耦合带状线及耦合微带线
- 格式:ppt
- 大小:1.38 MB
- 文档页数:45
微带线(microstrip)和带状线(stripline)微带线剖面图适合制作微波集成电路的平面结构传输线。
与金属波导相比,其体积小、重量轻、使用频带宽、可靠性高和制造成本低等;但损耗稍大,功率容量小。
60年代前期,由于微波低损耗介质材料和微波半导体器件的发展,形成了微波集成电路,使微带线得到广泛应用,相继出现了各种类型的微带线。
一般用薄膜工艺制造。
介质基片选用介电常数高、微波损耗低的材料。
导体应具有导电率高、稳定性好、与基片的粘附性强等特点。
两个方面的作用在手机电路中,一条特殊的印刷铜线即构成一个电感微带线,在一定条件下,我们又称其为微带线。
一般有两个方面的作用:一是它把高频信号能进行较有效地传输;二是与其他固体器件如电感、电容等构成一个匹配网络,使信号输出端与负载很好地匹配。
1.PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。
影响PCB 走线特性阻抗的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。
微带线2.当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感的传输线,而且在高频下会有趋肤效应和电介质损耗,这些都会影响传输线的特征阻抗。
按照传输线的结构,可以将它分为微带线和带状线。
在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。
最常使用的微带线结构有4种:表面微带线(surfacemicrostrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。
2.微带线是位于接地层上由电介质隔开的印制导线,它是一根带状导线(信号线).与地平面之间用一种电介质隔离开。
印制导线的厚度、宽度、印制导线与地层的距离以及电介质的介电常数决定了微带线的特性阻抗。
如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。
微带线1.随便介绍一下①用途:微带功分器、微带耦合器、微带滤波器、PCB板布线、微带天线...②优点:易于有源、无源电路集成③走线原则:①尽量短②尽量平滑③尽量正交微带布线的弯曲,宽度突变,接头处会引入寄生电抗,影响匹配,可以通过去处一部分导体来实现补偿,可借鉴下图:2.选用指南微带板导体一般选用金银铜这三种,最常用的铜箔厚度有35um和18um两种。
铜箔越薄,越易获得高的图形精密度,所以高精密度的微波图形应选用不大于18um的铜箔。
目前的铜箔类型有压延铜箔和电解铜箔两类。
压延铜箔较电解铜箔更适合于制造高精密图形,所以在材料订货时,可以考虑选择压延铜箔的基材板。
压延法制造的铜箔要求铜纯度高(一般≥99.9%),铜箔弹性好,适用于挠性板、高频信号板等高性能PCB的制造,在产品说明书中用字母“W”表示。
电解铜箔则用于普通PCB的制造,铜的纯度稍低于压延法所用的铜纯度(一般未99.8%),并用字母“E”表示3.高段位玩法在射频微波电路中,微带线结构可以模拟实现集总参数元件;若传输线长度<λ/8,则给定频率时,L正比于Z0,C反比于Z0,若使Z0很大,则L很大,C 很小以至于可以忽略。
故串联电感可用高阻抗微带线代替,同理并联电容可用低阻抗微带线实现。
如上图,一段半波长微带线跨接在主传输线上,两端开路,其中长度<λ/4的相当于电容,而>λ/4的相当于电感。
带状线1.结构:一般是微带线上在盖一层相同厚度的基板,上下都接地,也可以看成是同轴线的一种;带状线也支持高阶TM模和TE模,因此需要避免,可采用:一、短路螺钉将上下两面地短路;二、两平面间距离小于λ/4。
2.用途:常用于耦合器3.优点:封闭的电磁场,故损耗比微带线小,相同频率下比微带更小型化;4.其余各项要求性能与微带线相似。
微带线和带状线(microstrip and stripline)(2008-06-07 16:06:09)1.微带线是一根带状导(信号线).与地平面之间用一种电介质隔离开。
如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。
2.带状线是一条置于两层导电平面之间的电介质中间的铜带线。
如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的.单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关微带线速度块,抗干扰能力弱,带状线速度慢些,抗干扰能力强些因为微带线一面是FR4(或者其他电介质)一面是空气(介电常数低)因此速度很快,利于走对速度要求高的信号(例如差分线,通常为高速信号,同时抗干扰比较强)带状线两边都有电源或者地层,因此阻抗容易控制,同时屏蔽较好,但是信号速度慢些。
