光纤分类及应用
- 格式:doc
- 大小:414.00 KB
- 文档页数:7
常用光纤的种类及规格单模光纤(Single Mode Fiber,SMF)是一种具有较小模场直径(约为9 µm),并且只能传输单个光波模式的光纤。
它适用于长距离传输和高速通信领域。
常用的单模光纤有G.652、G.653、G.654、G.655和G.656等规格。
G.652光纤是目前应用最广泛的单模光纤,它适用于大多数不同用途的应用场景。
它有两个亚类别,分别是G.652A和G.652B。
G.652A适用于地面通信,而G.652B适用于至少20公里长度的高速纤芯网络。
G.653光纤是一种用于波分多路复用系统(WDM)光纤通信的特殊单模光纤。
它能够传输波长选择性较高的信号,并具有较低的色散。
G.654光纤是一种非零色散位移光纤(NZDSF),它是一种适用于长距离传输的单模光纤。
G.654光纤可以有效减小光脉冲的色散,延长光信号的传输距离。
G.655光纤是一种零色散位移光纤(NZDSF),它特别适用于波分多路复用系统。
它可以最大限度地降低色散对信号的影响,提高传输效果。
G.656光纤是一种零色散位移光纤(NZDSF),它适用于高密度波分多路复用系统。
它具有更低的色散和更高的非线性阈值,可以提供更高质量的信号传输。
多模光纤(Multi-Mode Fiber,MMF)是一种具有较大模场直径(通常为50 µm或62.5 µm)的光纤,可以同时传输多个光模式。
多模光纤适用于短距离传输和低速通信领域。
常用的多模光纤有OM1、OM2、OM3和OM4等规格。
OM1光纤是一种常见的多模光纤,它适用于传输速率较低的应用,如百兆以太网。
它的传输距离一般在2公里左右。
OM2光纤是一种较高性能的多模光纤,适用于传输速率更高的应用,如千兆以太网。
它的传输距离一般在550米。
OM3光纤是一种用于高速局域网(LAN)和短距离数据中心互连的多模光纤。
它支持10G以太网的传输,传输距离一般在300米。
OM4光纤是一种用于高密度数据中心和数据中心互连的多模光纤。
5g常用光缆5G常用光缆随着5G技术的迅猛发展,对于高速、大容量的网络传输需求越来越高。
而光缆作为一种可靠的传输介质,成为5G网络中不可或缺的组成部分。
本文将介绍5G常用光缆的特点、分类以及其在5G网络中的应用。
一、光缆的特点光缆,即光纤通信线缆,是由一根或多根光纤和保护层构成的传输介质。
相比于传统的铜缆,光缆具有以下特点:1. 高速传输:光缆可以实现高速率的数据传输,满足5G网络对于大带宽、低延迟的需求。
2. 大容量:光缆的传输容量远远超过铜缆,可以支持大规模的数据传输。
3. 长距离传输:光缆的传输距离远远超过铜缆,适用于远距离的数据传输需求。
4. 抗干扰能力强:光缆传输的是光信号,不受电磁干扰的影响,保证数据传输的稳定性和可靠性。
5. 小尺寸、轻量化:光缆相对于铜缆而言更加紧凑轻便,方便安装和维护。
二、光缆的分类根据不同的应用场景和需求,光缆可以分为多种类型。
以下是5G常用的几种光缆:1. 单模光缆:适用于长距离传输,具有较低的传输损耗和较高的带宽,可满足5G网络的远距离传输需求。
2. 多模光缆:适用于短距离传输,传输距离相对较短,但成本较低,适合覆盖城市热点区域的5G网络建设。
3. 室内光缆:主要用于建筑物内部的网络连接,具有柔软、易弯曲和易安装的特点,适合室内5G网络的布局。
4. 室外光缆:用于建筑物之间或长距离传输,具有耐候性和抗外界环境干扰的特点,适用于室外5G网络的覆盖。
三、光缆在5G网络中的应用光缆在5G网络中发挥着重要的作用,主要体现在以下几个方面:1. 主干网传输:光缆作为5G网络的主干传输介质,连接着各个基站、数据中心和核心网,承担着大量的数据传输任务。
2. 移动接入网传输:光缆通过连接5G基站,将数据从基站传输到核心网,实现移动接入网的高速、大容量传输。
3. 宽带接入传输:光缆作为宽带接入的主要手段,为用户提供高速、稳定的网络连接,满足5G网络对于大带宽的需求。
4. 数据中心传输:光缆连接着各个5G数据中心,实现数据的高速传输和存储,支持5G网络的大规模数据处理和分析。
光纤的型号及应用场景光纤是一种用于传输光信号的细长柔软的透明纤维,由玻璃或塑料制成。
它具有高速、高带宽、低延迟、抗干扰等优点,因此在通信、医疗、军事、工业等领域广泛应用。
在通信领域,光纤主要用于长距离传输及宽带接入。
随着信息化的发展,人们对通信速度和信号品质的要求越来越高,这就对传输介质提出了更高的要求。
光纤以其极高的传输速度和大容量的传输能力成为现代通信网络的首选传输介质。
在城域网和广域网中,光纤传输可以实现几十公里到上千公里的长距离传输,满足了长距离通信的需求。
而在家庭和企业宽带接入中,光纤网络的高速率和稳定性保证了用户可以获得更快速的上网体验。
