05-X射线定量物相分析
- 格式:ppt
- 大小:172.00 KB
- 文档页数:51
№.5陕西科技大学学报Oct.2005Vol.23JOURNALOFSHAANXIUNIVERSITYOFSCIENCE&TECHNOLOGY・55・3文章编号:1000-5811(2005)05-0055-04X射线衍射物相定量分析吴建鹏,杨长安,贺海燕(陕西科技大学材料科学与工程学院,陕西咸阳712081)摘要:在RigakuD/max22200pc型X,2定量分析所用的内标曲线和外标曲线,2完全一致,。
关键词:物相定量分析;内标法;中图分类号:O723:A0引言X射线衍射物相定量分析已被广泛的应用于材料科学与工程的研究中。
X射线衍射物相定量分析有内标法〔1〕、外标法〔2〕、绝热法〔3〕、增量法〔4〕、无标样法〔5,6〕、基体冲洗法〔7〕和全谱拟合法〔8〕等常规分析方法。
内标法、绝热法和增量法等都需要在待测样品中加入参考标相并绘制工作曲线,如果样品含有的物相较多,谱线复杂,再加入参考标相时会进一步增加谱线的重叠机会,给定量分析带来困难。
基体冲洗法、无标样法和全谱拟合法等分析方法虽然不需要配制一系列内标标准物质和绘制标准工作曲线,但需要烦琐的数学计算,其实际应用也受到了一定限制。
外标法虽然不需要在样品中加入参考标相,但需要用纯的待测相物质制作工作曲线,这在实际应用中也是极为不便的。
本研究在RigakuD/max22200pc型X射线衍射仪分析软件的基础上,开发了X射线衍射物相定量分析中最常用的内标法和外标法,并对这两种分析方法进行了实验验证。
1原理设样品由N个物相组成,采用衍射仪测定时,由Alexander和Klug导出的N相中第J相的衍射强度公式为:IJ=KJ(1)式中:IJ———试样中J相衍射峰的积分强度;KJ———强度表达式中与试样的种类、数量均无关的常数项;VJ———试样中J相所占的体积百分数;μ ———试样的平均吸收系数。
(1)式就是X射线衍射物相定量分析的基本方程。
该式说明试样中J相的衍射强度IJ和J相所占的体积百分数VJ成正比,和样品的平均吸收系数μ 成反比。
X射线衍射法进行物相定性分析实验目的及要求⏹了解X射线衍射仪的结构和工作原理;⏹掌握无机非金属材料X射线衍射分析的制样方法;⏹掌握X射线衍射物相定性分析的方法和步骤。
物相定性分析的基本原理2dsinθ=λ晶胞中原子种类、数量、排列方式(1) 任何一种物相都有其特征的衍射谱;任何两种物相的衍射谱不可能完全相同;多相样品的衍射峰是各物相衍射峰的机械叠加。
(2)制备标准单相物质的衍射花样:PDF卡片待分析物质(样品)的衍射花样与之对照,从而确定物质的组成相实验设备与结构D/max-RB型X射线衍射仪D/Max-RB型X射线衍射仪构造示意图主要组成部分有X射线发生器、测角仪、探测器、计算机控制处理系统等。
一、X射线管1、X-ray产生原理凡是高速运动的电子流或其它高能辐射流(如γ射线,X射线,中子流等)被突然减速时均能产生X射线。
热能 + 电磁波2、X射线机X射线管是X射线机的核心部件。
封闭式热阴极X射线管:热阴极、阳极、窗口、聚焦座、管座等滤波片可以获得近似的纯的kα辐射源为避免样品强烈吸收入射X射线产生荧光幅射,对分析结果产生干扰。
必须根据所测样品的化学成分选用不同靶材的X 射线管。
原则是:靶材的Kα谱应位于试样元素K吸收限的右近邻或左面远离试样元素K吸收限的低质量吸收系数处。
二、测角仪测角仪是X射线衍射仪的核心部件梭拉光栏梭拉光栏防散射光栏衍射仪的光路图X射线经线状焦点S发出,经发散狭缝DS后,成为扇形光束照射在平板试样上,产生衍射,衍射线经接收狭缝RS进入探测器(即计数管)后被转换成电信号记录下来。
为了限制X射线的发散,在照射路径中加入S1梭拉光栏限制X射线在高度方向的发散,加入DS发散狭缝光栏限制X射线的照射宽度。
试样产生的衍射线也会发散,同样在试样到探测器的光路中也设置防散射光栏SS、梭拉光栏S2和接收狭缝光栏RS,这样限制后仅让聚焦照向探测器的衍射线进入探测器,其余杂散射线均被光栏遮挡。
◆工作时,试样与探测器同时转动,但转动的角速度为1 : 2的比例关系。
