一次参数计算公式
- 格式:xls
- 大小:35.00 KB
- 文档页数:1
防洪工程常用计算公式 SANY GROUP system office room 【SANYUA16H-SANYHUASANYUA8Q8-防洪工程常用计算公式在抗洪抢险中,经常遇到一些技术问题,也就是暴雨、洪水、河道、水库的设计洪水、校核洪水、河道过洪能力计算问题,本人把一般常用的水利水电工程计算公式摘录如下,以供大家在抗洪抢险中参考、探讨:㈠暴雨洪水设计⑴暴雨设计:暴雨:12小时降雨量达到30毫米或者24小时降雨量达到50毫米时称为暴雨。
每小时以内的降雨量达到20毫米也称为暴雨。
设计暴雨的计算公式:①设计点雨量计算公式:Htp=KpHt(式中:Ktp——设计点雨量;Kp——皮尔逊曲线值;Ht——最大雨量均值;t——欲求时间;)②设计面雨量计算公式:Ht面=atHt(式中:Ht面——设计面雨量;at——暴雨线性系数;Ht——设计历时点雨量;at、bt——暴雨线性拟合系数;)③暴雨系数计算公式:at=(式中:at、bt——线性拟合参数;F——流域面积;)④多年平均径流量计算公式:Wp=1000yF(式中:Wp——多年平均径流量;y——多年平均径流深;F——流域面积;)⑤设计频率年径流深计算公式:yp=yKp(式中:y——多年平均径流深;Kp——频率模比系数;)⑥多年平均年径流系数计算公式:α=y/x =W/1000Fx(式中:α——多年平均年径流系数;y——年径流深;x——多年平均降雨量;)⑵洪水设计:①洪水特征:一般常用洪峰流量、洪水总量、洪水过程线三个要素表示。
洪水设计的概念:一次降雨形成的洪水过程线,反映洪水的外形,过程线上的最大值就是洪峰流量,用Q表示。
洪峰最高点就是洪峰水位,用Z表示。
洪水过程线和横坐标所包围的面积,经过单位面积换算求得,就是洪水总量,用W表示。
洪水过程线的底宽是洪水总历时,用T表示。
从开始涨水到洪峰流量的历时称为涨水历时,用t1表示。
从洪峰到洪水下落到终止的历时称为落水历时,用t2表示。
板式换热器的计算方法板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。
在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。
目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。
以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。
以下五个参数在板式换热器的选型计算中是必须的:总传热量(单位:kW).一次侧、二次侧的进出口温度一次侧、二次侧的允许压力降最高工作温度最大工作压力如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。
温度T1 = 热侧进口温度* A3 F7 y& G7 S+ QT2 = 热侧出口温度3 s' _% s5 s. T" D0 q4 bt1 = 冷侧进口温度& L8 ~: |; B: t2 M2 w$ zt2= 冷侧出口温度热负荷热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:0 B N/ I" A+ m0 z' H9 ~ (热流体放出的热流量)=(冷流体吸收的热流量)在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。
(1)无相变化传热过程式中Q----冷流体吸收或热流体放出的热流量,W;# Q/ p3 p: I4 ~0 N' I) Wmh,mc-----热、冷流体的质量流量,kg/s;+ Z: I9 b- h9 h" r3 P) {/ ^Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K);6 L8 t6 b3 o& m/ nT1,t1 ------热、冷流体的进口温度,K;T2,t2------热、冷流体的出口温度,K。