在医疗领域,光纤的应用主要体现在内窥镜、激光治疗和医疗光学成像等方面。
内窥镜是医学诊断和手术中常用的一种器械,通过光纤的柔韧性和小尺寸,医生可以将其引入人体各个部位进行检查和治疗操作,减少了手术创伤和病人的痛苦。
激光治疗则是利用光纤输送激光进行手术或治疗,具有微创、准确性高等优点。
医疗光学成像则通过光纤传输图像信号,可以实现内部器官的清晰成像,辅助医生做出准确的诊断。
在航空航天和军事领域,光纤主要用于制导、通讯和传感等方面。
光纤制导技术可以使导弹、火箭等远程武器实现高精度打击目标,提高了武器的精确度和作战效果。
光纤通讯则可以保障军事通讯的快速、稳定和安全,极大地提升了指挥系统的效能。
在传感方面,光纤传感器能够实现对环境参数的高精度检测和监测,如温度、压力、振动、水声等,为航空航天和军事系统提供了更为可靠的监测手段。
在工业领域,光纤主要用于激光加工、工业自动化和测量检测等方面。
光纤激光加工可以实现对各种材料的精细加工,如切割、焊接、打孔等,提高了加工质量和效率。
工业自动化中,光纤的高速率和稳定性保证了工厂内各种设备的联网和通讯,实现了智能化生产。
在测量检测方面,光纤传感器可以实现对机械振动、温度和变形等参数的实时监测,保障了工业生产的安全和稳定。
综上所述,光纤具有高速、高带宽、低延迟和抗干扰等特点,因此在通信、医疗、航空航天、军事和工业领域都有广泛的应用场景。
光缆的种类及型号光缆是传输光信号的一种重要的通信线缆,用于将光信号从一个地方传输到另一个地方。
根据不同的应用需求和技术要求,光缆有多种不同的种类及型号。
以下是常见的光缆种类及型号的介绍。
1. 单模光缆(Single Mode Fiber,SMF):单模光缆采用的是一种直径较小的光纤,具有较低的传输损耗和较大的带宽。
它适用于长距离传输和高速传输,如电信、有线电视、数据中心等领域。
常见的单模光缆有G.652D、G.655和G.657- G.652D:G.652D是最常见的单模光缆,适用于大多数的光纤通信应用。
它的波长传输窗口范围为1310nm到1550nm,具有较低的传输损耗。
- G.655:G.655是一种非零色散单模光缆,适用于长距离传输和高速传输。
它的波长传输窗口范围为1525nm到1565nm,具有较大的带宽。
- G.657:G.657是一种用于弯曲应用的折射率变化型单模光缆,适用于需要弯曲或折弯的场景,如Fiber To The Home(FTTH)等。
2. 多模光缆(Multi Mode Fiber,MMF):多模光缆采用的是直径较大的光纤,允许多个光模式同时传输。
它适用于较短距离传输和较低的传输速率,如局域网、多媒体传输等领域。
常见的多模光缆有OM1、OM2、OM3和OM4-OM1:OM1是最早的多模光缆,适用于传输距离不长且速率较低的应用。
它的最大传输距离约为550米(1000BASE-SX)。
-OM2:OM2是一种较新的多模光缆,适用于传输距离适中和速率适中的应用。
它的最大传输距离约为550米(1000BASE-SX)。
-OM3:OM3是一种高带宽多模光缆,适用于较长距离传输和较高速率的应用。
它的最大传输距离约为300米(10GBASE-SR)。
-OM4:OM4是一种超高带宽多模光缆,适用于更长距离传输和更高速率的应用。
它的最大传输距离约为400米(10GBASE-SR)。
3.特殊光缆:除了常见的单模光缆和多模光缆,还有一些特殊用途的光缆,用于特定的应用场景。
单模光纤和多模光纤分类知识一、单模光纤单模光纤(Single-Mode Fiber, SMF)是光纤的一种类型,其传输模式仅为单一的模态,也就是说,光线在光纤中传播时只以一种方式进行。
单模光纤的纤芯直径很小,约为4~10μm,只有单一的反射镜面,因此只能传输单一的波长光。
这种光纤主要用于长距离、大容量的数据传输,如长途电话线、高速网络连接和海底光缆等。
1.传输特性:单模光纤的传输特性包括低损耗、高带宽和低色散等。
由于其纤芯直径很小,光线在光纤中传播时不易发生散射,因此传输损耗较低。
同时,由于只传输单一的模态,其色散效应也较小,适合高速、长距离的数据传输。
2.应用领域:由于单模光纤具有传输容量大、传输距离远等优点,广泛应用于长距离、高速的光纤通信系统,如高速网络连接、数据中心、云计算和远程医疗等领域。
3.技术发展:随着光通信技术的不断发展,单模光纤的技术也在不断进步。
新型的单模光纤材料和制造技术能够进一步提高光纤的性能和可靠性,为未来的光通信系统提供更高效、更可靠的数据传输解决方案。
二、多模光纤多模光纤(Multi-Mode Fiber, MMF)是光纤的一种类型,其传输模式为多个模态,也就是说,光线在光纤中传播时可以以多种方式进行。
多模光纤的纤芯直径较大,一般在50~100μm之间,允许多种不同路径的光线在光纤中传播。