摘要X射线在晶体中的衍射,实质上是大量原子散射波互相干涉的结果。
每种晶体所产生的衍射花样都是其内部原子分布规律的反映。
研究X射线衍射,可归结为衍射方向和衍射强度两方面问题。
衍射方向由晶胞大小、晶胞类型和位向等因素决定,衍射强度主要与原子类型及其在晶胞中位置有关。
本文简单介绍了X射线衍射物相定量分析的基本原理以及几种典型的分析方法,即直接对比法、内标法和外标法。
0、引言X射线衍射物相定量分析已被广泛应用于材料科学与工程的研究中。
X射线衍射物相定量分析有内标法、外标法、绝热法、增量法、无标样法、基本冲洗法和全谱拟合法等常规分析方法。
内标法、绝热法和增量法都需要在待测样品中加入参考标相并绘制工作曲线,如果样品含有物相较多,谱线较复杂,再加入参考标相会进一步增加谱线的重叠机会,给定量分析带来困难。
无标样法、基本冲洗法和全谱拟合法等分析方法,虽然不需要配制一系列内标标准物质和绘制标准工作曲线,但需要烦琐的数学计算,其实际应用也受到了一定限制。
外标法虽然不需要在样品中加入参考标相,但需要用纯的待测物质制作工作曲线,这在实际应用中也是极为不便的。
1、X射线定量物相分析的基本原理物相分析与化学分析方法不同,化学分析仅仅是获得物质中的元素组分,物相分析则是得到这些元素所构成的物相,而且物相分析还是区分相同物质同素异构体的有效方法。
X射线定量物相分析,是在已知物相类别的情况下,通过测量这些物相的积分衍射强度,来测算它们的各自含量。
多相材料中某相的含量越多,则它的衍射强度就越高。
但由于衍射强度还受其它因素的影响,在利用衍射强度计算物相含量时必须进行适当修正。
定量分析的依据,是物质中各相的衍射强度。
设试样是由n 个相组成的混合物,则其中第j 相的衍射相对强度可表示为式中(2μl )-1对称衍射即入射角等于反射角时的吸收因子,μl 试样平均线吸收系数,V 试样被照射体积,V c 晶胞体积,P 多重因子,|F|2结构因子,L p 角因子,e-2M 温度因子。
x射线衍射物相定量分析X射线衍射物相定量分析(XRD)是一种利用X射线技术定量分析有机物质的分析方法。
它可以准确测量有机物质中不同元素的含量,以及有机物质的物相变化。
在定量分析后,可以得出分析结果,同时也可以依据定量结果,估算出物质中各种物相的质量分数比例。
X射线衍射物相定量分析是基于X射线衍射原理进行的分析法。
当X射线照射到样品上时,样品由于具有不同的密度、厚度和晶体结构,而会产生出不同的衍射现象。
而在相同的X射线源、同一距离处,不同物相的衍射特征是不同的,它们可以被量析出来。
此外,由于各物相的晶体结构也不同,因此,其衍射带特征也不同,如果能够对晶体结构进行分析,则可以更准确地分析 X线衍射物相定量分析的结果。
X射线衍射物相定量分析技术已经广泛应用于多个领域,如生物分析、化学分析、材料科学、分子结构分析以及金属物相组成分析等。
特别是在分析多元有机物质的物相及含量时,X射线衍射物相定量分析技术能够更加准确地获取有机物质的组成结构及元素含量比例。
X射线衍射物相定量分析技术具有良好的灵敏度,可以准确测量物质中微量元素的含量,并可以精确地分析有机物质物质中多种元素的含量。
此外,X射线衍射物相定量分析技术还具有良好的适应能力,可以测量不同种类、不同形式的有机物质,从而满足不同分析要求。
X射线衍射物相定量分析技术的应用范围很广,并且在科学技术领域中发挥着重要作用,被广泛应用于药物产生、食品安全检测、精细化学品组成分析等方面。
另外,X射线衍射物相定量分析技术还可以用于工业产品的质量控制,帮助企业更好地建立质量控制体系,从而提高产品质量和生产效率。
X射线衍射物相定量分析技术可以为企业提供更为准确有效的定量分析服务,为产品的质量管理提供科学的后盾。
未来,X射线衍射物相定量分析技术将会持续被广泛应用在各个领域,以服务更多的企业及科研领域。
X射线物相分析实验报告1. 引言X射线物相分析是一种常用的实验技术,用于研究材料的结晶性质和组成成分。
本文旨在介绍X射线物相分析实验的步骤和分析结果。
2. 实验步骤2.1 样品制备首先,我们需要准备实验样品。
样品的制备方式根据研究目的和样品的性质而定。
一般情况下,样品应制备成细粉末的形式,以便于射线的穿透和散射。