(2)有相变化传热过程两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:& w3 v) j4 I4 R一侧有相变化1 Y# e$ B6 c& z% C3 W- W* J两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程式中r,r1,r2--------物流相变热,J/kg;D,D1,D2--------相变物流量,kg/s。
精确度cp单边规格计算公式测量单边的精度一般是 cp的两倍,最大偏差小于0.01 mm,测量单边的精度与产品的厚度有关,一般厚度越厚,精度越高。
单边的标准数值是一次成型,一般单边小于100 mm测量完毕后,会再次进行二次成型。
如果单边不超过100 mm,可以忽略二次成型。
单边厚度为测量厚度数据(宽度)/不到测量厚度数据(长度)*0.5=0.01 mm。
如果单边>100 mm不超过0.5 mm就没有精确度了!这样计算出来就是一个精密度,需要精确到0.5 mm就可以了。
所以大家在使用机器进行测量时要注意精确性,如发现精密测量机存在偏差时要及时调整,避免设备出现问题导致测量结果不准。
因此我们可以计算出各个规格值偏差数值中最大偏差值。
以单边1 mm为例。
1、测量时应保持被测产品的干净,避免沾上灰尘和杂质。
测量完成后,应及时进行清理。
测量时最好将被测工具放在工作台上,不要放在测量床上以及其他可能造成测量误差的位置上。
测量完毕后要仔细检查工具是否干净,如果工具不干净,将无法测量,同时也无法保证加工精度。
一般产品表面都会有灰尘和杂质,如果产品表面有一层保护膜,不会被灰尘和杂质划伤;如果产品表面有一层涂层,不会被油漆所覆盖,很容易就会被灰尘和杂质划伤;如果产品表面有一个金属环或者镀层,不容易被灰尘和杂质所污染;若产品表面有一个凹槽是为了方便被测产品安装。
如被测产品在加工时,无法直接将机器固定在工作台上使用,那么可以将凸起放置在工件上进行标记;如被测产品在使用时无法直接将凸起放置在工件上进行标记,那么可以将凸起放置在被测产品上,然后将凸起放置到工件上进行标记;若被测产品表面上没有安装凸起时没有办法放置进行标记,那么可以将凸起放置在工件上进行标记;同时还需要将所标注部位用磨光机研磨处理一下并使用清水冲洗干净;最后再把被测产品清洗干净之后放入加热器进行烘干处理就可以了;使用精密测量机进行测量的时候可根据实际情况确定精确度及测量机的精度指标。
液压泵和液压马达的主要参数及计算公式液压泵和液压马达是液压系统中的核心部件。
液压泵负责将液压油从储油器中吸入并提供给液压系统,液压马达通过接收液压系统提供的液压油来驱动执行机构,完成所需的工作。
以下是液压泵和液压马达的主要参数及计算公式。
一、液压泵的主要参数及计算公式:1.流量(Q):液压泵的输出流量,通常以升/分钟或立方米/小时为单位。
计算公式为:Q=V*n其中,Q为流量,V为排量,n为转速。
2.排量(V):液压泵每转一圈提供的油液体积。
计算公式为:V=A*L其中,A为泵的活塞面积,L为活塞行程。
3.转速(n):液压泵每分钟转动的圈数。
4.输出压力(P):液压泵提供的最大工作压力。
单位通常为兆帕(MPa)。
5.效率(η):液压泵的输出功率与输入功率之比。
其中,P为液压泵的工作压力,Q为液压泵的流量,P0为液压泵的输入功率。
二、液压马达的主要参数及计算公式:1.转速(n):液压马达的输出转速。
2.扭矩(T):液压马达的输出扭矩。
计算公式为:T=P*V/1000其中,T为扭矩,P为液压马达的工作压力,V为液压马达的排量。
3.输出功率(P):液压马达的输出功率。
计算公式为:P=T*n/1000其中,P为输出功率,T为扭矩,n为转速。
4.效率(η):液压马达的输出功率与输入功率之比。
η=(P*1000)/(P0*n)其中,P为输出功率,P0为输入功率,n为转速。
以上是液压泵和液压马达的主要参数及计算公式。
根据这些参数,我们可以根据液压系统的需求选择适合的液压泵和液压马达,以确保系统的工作效率和性能。
两相接地短路电流的计算两相接地短路电流是指发生两相之间短路,接地故障后的电流大小。
接地故障是电力系统中最常见的故障之一,可能会导致严重的破坏和安全隐患。
因此,计算两相接地短路电流的准确性对于电力系统的设计和保护至关重要。
本文将详细介绍两相接地短路电流的计算方法。
首先,我们需要了解两相接地短路电流的基本概念和公式。
