模糊控制的理论基础3
- 格式:ppt
- 大小:213.00 KB
- 文档页数:6
模糊控制理论的基础和发展历程模糊控制理论是一种基于模糊逻辑和模糊集合的控制方法,它最早由日本学者山中伸彦于1965年提出,随后发展成熟并得到广泛应用。
模糊控制理论在现代控制领域占据重要地位,本文将探讨其基础和发展历程。
一、模糊控制理论的基础模糊控制理论的基础是模糊逻辑和模糊集合。
模糊逻辑是模糊控制理论的核心基础,它扩展了传统二进制逻辑,允许不确定性的表达和推理。
模糊逻辑中的概念和推理规则基于模糊集合的理论,模糊集合是对现实世界中模糊、不确定性和模糊性的数学上的描述。
二、模糊控制理论的发展历程1. 初期研究(1965-1980年)最早的模糊控制理论由山中伸彦提出,并于1965年发表在《计算机硬件及其应用》杂志上。
他提出了模糊集合和模糊逻辑的基本概念,并应用于水蒸气发生器的控制。
随后,日本学者田中秀夫在1969年进一步发展了模糊控制的理论框架和数学推理方法。
2. 理论完善与应用推广(1980-1990年)在上世纪八九十年代,模糊控制理论得到了进一步的完善和推广。
日本学者松井秀树于1985年提出了基于模糊推理的模糊PID控制器,极大地推动了模糊控制在实际应用中的发展。
同时,国外学者也开始关注和研究模糊控制理论,如美国学者Ebrahim Mamdani和Jerome H. Friedman等人。
3. 理论拓展与应用拓宽(1990年至今)进入21世纪,随着计算机技术和人工智能的发展,模糊控制理论得到了进一步的拓展和应用拓宽。
研究者们提出了各种新的模糊控制方法和算法,如模糊神经网络控制、模糊遗传算法控制等。
同时,模糊控制理论在各个领域得到了广泛应用,如工业控制、交通管理、机器人控制等。
总结模糊控制理论基于模糊逻辑和模糊集合,提供了一种处理不确定性和模糊性问题的有效方法。
经过多年的发展和完善,模糊控制理论在现代控制领域得到了广泛应用。
未来,随着人工智能和自动化技术的不断发展,模糊控制理论将继续发挥重要作用,并不断拓展其应用范围和理论框架。
模糊控制基本原理模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础控制,它是 模糊数学在控制系统中应用,是一种非线性智能控制。
模糊控制是利用人知识对控制对象进行控制一种方法,通常用“辻条 件,then 结果”形式来表现,所以又通俗地称为语言控制。
一般用于无法 以严密数学表示控制对象模型,即可利用人(熟练专家)经验和知识来很好 地控制。
因此,利用人智力,模糊地进行系统控制方法就是模糊控制。
模 糊控制基本原理如图所示:模糊控制系统原理框图它核心部分为模糊控制器。
模糊控制器控制规律由计算机程序实现, 实现一步模糊控制算法过程是:微机采样获取被控制量精确值,然后将此 量与给定值比较得到误差信号E ; 一般选误差信号E 作为模糊控制器一个 输入量,把E 精确量进行模糊量化变成模糊量,误差E 模糊量可用相应模 糊语言表示;从而得到误差E 模糊语言集合一个子集e (e 实际上是一个模 糊向量);再由e 和模糊控制规则R (模糊关系)根据推理合成规则进行模糊决策,得 到模糊控制量u 为:u = eoR式中U 为一个模糊量;为了对被控对象施加精确控制,还需要将模糊 量U控制对象进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。
这样循环下去,就实现了被控对象模糊控制。
模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础一种计算机数字控制。
模糊控制同常规控制方案相比,主要待点有:(1)模糊控制只要求掌握现场操作人员或有关专家经验、知识或操作数据,不需要建立过程数学模型,所以适用于不易获得精确数学模型被控过程,或结构参数不很清楚等场合。
(2)模糊控制是一种语言变量控制器,其控制规则只用语言变量形式定性表达,不用传递函数与状态方程,只要对人们经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。
从中可见,随着实验次数n 的增加,27岁对“青年人”的频率基本稳定在0.78附近,近似可取()78.027~=A μ。
②例证法此法是扎德教授于1972年提出的。
基本思想—从模糊子集~A的有()x A ~μ的值,估计出论域U 上~A 的隶属函数。
例如:取论域U 是实数域R 中的一部分[0,100], ~A 是U 上―较大的数‖,虽然~A 是U 上的模糊子集。
为确定()x A ~μ的分布,选定几个语言真值(即一句话为真的程度)中的一个,来回答[0,100]中的某数是否算―较大‖。