这种光纤主要用于短距离、低容量的数据传输,如建筑物内的网络连接、局域网等。
1.传输特性:多模光纤的传输特性包括高带宽和低成本等。
由于允许多种模态传输,其带宽相对较大,适合短距离、低容量的数据传输。
同时,多模光纤的成本较低,易于安装和维护。
2.应用领域:由于多模光纤具有成本低、易于安装和维护等优点,广泛应用于短距离、低容量的光纤通信系统,如建筑物内的网络连接、局域网和校园网等。
3.技术发展:随着光通信技术的不断发展,多模光纤的技术也在不断进步。
新型的多模光纤材料和制造技术能够进一步提高光纤的性能和可靠性,为未来的短距离光通信系统提供更高效、更可靠的数据传输解决方案。
光缆分类及应用一、光缆的定义和作用光缆是将光纤放置在一定的保护管道中,用于传输信息的一种电缆。
它是现代通信领域中最重要的组成部分之一,主要用于电话、互联网、有线电视等各种通信网络中。
二、光缆的分类1.单模光纤和多模光纤单模光纤指的是芯径较小(一般为9μm),仅能传输单个模式(即只有一个波长),适用于长距离传输和高速数据传输。
多模光纤指的是芯径较大(一般为50或62.5μm),可以同时传输多个模式(即有多个波长),适用于短距离传输和低速数据传输。
2.松套管光缆和紧密包覆光缆松套管光缆指的是将光纤放置在松散的保护管道内,可以自由地移动和变形,适用于需要经常调整或更换的场合。
紧密包覆光缆指的是将光纤直接包裹在保护层内,不能自由地移动或变形,适用于需要固定安装且不易受到外界干扰的场合。
3.室内光缆和室外光缆室内光缆主要用于建筑物内部的通信网络,一般采用PVC材料作为保护层。
室外光缆主要用于建筑物之间或城市之间的通信网络,一般采用PE材料作为保护层。
三、光缆的应用1.电话网络在电话网络中,光缆主要用于长距离传输和高速数据传输。
通过将电话信号转换成数字信号,再通过光纤进行传输,可以大大提高通话质量和传输速度。
2.互联网在互联网中,光缆是连接各个地区互联网骨干网的重要组成部分。
通过将数据转换成数字信号,再通过光纤进行传输,可以实现高速稳定的数据传输。
3.有线电视在有线电视中,光缆主要用于长距离传输高清视频信号。
相比传统的铜线电缆,使用光纤可以提供更高质量、更稳定的视频体验。
4.安防监控在安防监控领域中,光缆也被广泛应用。
通过将监控视频信号转换成数字信号,再通过光纤进行传输,可以实现高清、远距离的监控。
5.医疗领域在医疗领域中,光缆主要用于医学影像的传输。
通过将医学影像转换成数字信号,再通过光纤进行传输,可以实现高清、远距离的影像传输。
四、结语随着科技的不断发展,光缆在各个领域中都有着广泛的应用。
了解光缆的分类和应用,对于我们更好地理解现代通信技术和网络建设具有重要意义。
单模和多模光纤的特点和应用一、光纤结构光纤是光导纤维的简称,是一种新的光波导,是光通信系统最普遍和最重要的传输媒质。
它由单根玻璃纤芯、紧靠纤芯的包层、一次涂覆层以及套塑保护层组成。
(光纤呈圆柱形,由纤芯、包层和涂覆层三部分组成。
)纤芯和包层由两种光学性能不同的介质构成,内部的介质对光的折射率比环绕它的介质的折射率高。
包在外围的覆盖层就像不透明的物质一样,防止了光线在穿插过程中从表面逸出。
1. 纤芯位置:位于光纤的中心部位,直径:在4-50卩m单模光纤的纤芯直径为4-10 ^m ,多模光纤的纤芯直径为50卩m。
纤芯的成分:含有极少量掺杂剂的高纯度二氧化硅(如二氧化锗,五氧化二磷)作用是适当提高纤芯对光的折射率,用于传输光信号。
2. 包层位置:位于纤芯的周围直径:125 ^m成分:是含有极少量掺杂剂的高纯度二氧化硅。
掺杂剂(如三氧化二硼)的作用:适当降低包层对光的折射率,使之略低于纤芯的折射率,即纤芯的折射率大于包层的折射率(这是光纤结构的关键),它使得光信号封闭在纤芯中传输。
3. 光纤的最外层为涂覆层,包括一次涂覆层、缓冲层和二次涂覆层。
一次涂覆层:一般使用丙烯酸醋、有机硅或硅橡胶材料;缓冲层:一般为性能良好的填充油膏;二次涂覆层:一般多用聚丙烯或尼龙等高聚物。
涂覆层的作用:是保护光纤不受水汽侵蚀和机械擦伤,同时增加光纤的机械强度与可弯曲性,起着延长光纤寿命的作用。
涂覆后的光纤外径约 2. 5 mm。
4. 光纤最重要的两个传输特性损耗和色散是光纤最重要的两个传输特性,它们直接影响光传输的性能。
(I)光纤传输损耗:损耗是影响系统传输距离的重要因素之一,光纤自身的损耗主要有吸收损耗和散射损耗。
吸收损耗是因为光波在传输中有部分光能转化为热能;散射损耗是因为材料的折射率不均匀或有缺陷、光纤表面畸变或粗糙造成的。
当然,在光纤通信系统中还存在非光纤自身原因的一些损耗,包括连接损耗、弯曲损耗和微弯损耗等。
这些损耗的大小将直接影响光纤传输距离的长短和中继距离的选择。
光纤的规格和选用方法
光纤是一种重要的通信工具,其规格种类繁多,每种规格都有其适用场景和特点。