在电力系统中,短路电流指电路中的电流值,当故障发生时,沿着电源供应的路径经过故障点到达接地点的电流。
短路电流通常使用对称分量法计算,其公式如下:I_s=I_0+I_2+I_1其中,I_s是总短路电流,I_0、I_1和I_2分别是零序、一次和二次对称分量电流。
接下来,我们将详细讨论计算两相接地短路电流的各个分量。
1.零序短路电流(I_0):零序短路电流是指零序分量电流通过故障点到达接地点的电流。
计算零序短路电流需要考虑电源的容性接地电流和电网的阻抗参数。
具体计算方法如下:I_0=3*U_n/(X_0+Z_0)其中,I_0是零序短路电流,U_n是电压等级的基准值,X_0是电源的表观电抗,Z_0是电网的表观阻抗。
2.一次对称分量短路电流(I_1):一次对称分量短路电流是指沿着相序顺序通过故障点到达接地点的电流。
计算一次对称分量短路电流需要考虑电源和电网的阻抗参数。
具体计算方法如下:I_1=3*U_n/(X_1+Z_1)其中,I_1是一次对称分量短路电流,U_n是电压等级的基准值,X_1是电源的一次电抗,Z_1是电网的一次阻抗。
3.二次对称分量短路电流(I_2):二次对称分量短路电流是指沿着相序相差120度的次顺序通过故障点到达接地点的电流。
计算二次对称分量短路电流需要考虑电源和电网的阻抗参数。
具体计算方法如下:I_2=3*U_n/(X_2+Z_2)其中,I_2是二次对称分量短路电流,U_n是电压等级的基准值,X_2是电源的二次电抗,Z_2是电网的二次阻抗。
以上为计算两相接地短路电流的基本公式和方法。
ai 训练算力公式AI训练算力公式随着人工智能技术的快速发展,越来越多的应用场景需要进行大规模的AI训练。
而AI训练的核心要素之一就是算力。
算力的大小直接影响着训练模型的效果和速度。
那么如何计算AI训练所需的算力呢?下面将介绍一种常用的AI训练算力公式。
AI训练算力公式的核心是计算每秒钟浮点运算数(FLOPS)。
FLOPS 是衡量计算机性能的指标,它表示每秒钟能够进行的浮点运算的次数。
在AI训练中,我们需要计算的是每秒钟进行的矩阵乘法运算的次数。
AI训练算力公式可以表示为:算力 = 模型参数量× 每个参数的计算量× 训练步数其中,模型参数量表示训练模型中需要学习的参数的数量。
每个参数的计算量表示计算每个参数所需的浮点运算数。
训练步数表示训练模型所需的迭代次数。
我们来计算模型参数量。
模型参数量是指在训练模型中需要学习的参数的数量。
例如,一个卷积神经网络的参数包括卷积核的权重、偏置项等。
在计算模型参数量时,需要考虑每个参数的维度和数量。
模型参数量的计算公式为:模型参数量 = 参数维度1 × 参数维度2 × ... × 参数维度n接下来,我们计算每个参数的计算量。
每个参数的计算量是指计算每个参数所需的浮点运算数。
例如,对于一个矩阵乘法运算,每个元素都需要进行一次乘法和一次加法操作。
因此,每个参数的计算量为2。
对于其他的运算,如激活函数、池化操作等,每个参数的计算量可以根据具体的运算规则进行计算。
我们计算训练步数。
训练步数是指训练模型所需的迭代次数。
一般情况下,训练步数可以根据数据集的大小和训练模型的复杂程度进行估算。
通过以上三个步骤,我们可以得到AI训练所需的算力。
算力的大小直接决定了AI训练的效果和速度。
通常情况下,算力越大,训练模型的效果越好,但同时也需要更多的计算资源和时间。
除了算力,还有其他因素也会影响AI训练的效果和速度。
例如,数据集的质量和大小、训练模型的复杂程度、优化算法的选择等。
1、已完工作预算费用已完工作预算费用BCWP(Budgeted Cost for Work Performed或赢得值(EV,Earned Value))是指在某一时间已经完成的工作(或部分工作),以批准认可的预算为标准所需要的资金总额,由于业主正是根据这个值为承包人完成的工作量支付相应的费用,也就是承包人获得(挣得)的金额,故称为赢得值或挣值。
已完工作预算费用=已完成工作量×预算单价
2、计划工作预算费用计划工作预算费用,简称BCWS(Budgeted Cost for Work Scheduled)或计划费用(PV,Plan Value),即根据进度计划,在某一时刻应该完成的工作,以预算为标准所需要的资金总额,一般来说,除非合同有变更,BCWS在工程实施过程中应保持不变。