如果语言真值分为―真的‖、―大致真的‖、―半真半假‖、―大致假的‖、“假的”。
把这些语言真值分别用[0,1]之间的数字表示,即分别为1,0.75,0.5,0.25和0。
对[0,100]用的αϕ个不同的数都作为样本进行询问,就可得~A 的模糊分布()x A ~μ的离散表示法。
③专家评分法(德尔菲法)该法40年代以来就已广泛应用于经济与管理科学的各个领域,典型的例子是在体操比赛中对运动员的评分,“技术好”是运动员集上的一个模糊 ,所有评委打分的平均值(有时去掉一个最高分和一个最低分)就是运动员“技术好”的隶属度。
这种方法也可以用来求模糊分布,在应用时,为了区别专家的学术水平和经验的多少,还可以采用加权平均法。
§2—2 模糊子集的特性及运算法则前面已讨论过普通集合的基本运算,下面对模糊子集的运算另作定义。
一、 模糊子集的运算法则 ① Fuzzy 子集的包含与相等设~A 、~B 为论域U 上的两个模糊子集,对于U 中的每一个元素x ,都有()x A ~μ≥()x B ~μ,则称~A 包含~B ,记作~A ⊇~B 。
如果,~A ⊇~B 且~B ⊇~A ,则说~A 与~B 相等,记作~A =~B 。
或者,若对所有x ∈U ,都有()x A ~μ=()x B ~μ,则~A =~B 。
②模糊子集的并、交、补运算设~A 、~B 为论域U 上的两个模糊子集,规定~A ~B 、~A ~B 、~A 的隶属函数分别为~~BAμ、~BAμ、~A μ,并且对于U 的每一个元素x 都有~~BAμ()∆x ()x A ~μ∨()x B ~μ=max[()x A ~μ,()x B ~μ] —~A ,~B 的并~~BAμ()∆x ()x A ~μ∧()x B ~μ=min[()x A ~μ,()x B ~μ]— ~A ,~B 的交~Aμ()∆x 1–()x A ~μ —~A 的补eg,设论域U={}4321,,,x x x x ,~A 、~B 是论域U 上的两个模糊集。
智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制?2.智能控制系统有哪几种类型,各自的特点是什么?3.比较智能控制与传统控制的特点。
4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能。
1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。
智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。
智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。
是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。
2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。
(2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。
(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务。
3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。
在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。
在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。
模糊控制——(1)基本原理1、模糊控制的基本原理模糊控制是以模糊集理论、模糊语⾔变量和模糊逻辑推理为基础的⼀种智能控制⽅法,它是从⾏为上模仿⼈的模糊推理和决策过程的⼀种智能控制⽅法。
该⽅法⾸先将操作⼈员或专家经验编成模糊规则,然后将来⾃传感器的实时信号模糊化,将模糊化后的信号作为模糊规则的输⼊,完成模糊推理,将推理后得到的输出量加到执⾏器上。
2、模糊控制器模糊控制器(Fuzzy Controller—FC):也称为模糊逻辑控制器(Fuzzy Logic Controller—FLC),由于所采⽤的模糊控制规则是由模糊理论中模糊条件语句来描述的,因此模糊控制器是⼀种语⾔型控制器,故也称为模糊语⾔控制器(Fuzzy Language Controller—FLC)。
(1)模糊化接⼝(Fuzzy interface)模糊控制器的输⼊必须通过模糊化才能⽤于控制输出的求解,因此它实际上是模糊控制器的输⼊接⼝。