以下是一些光纤规格的介绍以及选用方法:
1. 长度规格:
全尺寸光纤:全尺寸光纤可达数千米之长,是光纤通信中主要的产品之一。
中段光纤:中段光纤长度一般为几米到数十米不等,经常用于光纤器件和光纤传感领域。
短距离光纤:短距离光纤长度一般不超过1米,适用于以太网、数据中心等短距离传输。
2. 直径规格:
标准直径光纤:标准直径光纤直径为125um,用于光通信,包括单模和
多模光纤。
微型光纤:微型光纤直径为80um,适用于光纤传感和医疗器械等领域。
超细光纤:超细光纤直径为5-60um,用于高密度光电器件的内部互连。
3. 芯数规格:
单模光纤:单模光纤的芯数为1,适用于远距离通信和高速数据传输。
多模光纤:多模光纤的芯数通常为2-24,适用于短距离通信。
4. 折射率规格:
标准光纤:标准光纤折射率为,用于光通信。
高折射率光纤:高折射率光纤折射率在以上,主要用于光纤传感领域。
5. 其他规格:
包覆材料:光纤的包覆材料通常为聚合物,也有少量采用金属材料的。
环境适应性:光纤通常要面对不同的环境,如高温、低温、潮湿等,需要具备一定的环境适应性。
在选择光纤时,需要考虑自身需要,选择适合自己的规格。
此外,还需要注意光缆的选用方法,如根据用途选择光缆和根据材料选择光缆等。
在选择光缆时,需要考虑其强度、温差系数、抗埋、抗压、防潮、耐化学侵蚀等特性,以及其材料和生产工艺等。
在信息传输领域,光缆是一种非常常见且重要的传输介质。
它采用光纤作为传输媒介,能够以光信号的形式传输数据,具有高速、大容量和抗干扰等优势。
但是,不同结构的光缆在实际应用中各有优缺点,适用场合也不尽相同。
本文将对按结构分类的三种常用光缆的优缺点和适用场合进行全面评估和探讨。
1. 单模光纤光缆单模光纤光缆是一种采用单模光纤作为传输媒介的光缆。
它的优点主要包括传输损耗小、传输距离远、传输速率高等。
单模光纤光缆适用于需要远距离、大容量、高速传输的场合,比如长距离通信和数据中心互联等。
但是,它的制作和维护成本较高,对连接设备的精度要求也较高,因此在一些短距离、成本敏感的场合可能并不适用。
2. 多模光纤光缆多模光纤光缆采用多模光纤作为传输媒介,具有制作成本低、适用范围广的特点。
它适用于短距离通信和局域网等场合,能够满足一般数据传输的需求。
但是,由于多模光纤光缆在传输损耗、带宽和传输距离等方面的限制,对于一些需要高速、大容量、远距离传输的场合并不适用。
3. 弹性光纤光缆弹性光纤光缆是一种结构特殊的光缆,具有较强的韧性和抗拉性能。
它适用于需要弯曲、伸缩、抗压等特殊环境的场合,比如室内布线、机柜内部连接等。
弹性光纤光缆在一些特殊场合能够发挥出其它光缆无法比拟的优势,但是在传输距离和传输损耗等方面也存在一定的限制。
不同结构的光缆在实际应用中有各自的优缺点和适用场合。
在选择光缆时,需要充分考虑实际需求和环境因素,选择最适合的光缆类型。
随着技术的不断发展和创新,光缆技术也在不断进步,未来会有更多更优秀的光缆出现,满足不同应用场景的需求。
在本文中,通过对单模光纤光缆、多模光纤光缆和弹性光纤光缆的优缺点和适用场合进行探讨,可以更深入地了解不同结构光缆的特点和应用范围,有利于读者在实际应用中做出正确的选择。
个人观点和理解:我认为,在不同的应用场合和需求下,选择适合的光缆是非常重要的。
在实际工程中,我们需要根据具体情况综合考虑光缆的技术参数、成本和环境因素,以便选择最合适的光缆类型。
标题:光纤执行标准引言:光纤是一种具有广泛应用的传输介质,其高带宽和低损耗的特点使其成为现代通信和数据传输领域的重要组成部分。
为了确保光纤的质量和可靠性,制定和执行相应的标准是至关重要的。
本文将介绍光纤执行标准,包括其定义、分类、检测方法、技术要求和质量控制等方面。
一、光纤执行标准的定义光纤执行标准是针对光纤产品制定的一系列规范和要求,旨在确保产品的质量和性能达到一定的标准。
这些标准通常由国际标准组织或相关行业协会制定,以指导生产厂商的生产和消费者的选购。
二、光纤的分类1. 根据光纤结构分类:- 单模光纤:用于长距离通信,具有较小的模式色散和损耗。
- 多模光纤:用于短距离通信,具有较大的模式色散和损耗。
- 特殊光纤:如光纤光栅、偏振保持光纤等,用于特殊应用领域。
2. 根据光纤材料分类:- 玻璃光纤:主要由二氧化硅等无机物质构成。
- 塑料光纤:主要由聚苯乙烯等有机物质构成。
三、光纤的检测方法1. 光学性能检测:包括传输损耗、插入损耗、回波损耗、带宽等参数的测量。
2. 机械性能检测:包括拉伸强度、弯曲半径、耐磨性等参数的测试。
3. 环境适应性检测:包括温度变化、湿度变化、振动等环境条件下的性能测试。
四、光纤的技术要求和质量控制1. 光学性能要求:要求光纤具有低损耗、高带宽、低色散等优良的光学特性。
2. 机械性能要求:要求光纤具有一定的拉伸强度、抗弯曲能力和耐磨性等机械特性。