计划工作预算费用=计划工作量×预算单价
3、已完工作实际费用已完成工作实际费用,简称ACWP(Actual Cost for Work Performed)或实际成本(AC,Actual Cost),即到某一时刻为止,已完成的工作所实际花费的总金额。
已完工作实际费用=已完成工作量×实际单价
赢得值法三个基本参数:
1 已完工作预算费用 BCWP=B(预算单价)* P(已完工作量)
2 已完工作实际费用 ACWP=A (实际单价)* P(已完工作量)
3 计划工作预算费用 BCWS=B(预算单价)* S(计划工作量)
四个评价指标:
1 费用偏差CV=BCWP-ACWP
2 费用绩效指数CPI=BCWP/ACWP
3 进度偏差SV=BCWP-BCWS
4 进度绩效指数SPI=BCWP/BCWS。
服务器资源测算及计算公式应⽤服务器配置测算及计算公式1 术语和定义1.1 信息系统由计算机、通信设备、处理设备、控制设备及其相关的配套设施构成,按照⼀定的应⽤⽬的和规则,对信息进⾏采集、加⼯、存储、传输、检索等处理的⼈机系统。
1.2 软硬件平台指信息系统运⾏的环境,主要包括硬件(服务器、存储)和软件(操作系统、数据库和中间件)部分。
1.3 ⾮安全区即Internet,此区域允许外⽹⽤户随意访问。
1.4 安全区内⽹,此区域通常不对外提供服务。
1.5 DMZ区(Demilitarized Zone)⼜称⾮军事区,介于⾮安全区与安全区之间,此区域按需对外⽹⽤户提供部分服务。
1.6 FC SAN(Fiber ChannelStorage Area Network)指采⽤光纤通道的存储区域⽹络,是⼀种将存储设备、连接设备和服务器集成在⼀个⾼速⽹络中的技术,SAN作为存储⽹络,与LAN⽹络隔离,主要承担数据存储任务。
1.7 FC Switch(Fibre Channel Switch)指光纤通道交换机,是⼀种⾼速的⽹络传输中继设备,以光纤作为传输介质,是组成FC SAN光纤存储⽹络的光纤交换机。
1.8 HBA(Host Bus Adapter)指主机总线适配器,是⼀个使计算机和存储设备间提供输⼊/输出处理和物理连接的电路板和/或集成电路适配器。
1.9 磁盘阵列(Redundant Arrays of Inexpensive Disks,简称Raid)由多个容量较⼩、速度较慢的磁盘组合成⼀个磁盘组,以提升整体性能和存储空间。
1.10 虚拟机指使⽤系统虚拟化技术,运⾏在⼀个隔离环境中、具有完整硬件功能的逻辑计算机系统。
1.11 负载均衡分为硬件和软件负载均衡,软件负载均衡指通过将负载均衡软件安装在⼀台或多台服务器相应的操作系统上来实现负载均衡,硬件负载均衡是直接将负载均衡设备部署在服务器和外部⽹络之间,专门完成负载均衡任务。
常用锂电参数与计算公式中英对照1、容量(Capacity)容量是指锂电池在压降测试过程中的放电电流下,从满充状态到终止放电的下限电压时锂电池放出的电量,单位“mAh(毫安时)”;容量的计算公式:Capacity(mAh) = I(放电电流) × T(放电时间)× 1000/36002、容量恢复率(Capacity Recovery Rate)容量恢复率是指锂电池在充放次数增加后(即形成了恢复循环),恢复出的容量与第一次充放容量的比值;容量恢复率的计算公式:Capacity Recovery Rate = Recovery Capacity(mAh) / Initial Capacity(mAh)3、内阻(Internal Resistance)内阻是指锂电池在正常使用过程中,介质电流在电池内部流动的个分支不同电位,而产生的阻力,常用的内阻单位为“mΩ(毫欧)”;内阻的计算公式:Internal Resistance(mΩ) = 1.2V (稳态测量电压) / I(放电电流)4、放电曲线(Discharge Curve)放电曲线是指锂电池放电动力学性能的表征,通过曲线可以快速地判断出锂电池在不同电压和放电电流水平下给定时间内放出的能量(容量);放电曲线的计算公式:Discharge Curve = Voltage(V) / Current(A) × Time(h)5、安全性(Safety)安全性是指锂电池对内部、外部和周围环境的安全程度,即在正常使用过程中,是否有可能发生火灾、爆炸等不安全情况;安全性的计算公式:Safety = Current(A) x Voltage(V) / Security Coefficient。