它的主要作⽤是将真实的确定量输⼊转换为⼀个模糊⽮量。
(2)知识库(Knowledge Base—KB)知识库由数据库和规则库两部分构成。
①数据库(Data Base—DB)数据库所存放的是所有输⼊、输出变量的全部模糊⼦集的⾪属度⽮量值(即经过论域等级离散化以后对应值的集合),若论域为连续域则为⾪属度函数。
在规则推理的模糊关系⽅程求解过程中,向推理机提供数据。
②规则库(Rule Base—RB)模糊控制器的规则司基于专家知识或⼿动操作⼈员长期积累的经验,它是按⼈的直觉推理的⼀种语⾔表⽰形式。
模糊规则通常有⼀系列的关系词连接⽽成,如if-then、else、also、end、or等,关系词必须经过“翻译”才能将模糊规则数值化。
最常⽤的关系词为if-then、also,对于多变量模糊控制系统,还有and等。
(3)推理与解模糊接⼝(Inference and Defuzzy-interface)推理是模糊控制器中,根据输⼊模糊量,由模糊控制规则完成模糊推理来求解模糊关系⽅程,并获得模糊控制量的功能部分。
模糊控制在配电网自动化中的应用研究随着科技的不断进步和电力需求的不断增长,配电网的自动化程度越来越高。
而在配电网自动化的过程中,模糊控制技术成为一种重要的手段,可以有效地提高系统的稳定性和运行效率。
本文将通过对模糊控制在配电网自动化中的应用研究,探讨其原理、方法和实际应用。
一、模糊控制原理模糊控制是一种基于模糊逻辑的控制方法,其理论基础是模糊集合理论。
与传统的PID控制相比,模糊控制可以更好地应对系统存在的非线性、时变和模型不确定性等问题。
其核心思想是将模糊逻辑运用于控制决策,通过建立模糊规则库和模糊推理来实现对系统的控制。
二、模糊控制方法在配电网自动化中,模糊控制的方法主要包括模糊建模、模糊控制规则的设计和模糊推理等。
首先,需要根据系统的特点和需求建立模糊控制系统的模型,并确定输入和输出的模糊集合。
然后,通过专家经验和实际数据构建模糊控制规则库,将模糊集合与控制动作相对应。
最后,通过模糊推理的方法,将模糊集合映射为模糊控制器的输出,并实现对配电网的自动化控制。
三、模糊控制在配电网自动化中的应用1. 配电网电压控制配电网中的电压控制是一个常见的问题,传统的电压控制方法往往需要依赖精确的物理模型和准确的参数,而这在实际应用中往往难以实现。
而模糊控制技术可以通过模糊规则实现对电压的控制,通过调节发电机的输出功率或发电机的励磁电流来实现电压的稳定控制,在不精确模型和参数的情况下能够保持较好的控制效果。
2. 配电网负荷均衡配电网在供电过程中,负荷的不平衡会导致电力质量下降,甚至影响到系统的安全稳定运行。
模糊控制技术可以通过对负荷进行实时监测和预测,调节不同支路的功率输出,实现负荷的均衡分配。
通过控制支路的开关状态和功率分配,可以在满足用电需求的前提下,有效地减少负荷不平衡对系统的影响。
3. 配电网故障检测与诊断配电网自动化中的一个重要任务是对系统中的故障进行及时检测和诊断。
传统的故障检测方法往往需要依赖精确的模型和完善的监测设备,而在实际应用中往往存在一定的不确定性和复杂性。
使用Matlab进行模糊控制系统设计引言:近年来,随着科学技术的快速发展和应用场景的不断扩展,控制系统设计成为众多领域中的热点问题之一。
而模糊控制作为一种有效的控制方法,在自动化领域得到了广泛的应用。
本文将介绍如何使用Matlab进行模糊控制系统设计,旨在帮助读者更好地理解和运用这一方法。
一、模糊控制基础1.1 模糊理论概述模糊理论是由日本学者庵功雄于1965年提出的一种描述不确定性问题的数学工具。
模糊控制是指在系统建模和控制设计过程中,使用模糊集合和模糊规则进行推理和决策,从而实现对复杂、非线性和不确定系统的控制。
1.2 模糊控制的优势相比于传统的控制方法,模糊控制具有以下优势:- 模糊控制能够处理复杂、非线性和不确定系统,适用范围广。
- 模糊控制不需要精确的系统数学模型,对系统环境的变化较为鲁棒。
- 模糊控制方法简单易懂,易于实现和调试。
二、Matlab在模糊控制系统设计中的应用2.1 Matlab模糊工具箱的介绍Matlab提供了一个专门用于模糊逻辑和模糊控制设计的工具箱,该工具箱提供了丰富的函数和命令,使得模糊控制系统的设计过程更加简单和高效。
2.2 Matlab模糊控制系统设计流程在使用Matlab进行模糊控制系统设计时,可以按照以下步骤进行:1) 确定模糊控制系统的输入和输出变量;2) 设计模糊集合和决策规则;3) 确定模糊推理的方法和模糊控制器的类型;4) 设计模糊控制器的输出解模糊方法;5) 对设计好的模糊控制系统进行仿真和调试。