3. 环境适应性要求:要求光纤能在各种环境条件下稳定工作,如温度变化、湿度变化和振动等。
质量控制是确保光纤产品符合标准的关键环节,包括以下方面:1. 原材料管理:确保所使用的玻璃或塑料等原材料符合相关标准。
2. 生产过程控制:对光纤的拉伸、涂覆、包覆等生产过程进行严格控制。
3. 产品检测:通过光学性能测试、机械性能测试和环境适应性测试等手段对成品进行全面检测。
结论:光纤执行标准对于保证光纤产品的质量和性能具有重要的意义。
通过制定和执行相应的标准,可以指导生产厂商的生产过程,确保产品符合规范;同时也为消费者提供了选购的依据,增强了产品的可信度和市场竞争力。
光纤线的种类及场景应用光纤线的种类及场景应用1. 单模光纤•场景应用:单模光纤适用于长距离传输和高速通信,常被用于城市间或跨洲际的通信传输。
•详细讲解:单模光纤的核心直径较小,光线在光缆中通过时只有一条传播路径,能有效减小信号的传播损耗和多模色散。
因此,单模光纤通信具有高速率、大容量、远距离传输的优势。
2. 多模光纤•场景应用:多模光纤一般用于短距离通信和局域网。
•详细讲解:多模光纤的核心直径较大,光线在光缆中通过时可存在多条传播路径,但受多模色散的影响,传输距离较短。
多模光纤通信一般使用LED光源,成本较低,适用于近距离和低速率的数据传输。
3. 双向光纤•场景应用:双向光纤常用于光纤收发器或单纤双向通信设备。
•详细讲解:传统的光纤通信需要使用两根光纤进行双向传输,而双向光纤则能通过一根光纤实现双向通信。
这样做可以大幅度减少光纤的使用量,节省成本,并且提高光纤传输的效率和可靠性。
4. 光纤传感器•场景应用:光纤传感器广泛应用于环境监测、医疗诊断、工程结构监测等领域。
•详细讲解:光纤传感器通过测量光的强度、相位和频率变化等可以得到环境参数的信息。
与传统传感器相比,光纤传感器具有抗干扰性强、信号传输距离长、体积小等优点。
它们可以实时监测各种参数,如温度、压力、位移等,为工程和科学研究提供了准确可靠的数据支持。
5. 光纤仪器•场景应用:光纤仪器广泛用于光学领域的实验研究、数据采集和成像。
•详细讲解:光纤仪器主要利用光纤传输和调制技术,将光信号转换为电信号进行处理和分析。
光纤仪器包括光纤耦合器、光纤光栅、光纤光源等。
它们具有高分辨率、低噪声、高灵敏度等特点,可广泛应用于生物医学、物理实验和工业检测等领域。
以上是光纤线的几种常见种类及其应用场景的简要介绍。
随着科技的不断发展,光纤线的应用领域还会不断扩展和创新,为我们的生活和工作带来更多便利和可能性。
•场景应用:光纤通信网络广泛应用于电信、互联网和有线电视等领域。
光纤的分类(1)按照传输模式来划分光纤中传播的模式就是光纤中存在的电磁波场场型,或者说是光场场形(HE).各种场形都是光波导中经过多次的反射和干涉的结果.各种模式是不连续的离散的.由于驻波才能在光纤中稳定的存在,它的存在反映在光纤横截面上就是各种形状的光场,即各种光斑.若是一个光斑,我们称这种光纤为单模光纤, 若为两个以上光斑,我们称之为多模光纤.·单模光纤(Single-Mode) 单模光纤只传输主模,也就是说光线只沿光纤的内芯进行传输.由于完全避免了模式射散使得单模光纤的·传输频带很宽因而适用与大容量,长距离的光纤通迅.单模光纤使用的光波长为1310nm或1550 nm.如图1单模纤光线轨迹图. ·多模光纤(Multi-Mode) 在一定的工作波长下(850nm/1300nm),有多个模式在光纤中传输,这种光纤称之为多模光纤.由于色散或像差,·因此,这种光纤的传输性能较差频带比较窄,传输容量也比较小,距离比较短. /apollo/offer-gengxinzhou-3166861.html2)按照纤芯直径来划分· 50/125(μm)缓变型多模光纤· 62.5/125(μm)缓变增强型多光纤· 8.3/125(μm)缓变型单模光纤备注:50/62.5/8.3(μm)均为光纤光芯直径数,125(μm)均为光纤玻璃包层的直径数.(3)按照光纤芯的折射率分布来划分阶越型光纤(Step index fiber),简称SIF;·梯度型光纤(Graded index fiber),简称GIF; ·环形光纤(ring fiber); · W形光纤备注:50/62.5/8.3(μm)均为光纤的光芯直径数,125(μm)均为光纤玻璃包层的直径数.2.光缆/spzs/201110/1680015.html点对点光纤传输系统是通过光缆进行连接.光缆可包含1根光纤(有时称单纤)或2根光纤(有时称双纤),或者甚至更多(48纤,1000纤)光纤的诞生人类从未放弃过对理想光传输介质的寻找,经过不懈的努力,人们发现了透明度很高的石英玻璃丝可以传光.这种玻璃丝叫做光学纤维,简称"光纤". 人们用它制造了在医疗上用的内窥镜,例如做成胃镜,可以观察到距离一米左右的体内情况.