隧道爆破参数如何计算公式隧道爆破是一种常见的爆破作业,用于在地下挖掘隧道或地下工程中使用。
在进行隧道爆破前,需要对爆破参数进行计算,以确保爆破作业的安全和有效性。
本文将介绍隧道爆破参数的计算公式和相关知识。
1. 隧道爆破参数的计算公式。
隧道爆破参数的计算涉及到爆破材料的性质、隧道的尺寸和地质条件等因素。
下面将介绍隧道爆破参数的计算公式。
1.1 炸药量的计算公式。
隧道爆破中炸药量的计算是关键的一步。
炸药量的计算公式如下:炸药量(kg)= 隧道断面积(㎡)×爆破药量(kg/㎡)。
其中,隧道断面积可以根据隧道的尺寸和形状进行计算,爆破药量则是根据地质条件和爆破设计要求确定的。
1.2 起爆药量的计算公式。
起爆药量的计算是为了确保炸药能够在整个隧道中有效起爆。
起爆药量的计算公式如下:起爆药量(kg)= 隧道周长(m)×起爆药量(kg/m)。
起爆药量的计算需要考虑隧道的周长和起爆药的性能参数。
1.3 孔距的计算公式。
孔距是指在隧道爆破中钻孔的间距,孔距的计算公式如下:孔距(m)= 钻孔总长度(m)/ (钻孔数-1)。
孔距的计算需要根据隧道的长度和钻孔的数量进行确定。
2. 隧道爆破参数的影响因素。
隧道爆破参数的计算需要考虑多种因素,包括地质条件、隧道尺寸、爆破材料的性能等。
下面将介绍这些影响因素。
2.1 地质条件。
地质条件是影响隧道爆破参数的重要因素之一。
地质条件包括岩石的硬度、岩层的结构、地下水情况等。
不同的地质条件会对爆破参数的选择和计算产生影响。
2.2 隧道尺寸。
隧道的尺寸也是影响爆破参数的重要因素。
隧道的尺寸包括断面积、长度、高度等。
不同尺寸的隧道需要根据其具体情况进行爆破参数的计算。
2.3 爆破材料的性能。
爆破材料的性能包括炸药的爆炸速度、爆炸能量、起爆性能等。
这些性能参数会直接影响爆破参数的选择和计算。
3. 隧道爆破参数的实际应用。
隧道爆破参数的计算是隧道爆破设计的重要环节,它直接关系到爆破作业的安全和有效性。
选择切削参数和常用计算公式切削参数是在切削过程中对刀具、工件和切削液等条件所做的一系列选择,它们直接影响着切削效果和加工质量。
常用的切削参数包括:切削速度、进给量、切削深度、刀具半径、切削角度等。
下面将介绍一些常用的切削参数及其计算公式。
1. 切削速度(Cutting Speed)切削速度是指刀具单位时间内划过工件表面的长度。
在机械加工中,切削速度通常用单位时间刀具切削长度来表示,单位是米/分钟(m/min)或英尺/分钟(ft/min)。
切削速度的选择主要取决于材料的切削性能、机床的性能以及刀具的材料和加工质量要求等因素。
常用的切削速度计算公式如下:切削速度(m/min)= π×刀具直径(mm)×转速(r/min)/ 10002. 进给量(Feed Rate)进给量是指单位时间内刀具在工件表面移动的距离,通常用毫米/转(mm/rev)或英寸/转(inch/rev)来表示。
进给量的选择要根据切削性能、切削深度和加工质量要求等因素进行综合考虑。
常用的进给量计算公式如下:进给量(mm/rev)= 进给速度(mm/min)/ 转速(r/min)3. 切削深度(Cutting Depth)切削深度是指刀具在工件上切削时,刀具刀尖与工件表面之间的距离,通常用毫米(mm)或英寸(inch)来表示。
切削深度的选择应根据工件材料的切削性能、机床的性能以及刀具的材料和加工质量要求等因素进行综合考虑。
4. 刀具半径(Tool Radius)刀具半径是指刀具切削边界上切削物质经过切削力的作用下被切除的物质所产生的刀具延伸部分的半径,通常用毫米(mm)或英寸(inch)来表示。
刀具半径直接影响刀具与工件之间的剪切角度和切削力的大小。
5. 切削角度(Cutting Angle)切削角度是指刀具刃口与工件表面之间的夹角,它的大小对切削力、切屑形态和切削温度等具有显著的影响。
常见的切削角度有正角、负角和零角等。