通常同样的介质条件微带线的损耗小(线宽),带状线的损耗大(线细,有过孔)。
当设计一个电路板时,首先要考虑的是需要多少布线层(routing layer)及电源平面(在可接受的成本价格内)。
层数之决定在于功能规格、杂讯免疫力、信号分类、需布线之net、trace数目、阻抗之控制、VLSI元件密度、汇流排之布线,等等。
适当使用microstrip及stripline方式以在PCB层面压制射频辐射。
在PCB内之平面(Ground或VCC)是压制PCB内Common-mode RF之重要方法之一,理由是这平面会降低高频电源分布阻抗(power distribution impedance)。
Microstrip:指PCB之外层的trace,经一介电物质邻接一整平面(solid plane). Microstrip方式提供PCB上之RF压制,同时也可容许比sctripline较快之clock及逻辑讯号。
此较快之clock及逻辑讯号是因为较小之耦合电容及较低之空载传输延迟。
微带线(microstrip)和带状线(stripline)微带线剖面图适合制作微波集成电路的平面结构传输线。
与金属波导相比,其体积小、重量轻、使用频带宽、可靠性高和制造成本低等;但损耗稍大,功率容量小。
60年代前期,由于微波低损耗介质材料和微波半导体器件的发展,形成了微波集成电路,使微带线得到广泛应用,相继出现了各种类型的微带线。
一般用薄膜工艺制造。
介质基片选用介电常数高、微波损耗低的材料。
导体应具有导电率高、稳定性好、与基片的粘附性强等特点。
两个方面的作用在手机电路中,一条特殊的印刷铜线即构成一个电感微带线,在一定条件下,我们又称其为微带线。
一般有两个方面的作用:一是它把高频信号能进行较有效地传输;二是与其他固体器件如电感、电容等构成一个匹配网络,使信号输出端与负载很好地匹配。
1.PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。
影响PCB 走线特性阻抗的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。
微带线2.当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感的传输线,而且在高频下会有趋肤效应和电介质损耗,这些都会影响传输线的特征阻抗。
按照传输线的结构,可以将它分为微带线和带状线。
在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。
最常使用的微带线结构有4种:表面微带线(surfacemicrostrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。
2.微带线是位于接地层上由电介质隔开的印制导线,它是一根带状导线(信号线).与地平面之间用一种电介质隔离开。
印制导线的厚度、宽度、印制导线与地层的距离以及电介质的介电常数决定了微带线的特性阻抗。
如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。
带状线耦合器的设计带状线耦合器(Strip-line Coupler)是一种常用的微波器件,用于将一路输入信号(主路)耦合到两个输出信号(分路)上。
它通常由两条平行金属线和一个与之相邻的金属板构成,所有的线和板都被封装在一个介质层内。
带状线耦合器的设计需要考虑如下几个重要因素:1. 耦合效率:耦合效率表示主路信号在耦合过程中传输到分路上的效率。
提高耦合效率可以增加带状线耦合器的性能。
耦合效率取决于耦合区域的长度、耦合线宽度、耦合板的相对位置等因素。
通过合理设计这些参数,可以最大程度地提高耦合效率。
2. 插入损耗:插入损耗是指主路到分路的转换过程中信号的损耗。
过高的插入损耗可能会导致整个系统的性能下降。
降低插入损耗可以通过增加耦合器的长度来实现,但这会增加器件的尺寸,因此需要在设计过程中进行权衡。
3. 匹配:带状线耦合器需要与输入输出端口进行匹配,以避免信号反射和信号衰减。
匹配是通过合适的阻抗匹配设计来实现的,一般采用特定的线宽和特定板的相对位置,以保证输入输出端口的阻抗与主路端口的阻抗一致。
4. 相位平衡和幅度平衡:在某些应用中,需要保证带状线耦合器在输出端口上的信号相位和幅度平衡。
相位平衡和幅度平衡可以通过在带状线耦合器的设计中加入相应的调节结构来实现。
5. 耦合度:耦合度表示主路信号传输到某一个分路上的程度。
耦合度可以通过合适的结构设计来实现,例如增加耦合区域的长度、调节耦合线的相对位置等。
综上所述,带状线耦合器的设计需要综合考虑耦合效率、插入损耗、匹配、相位平衡和幅度平衡以及耦合度等因素。
在实际设计中,可以利用仿真软件进行优化设计,通过调整耦合器的结构参数来满足特定的要求。
此外,实验验证也是一个重要的步骤,通过测量带状线耦合器的参数和性能,可以进一步优化设计并验证仿真结果的准确性。