但是它的衰减损耗很大,只能传送很短的距离.光的损耗程度是用每千米的分贝为单位来衡量的.直到20世纪60年代,最好的玻璃纤维的衰减损耗仍在每公里1000分贝以上.每公里1000分贝的损耗是什么概念呢每公里10分贝损耗就是输入的信号传送1公里后只剩下了十分之一,20分贝就表示只剩下百分之一,30分贝是指只剩千分之一……1000分贝的含意就是只剩下亿百分之一,是无论如何也不可能用于通信的.因此,当时有很多科学家和发明家认为用玻璃纤维通信希望渺茫,失去了信心,放弃了光纤通信的研究. /business_6525682.htm激光器和光纤的发明,使人们看到了光通信的曙光.而要实现光纤通信,还需要在激光器和光纤的性能上有重大的突破.但是在这两方面的突破遇到了许多困难,尤其是光纤的损耗要达到可用于通信的要求,从每千米损耗1000分贝降低到20分贝似乎不太可能,以致很多科学家对实现光纤通信失去了信心.就在这种情况下,出生于上海的英藉华人高锟(K.C.Kao)博士,通过在英国标准电信实验室所作的大量研究的基础上,对光波通信作出了一个大胆的设想.他认为,既然电可以沿着金属导线传输,光也应该可以沿着导光的玻璃纤维传输.1966年7月,高锟就光纤传输的前景发表了具有重大历史意义的论文,论文分析了玻璃纤维损耗大的主要原因,大胆地预言,只要能设法降低玻璃纤维的杂质,就有可能使光纤的损耗从每公里1000分贝降低到20分贝/公里,从而有可能用于通信.这篇论文使许多国家的科学家受到鼓舞,加强了为实现低损耗光纤而努力的信心.世界上第一根低损耗的石英光纤――1970年,美国康宁玻璃公司的三名科研人员马瑞尔,卡普隆,凯克成功地制成了传输损耗每千米只有20分贝的光纤.这是什么概念呢用它和玻璃的透明程度比较,光透过玻璃功率损耗一半(相当于3分贝)的长度分别是:普通玻璃为几厘米,高级光学玻璃最多也只有几米,而通过每千米损耗为20分贝的光纤的长度可达150米.这就是说,光纤的透明程度已经比玻璃高出了几百倍!在当时,制成损耗如此之低的光纤可以说是惊人之举,这标志着光纤用于通信有了现实的可能性.光纤理论与光纤结构一.光及其特性:1. 光是一种电磁波.可见光部分波长范围是: 390~760nm(毫微米).大于760nm部分是红外光,小于390nm部分是紫外光.光纤中应用的是:850,1300,1550三种.2.光的折射,反射和全反射.因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射.而且,折射光的角度会随入射光的角度变化而变化.当入射光的角度达到或超过某一角度时, 折射光会消失, 入射光全部被反射回来,这就是光的全反射.不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同.光纤通讯就是基于以上原理而形成的.二.光纤结构及种类:1.光纤结构:光纤裸纤一般分为三层: 中心高折射率玻璃芯(芯径一般为50或62.5μm),中间为低折射率硅玻璃包层(直径一般为125μm),最外是加强用的树脂涂层.2.数值孔径:入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以.这个角度就称为光纤的数值孔径.光纤的数值孔径大些对于光纤的对接是有利的.不同厂家生产的光纤的数值孔径不同(A T&TCORNING). 3.光纤的种类:A. 按光在光纤中的传输模式可分为: 单摸光纤和多模光纤.多模光纤:中心玻璃芯教粗(50或62.5μm),可传多种模式的光.但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重.例如:600MB/KM的光纤在2KM时则只有300MB的带宽了.因此,多模光纤传输的距离就比较近,一般只有几公里.单模光纤:中心玻璃芯教细(芯径一般为9或10μm),只能传一种模式的光.因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求, 即谱宽要窄,稳定性要好.B.按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤.常规型:光纤生产长家将光纤传输频率最佳化在单一波长的光上,如1300μm.色散位移型:光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:1300μm和1550μm.C.按折射率分布情况分:突变型和渐变型光纤.突变型:光纤中心芯到玻璃包层的折射率是突变的.其成本低,模间色散高.适用于短途低速通讯,如:工控.但单模光纤由于模间色散很小,所以单模光纤都采用突变型.渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤. 4.