2.3 Matlab中常用的模糊控制函数和命令为方便读者进行模糊控制系统的设计和实现,Matlab提供了一系列常用的函数和命令,如:- newfis:用于创建新的模糊推理系统;- evalfis:用于对输入样本进行推理和解模糊;- gensurf:用于绘制模糊控制系统的输出曲面;- ruleview:用于直观地查看和编辑模糊规则等。
三、使用Matlab进行模糊控制系统设计的案例分析为了帮助读者更好地理解和运用Matlab进行模糊控制系统设计,本节将以一个实际案例进行分析。
模糊控制方法介绍模糊控制方法是一种在模糊集合论、模糊语言变量及模糊逻辑推理基础上形成的计算机数字控制方法。
模糊控制是一种智能的、非线性的控制方法。
与传统的控制方式相比,模糊控制有着很多的优势,它更加适用于复杂的、动态的系统,模糊控制逐渐成为了一种重要而且有效的控制方法。
本文将从组成部分、基本原理、设計方法等方面介绍模糊控制这种方法。
标签:交通工程;PLC控制;模糊控制1 引言对于无法使用精确语言及已有规律描述的复杂系统,将借助不精确的模糊条件语言来表述,这便产生了模糊控制。
传统的自动控制器需要建立被控对象准确的数学模型。
然而在实际上,即使是稍微复杂点的系统,它的影响因素也都是较为复杂的、多样的,这样就很难建立出精确的数学模型。
因此,模糊控制方法就应运而生。
2 模糊控制的工作原理模糊控制的核心是模糊控制器,它的控制规律是由计算机程序来实现的。
首先需要将所有监测出的精确量转换成为适应模糊计算的模糊量,将得到的模糊量,通过模糊控制器进行计算,然后再将这些经模糊控制器计算得到的模糊量再次转换为精确量,这样就完成了一级模糊控制。
然后等待下一次采样,再进行上述过程,如此循环,实现对被控对象的模糊控制[1]。
模糊控制原理图如下:3 模糊控制步骤及特点步骤1:对输入量进行模糊化处理;步骤2:创建模糊规则;步骤3:实施模糊推理;步骤4:输出量的反模糊化处理。
模糊控制方法主要是由模糊化,模糊推理,清晰化三个部分构成。
模糊化:在模糊控制算法当中,模糊控制规则所使用的不是具体的、精确的数字量,而是模糊的语言量,使用的是不确定的语言形式。
这就需要将得到的准确量转换为模糊的语言量。
这个过程需要遵循一定的规则首先建立隶属度函数,然后根据所建立的隶属度函数将精确的输入量转换成为模糊量。
模糊推理的过程类似于人类思考推理的过程,它是模糊控制器中的精髓。
清晰化又可以叫做解模糊化,清晰化的过程与模糊化的过程正好相反,它是由将模糊推理得到的模糊结果又转换成了精确量。
模糊理论(Fuzzy Logic)目录●模糊的基本概念●模糊理论的发展●模糊理论的基本精神●模糊理论至今的应用1、模糊的基本概念概念是思维的基本形式之一,它反映了客观事物的本质特征。
人类在认识过程中,把感觉到的事物的共同特点抽象出来加以概括,这就形成了概念。
比如从白雪、白马、白纸等事物中抽象出“白”的概念。
一个概念有它的内涵和外延,内涵是指该概念所反映的事物本质属性的总和,也就是概念的内容。
外延是指一个概念所确指的对象的范围。
例如“人”这个概念的内涵是指能制造工具,并使用工具进行劳动的动物,外延是指古今中外一切的人。
所谓模糊概念是指这个概念的外延具有不确定性,或者说它的外延是不清晰的,是模糊的。
例如“青年”这个概念,它的内涵我们是清楚的,但是它的外延,即什么样的年龄阶段内的人是青年,恐怕就很难说情楚,因为在“年轻”和“不年轻”之间没有一个确定的边界,这就是一个模糊概念。
需要注意的几点:首先,人们在认识模糊性时,是允许有主观性的,也就是说每个人对模糊事物的界限不完全一样,承认一定的主观性是认识模糊性的一个特点。
例如,我们让100个人说出“年轻人”的年龄范围,那么我们将得到100个不同的答案。
尽管如此,当我们用模糊统计的方法进行分析时,年轻人的年龄界限分布又具有一定的规律性;其次,模糊性是精确性的对立面,但不能消极地理解模糊性代表的是落后的生产力,恰恰相反,我们在处理客观事物时,经常借助于模糊性。
例如,在一个有许多人的房间里,找一位“年老的高个子男人”,这是不难办到的。
这里所说的“年老”、“高个子”都是模糊概念,然而我们只要将这些模糊概念经过头脑的分析判断,很快就可以在人群中找到此人。
如果我们要求用计算机查询,那么就要把所有人的年龄,身高的具体数据输入计算机,然后我们才可以从人群中找这样的人。
最后,人们对模糊性的认识往往同随机性混淆起来,其实它们之间有着根本的区别。
随机性是其本身具有明确的含义,只是由于发生的条件不充分,而使得在条件与事件之间不能出现确定的因果关系,从而事件的出现与否表现出一种不确定性。