接线方式:,将输电线路末端三相独立悬浮公式:零序导纳;y=I/(3U)---------------------I和U为实测零序电导;g=W/(3U2)------------------W为实测损耗零序电纳;b=y2-g2零序电容;C=b/(2∏f)二、线间互感阻抗将线路1 和线路2 末端都短路接入大地,将电源的零相“Uo”接到仪器的“Uo” 接线端子再接入大地。
公式:互感阻抗:Z=U/I I;加压线路中的电流。
U;非加压回路的感应电压互感:M=Z/(2∏f),将输电线路末端三相短路并接入大地,将电源的零相“O”接到仪器的“Uo” 接线端子。
公式:零序电阻:Ro=3*W/I02R=Z* COSΦ零序阻抗:Z=3*U o/I o零序电抗: X=Z*SINΦ=Z2-R2四、正序阻抗将线路末端短路悬浮,将三相电源的零相“O”接到仪器的“Uo”接线端子。
公式:正序阻抗:Z=U/( 3 *I)正序电阻: R=W/(3*I2)=Z* COSΦ正序电抗: X=Z2-R2五、正序电容将线路末端独立悬浮,将三相电源的零相“O”接到仪器的“Uo”接线端子。
公式:正序电导:g=W/U2正序导纳:y= 3 *I/U正序电纳:b=y2-g2正序电容:C=b/(2∏f)六、线间电容将单相电源的“U”接到仪器的“Ia 入”接线端子,将输电线被测相其中一相接到仪器的“Ia 出”、“Ua”接线端子,将输电线路被测相的另一相接到电源的零相“O”并接到仪器的“Uo”接线端子,将输电线末端独立悬浮公式:线间导纳: y=I/U线间电导: g=y*COSΦ线间电纳: b=y*SINΦ线间电容: c=b/2Πf七、线间阻抗将单相电源的“U”接到仪器的“Ia 入”接线端子,将输电线被测相其中一相接到仪器的“Ia 出”、“Ua”接线端子,将输电线另一相接到电源的零相并接到仪器的“Uo”接线端子。
将输电线末端短路悬浮。
公式:线间阻抗:Z=U/I/2 (折算到单条线)线间电阻: R=Z*COSΦ线间电抗: X=Z*SINΦ八、线地阻抗将单相电源的“U”接到仪器的“Ia 入”接线端子,将输电线被测相接到仪器的“Ia 出”、“Ua”接线端子,将输电线路被测相末端接地,电源的零相接到仪器的“Uo”接线端子再接入大地。
环评中常用到的计算公式1、起尘量计算方法(一)建设工地起尘量计算:()⎪⎭⎫⎝⎛⨯⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛⨯⨯⨯=43653653081.0T w V s P E式中:E —单辆车引起的工地起尘量散发因子,kg/km ;P —可扬起尘粒(直径<30um)比例数;石子路面为,泥土路面为; s —表面粉矿成分百分比,12%;V —车辆驶过工地的平均车速,km/h ; w —一年中降水量大于的天数;T —每辆车的平均轮胎数,一般取6。
(二)道路起尘量计算:⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯=4139.0823.0000501.0T U V E式中:E —单辆车引起的道路起尘量散发因子,kg/km ; V —车辆驶过的平均车速,km/h ; U —起尘风速,一般取5m/s ;T —每辆车的平均轮胎数,一般取6。
(三)一年中单位长度道路的起尘量计算:()()lQ Q E A l P d D C Q A c A ⨯=⨯⨯-⨯⨯-⨯⨯=-61024式中:Q A —一年中单位长度道路的起尘量,t ; C —每小时平均车流量,辆/h ; D —计算的总天数,365天; d —一年中降水量大于的天数;P —道路级别系数,如内环线以内可取,内外环线之间取; Ac —消尘系数,如内环线以内可取,内外环线之间取; l —道路长度,km;Q —道路年起尘量,t 。
(四)煤堆起尘量计算:⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡⨯=15255905.105.0f d D V E式中:E —单辆车引起的煤堆起尘量散发因子,kg/km ; V —车辆驶过煤堆的平均车速,km/h ; d —每年干燥天数,d ; f —风速超过h 的百分数。
(五) 煤堆起尘量计算:Q m =式中:Qm —煤堆起尘量,mg/s ;U-临界风速,m/s ,取大于s ; S-煤堆表面积,m 2;ω-空气相对湿度,取60%; W-煤物料湿度,原煤6%。
电机参数导程计算公式导程是指电机在一次旋转中所移动的线性距离,通常用毫米(mm)或英寸(in)来表示。