常用光纤规格:单模: 8/125μm, 9/125μm , 10/125μm多模: 50/125μm 欧洲标准, 62.5/125μm 美国标准工业,医疗和低速网络: 100/140μm, 200/230μm塑料: 98/1000μm 用于汽车控制.三.光纤制造与衰减:1.光纤制造:现在光纤制造方法主要有:管内CVD(化学汽相沉积)法,棒内CVD法,PCVD(等离子体化学汽相沉积)法和V AD(轴向汽相沉积)法.2.光纤的衰减:造成光纤衰减的主要因素有: 本征,弯曲,挤压,杂质,不均匀和对接等.本征: 是光纤的固有损耗,包括:瑞利散射,固有吸收等.弯曲: 光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗.挤压: 光纤受到挤压时产生微小的弯曲而造成的损耗.杂质: 光纤内杂质吸收和散射在光纤中传播的光,造成的损失.不均匀: 光纤材料的折射率不均匀造成的损耗.对接: 光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等.四.光纤的优点:1. 光纤的通频带很宽.理论可达30亿兆赫兹.2. 无中继段长.几十到100多公里,铜线只有几百米.3. 不受电磁场和电磁辐射的影响.4. 重量轻,体积小.例如:通2万1千话路的900对双绞线,其直径为3英寸,重量8 吨/KM.而通讯量为其十倍的光缆直径为0.5英寸,重量450P/KM.5. 光纤通讯不带电,使用安全可用于易燃,易暴场所.6. 使用环境温度范围宽.7. 化学腐蚀,使用寿命长.光纤设备术语IDF: Intermediate Distribution Frame,分配线架MDF: Main Distribution Frame,主配线架. OC:(Optical Carrier,光载波)是SONET规范中定义的传输速度.OC定义光设备的传输速度,STS定义电气设备的传输速度.SC: Subscriber Connector(Optical Fiber Connector) 用户连接器(光纤连接器).ONENT:SONET(Synchronous Optical NETwork,光纤同步网络)是一种用于高速数据通信的光纤传输系统.SONET被电话公司和公用通信公司部署,其速度从51Mb/s直到每秒几千兆.SONET是一种提供先进网络管理和标准光纤接口的智能系统.它采用自恢复环结构,如果一条线路发生故障,它能够改道传送.SONET干线广泛用于汇集低速T1和T3线路.SONET是宽带ISDN(B-ISDN)标准规定的.欧洲相应的标准是SDH.SONET采用时分复用(TDM)技术同时传送多数据流.ST:Straight Tip,直通式光纤连接器.TP:Tunst Pair,对绞线.光缆终端盒:主要用于光缆终端的固定,光缆与尾纤的熔接及余纤的收容和保护.光纤盒:应用于利用光纤技术传输数字和类似语音,视频和数据信号.光纤盒可进行直接安装或桌面安装.特别适合进行高速的光纤传输.光纤面板:光学纤维面板具有传光效率高,级间耦合损失小,传像清晰,真实,在光学上具有零厚度等特点.最典型的应用是作为微光像增强器的光学输入,输出窗口,对提高成像器件的品质起着重要作用.广泛的应用于各种阴极射线管,摄像管,CCD耦合及其他需要传送图像的仪器和设备中.光纤耦合器:(Coupler)又称分歧器(Splitter),是将光讯号从一条光纤中分至多条光纤中的元件,属於光被动元件领域,在电信网路,有线电视网路,用户回路系统,区域网路中都会应用到,与光纤连接器分列被动元件中使用最大项的.光纤耦合器可分标准耦合器(双分支,单位1×2,亦即将光讯号分成两个功率),星状/树状耦合器,以及波长多工器(WDM,若波长属高密度分出,即波长间距窄,则属於DWDM),制作方式则有烧结(Fuse),微光学式(Micro Optics),光波导式(WaveGuide)三种,而以烧结式方法生产占多数(约有90%).光纤配线架(柜):具有如下功能:光缆的固定,保护和接地;光缆纤芯与尾纤的熔接;光路的调配并提供测度端口;冗余光纤及尾纤的存贮管理.光纤配线箱:特别适合于光纤接入网中的光纤终端点,具有光缆的配线和熔接功能,可以实现光缆纤芯的灵活调线及存储.跳线:就是不带连接器的电缆线对或电缆单元,用在配线架上交接各种链路线头盒:主要适用于架空光缆,直埋光缆,管道井光缆的直通和分歧接头,并对接头起保护作用.。
光纤线的种类及场景应用光纤线是一种用于传输光信号的高速通信线缆。
它由纯净的玻璃或塑料材料制成,可以将光信号通过纤细的光纤芯层进行传输。
光纤线的种类因应用场景和特点的不同而有所区别,下面将对几种常见的光纤线及其应用进行介绍。
1. 单模光纤(Single-mode Fiber,SMF)单模光纤是一种具有非常小的光纤芯层直径的光纤线,通常为9um。
