用语句e、元件例化语句3、样例:ARCHITECTURE one OF and_2 ISBEGINy <= a and bEND ARCHITECTURE one;并行语句执行顺序与其书写顺序无关,在实际电路中所有并行语句功能同时实现。
三、程序包(Package)1、功能:存放各设计模块共享的数据类型、常数、子程序等。
2、语法结构:USE LIBRARY 库名.程序包名.项目名;3、样例:(对IEEE库的1164程序包中所有项目的说明)USE IEEE.STD_LOGIC_1164.ALL;四、库(Library)1、功能:存储和放置设计单元(元件、程序包等)。