导程是电机参数中的重要指标之一,对于电机的性能和应用有着重要的影响。
在实际应用中,需要根据电机的参数来计算导程,以便确定电机的运动范围和精度。
本文将介绍电机参数导程计算公式,并对其进行详细的解析和应用。
电机参数导程计算公式通常可以表示为:导程 = 螺距×步进角 / 360。
其中,导程是电机的线性移动距离,单位为毫米(mm)或英寸(in);螺距是螺杆每转一圈所移动的距离,单位为毫米(mm)或英寸(in);步进角是电机每步进一次所转动的角度,单位为度(°)。
在这个公式中,螺距和步进角是电机的两个重要参数。
螺距是螺杆每转一圈所移动的距离,它决定了电机的线性移动距离。
通常情况下,螺距越大,电机的导程也就越大。
而步进角是电机每步进一次所转动的角度,它决定了电机的步进精度。
通常情况下,步进角越小,电机的步进精度也就越高。
在实际应用中,需要根据电机的参数来计算导程。
首先,需要确定电机的螺距和步进角。
螺距通常可以在电机的技术参数表中找到,而步进角通常可以通过电机的驱动器设置来获取。
然后,根据上述公式进行计算,即可得到电机的导程。
以一个具体的例子来说明。
假设某电机的螺距为5毫米(mm),步进角为1.8度(°),则可以通过上述公式计算得到该电机的导程为:导程 = 5 × 1.8 / 360 = 0.025 mm。
这意味着,该电机在一次旋转中所移动的线性距离为0.025毫米(mm)。
通过这个计算,可以清楚地了解电机的运动范围和精度,从而更好地应用于实际场景中。
除了上述的计算公式外,还有一些特殊情况需要特别注意。
例如,对于步进电机而言,由于其特殊的结构和工作原理,导程的计算可能会受到一些限制。
在这种情况下,需要根据实际情况进行修正和调整,以确保计算结果的准确性和可靠性。
总之,电机参数导程计算公式是电机应用中的重要工具之一,它可以帮助我们更好地了解电机的性能和特性,从而更好地应用于实际场景中。
fit计算公式1 FIT(失效率,failures in time)指的是1个(单位)的产品在1*10^9小时内出现1次失效(或故障)的情况。
有个产品呢在使用1亿小时之内,只发生了1次失效,那我们就称这个产品在该时间段内的失效率是1fit。
记住,既然是时基失效,那一切抛开时间谈失效率的行为都是耍流氓,毕竟可靠也要有个限度是吧?好,搞清这个的定义以后呢,我们来看看跟它对应的一个很重要的可靠性概念MTBF(Mean Time Between Failure),也就是它的倒数(这个倒数的情况是要在产品的寿命服从指数分布的情况下)。
1Fit=1次失效/10^9小时,失效模式与影响分析(英文:Failure mode and effects analysis,FMEA)失效率是指工作到某一时刻尚未失效的产品,在该时刻后,单位时间内发生失效的概率。
一般记为λ,λ=失效比例/失效所用的时间。
菲特(fit故障率单位),用来衡量正常工作的产品在规定时间t之后,产品中丧失其规定的功能的产品所占比例,其单位是菲特(fit),定义是在10^9h内,出现一次故障为1fit。
MTBF=1/λMTBF(平均故障间隔时间)时表示可修复产品可靠性的一个基本参数,它的定义是在规定条件下和规定的时间内产品的寿命单位总数与故障次数之比。
MTBF越长,说明在相同的使用时间内发生失效的次数就越小,也就是这个产品在单位时间内发生故障的概率越小,也就是说这个产品在对应时间内的FIT值越小,这是好事,也是可靠性工程师一直追求的目标。
MTBF讲清楚了,我们再回到最开始的FIT报告,FIT报告一般都会要求说写明条件,什么条件下(这个条件一般指的是环境条件,如温度,湿度等等),什么置信度的情况下,使用多长时间的得出的一个值。
而这个值就是我们需要的在产品的可靠性设计中需要考虑到的,是否能够满足我们对产品的使用要求,而这个值在正常使用中有三种算法。
第一种,通过经验或者国际上的通用标准参考文件,考虑复杂产品属于并联系统还是串联系统,如果是串联系统的话呢,此时我们就要针对各个部分结构件的失效率参考值,将他们加起来(串联系统的失效率是累加的,因为不存在冗余),此刻我们得到的这个FIT值会非常的大,此时的FIT值我们仅作为产品研发设计阶段的一个参考值,实际不会以这个来衡量我们产品的真实失效情况。