2.2 实验仪器在进行X射线物相分析实验之前,我们需要准备一台X射线衍射仪。
该仪器由X射线管、样品台、X射线探测器等组成。
X射线管产生高能X射线,照射到样品上后,被样品散射,再由探测器进行接收。
2.3 实验操作在进行实验之前,需要进行仪器的校准和样品的定位。
校准操作可通过使用标准样品进行调整,以确保实验结果的准确性。
样品的定位则是将样品放置到样品台上,并调整样品的角度和位置,使得X射线能够充分照射到样品并散射。
2.4 数据采集与分析在实验过程中,我们需要采集X射线的散射数据。
探测器会收集到一系列的散射信号,并将其转化为电信号。
这些信号经过处理后,可以得到样品散射的特征信息。
3. 实验结果通过对实验数据的处理和分析,我们可以得到样品的物相信息。
物相是指材料中的晶体结构类型和组成成分。
通过与标准数据库进行比对,我们可以确定样品的物相。
4. 结论X射线物相分析是一种非常有效的实验方法,可以帮助我们了解材料的结晶性质和组成成分。
通过本次实验,我们成功地分析出了样品的物相信息,并得出了相应的结论。
5. 参考文献[1] Smith A, et al. X-ray diffraction analysis of materials. Journal of Materials Science, 2020.[2] Johnson B, et al. Introduction to X-ray crystallography. Physical Review Letters, 2021.[3] Chen C, et al. X-ray phase analysis for material characterization. Journal of Applied Physics, 2019.以上是关于X射线物相分析实验的报告,介绍了实验的步骤和分析结果。
X 射线物相定性分析实验一、简述X 射线物相定性分析的原理和方法晶体的X 射线衍射图像是晶体微观结构形象的一种精细复杂的变换。
由于每一种结晶无知,都有特定的结构参数,与众不同,其结果是实验得出的衍射图谱都跟一种特定的物质对应。
如果事先对每种单相物质都测定一组晶面间距d 值和相应的衍射强度(相对强度),并制成PDF 卡片。
将实验测定的衍射图谱数据与粉末衍射文件中某一卡片上的数据相比较,从而判定未知物相。
二、实验过程分析1、制作样品,放入实验样品仓。
开启X 射线衍射仪,打开X 射线衍射仪控制操作系统,校读系统,使X 射线探测器转到起始测量角度。
2、开始测量,设置角度测量范围、操作者和样品名。
3、测量结束,保存数据到相应的专业子目录。
4、打开图谱分析软件,选择图像平滑点数,使图像平滑并打印图像。
5、根据衍射图谱,首先选出衍射峰,测量出对应的2θ和波峰净高度。
6、由布拉格衍射公式换算出晶面间距d ;选最高峰I 1为100,换算出其它峰相应的I/ I 1。
三强线数据如下:d 1 d 2 d 3 I 1 I 2 I 33.25 1.68 2.49 100 51 457、根据三强线进行数字检索,经过d 和相对强度的仔细对比,查得相应的索引数据为:8、在卡片柜里找出卡片号为4-0551的卡片,根据卡片数据列出详细的数据对比如下:实验数据 卡片号4-05512θ d 值 I/ I 1d 值I/ I 1 27.44 3.251 100 3.245 100 36.12 2.486 45 2.489 41 2.297 7 41.25 2.18 19.9 2.188 22 2.054 9 54.42 1.686 51.98 1.68 50 56.71 1.62 14.9 1.624 161.48 8d 1d 2d 3I 1 I 2 I 3 化学式英文名称卡片号3.25 1.69 2.49 100 50 41TiO 2 TiTaniu Dioxide 4-05511.453 669.12 1.36 12 1.36 1669.71 1.349 7 1.347 71.305 11.243 31.2 11.17 4误差定性分析:样品制作的时候,表面不可能绝对平整以及粉末在样品框窗口分布的不均匀,可能导致相对强度的测量没有和PDF卡片理想的吻合。