它的最主要特征是可以传输单一波长的光信号,所以它适用于需要稳定传输远距离的光信号的场景。
单模光纤被广泛应用于长距离的通信网络、广播电视传输以及高速数据中心互联等领域。
2. 多模光纤(Multi-mode Fiber,MMF)多模光纤的光纤芯层直径相对较大,通常为50um或62.5um。
它可以传输多个波长的光信号,但由于多模光纤中不同模式的光信号会以不同的速度传播,所以对于长距离传输来说,会因为色散而产生信号失真。
因此,多模光纤更适合于短距离传输,例如数据中心内的局域网、视频监控系统、医疗设备等领域。
3. 双向光纤(Bidirectional Fiber,BiDi)传统的光纤线通常需要两根光纤进行双向通信,但在一些场景下,只能使用单根光纤。
双向光纤是一种能够同时在一个光纤上进行双向通信的光纤线。
它实现了光的双向传输,可以有效减少光纤线路的数量和占用的空间。
双向光纤广泛应用于网络通信、数据中心互连以及电信设备等领域。
4. 弯曲不易断裂光纤(Bend-Insensitive Fiber)弯曲不易断裂光纤是一种具有较高抗弯曲性能的光纤线。
它通常采用特殊的纤维结构,使得它能够在弯曲时减少光的损失和信号衰减,从而增加传输距离和可靠性。
弯曲不易断裂光纤适用于需要经常弯曲的场景,比如在楼宇布线时穿越转角或管道,便于安装和维护。
5. 溅射光纤(Clad Fiber)溅射光纤是一种具有抗溅射功能的光纤线。
在一些特殊的场景下,例如高温熔融金属的加工、激光打标等,可能会产生大量的溅射飞溅物,严重影响光纤的性能和寿命。
光纤的区分及其应用随着科学技术的迅速发展,随着多媒体技术的出现和应用,随着宽带上网、数字电视的推广和普及,光导纤维—这种新型基础材料,现已在通信、电子和电力等领域已经得到广泛的扩展和应用。
一、光导纤维的区分光纤(Optical Fiber),光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
在光纤通信理论中,按光在光纤中的传输模式可分为:单模光纤和多模光纤。
1.单模光纤单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),包层外直径125μm。
只能传一种模式的光,因此,可完全避免了模态色散,使得传输频带很宽,传输容量很大。
这种光纤适用于大容量、长距离的光纤通信。
它是未来光纤通信与光波技术发展的必然趋势。
常见的几种单模光纤:G.652单模光纤满足ITU-T.G.652要求的单模光纤,常称为非色散位移光纤,其零色散位于1.3um窗口低损耗区,工作波长为1310nm(损耗为0.36dB/km)。
我国已敷设的光纤光缆绝大多数是这类光纤。
随着光纤光缆工业和半导体激光技术的成功推进,光纤线路的工作波长可转移到更低损耗(0.22dB/km)的1550nm光纤窗口。
G.653单模光纤满足ITU-T.G.653要求的单模光纤,常称色散位移光纤(DSF =Dispersion Shifled Fiber),其零色散波长移位到损耗极低的1550nm处。
这种光纤在有些国家,特别在日本被推广使用,我国京九干线上也有所采纳。
美国AT&T早期发现DSF的严重不足,在1550nm附近低色散区存在有害的四波混频等光纤非线性效应,阻碍光纤放大器在1550nm窗口的应用。
但在日本,将色散补偿技术*用于G.653单模光纤线路,仍可解决问题。
G.655单模光纤满足ITU-T.G.655要求的单模光纤,常称非零色散位移光纤或NZDSF(=NonZero Dispersion Shifted Fiber)。
光纤的种类光纤可分为两大类:A类(多模光纤)和B类(单模光纤)。
其详细分类请见以下表:多模光纤的分类:三类九种阶跃型多模光纤的传输性能及应用场合:单模光纤的分类:1.2.3.4.5.6.IEC标准光纤分类详解按照IEC标准分类,IEC标准将光纤分为A类多模光纤:A1a多模光纤(50/125〃m型多模光纤)A1b多模光纤(62.5/125〃m型多模光纤)Aid多模光纤(100/140〃m型多模光纤)B类单模光纤:B1.1对应于G652光纤,增加了B1.3光纤以对应于G652C光纤B1.2对应于G654光纤B2光纤对应于G.653光纤B4光纤对应于G.655光纤A类多模光纤渐变型多模光纤工作于0.85〃m波长窗口或1.3〃m波长窗口,或同时工作于这两个波长窗口。
光纤适用于哪个窗口,主要由其带宽指标决定。
多模光纤由于衰减大、带宽小,主要适合于低速率、短距离的场合传输需要,因其传输设备和器件费用低廉、连接容易,至今仍无法由单模光纤完全代替。
常规单模光纤(G.652光纤)常规单模光纤也称为非色散位移光纤,于1983年开始商用。
其零色散波长在1310nm处,在波长为1550nm处衰减最小,但有较大的正色散,大约为18ps/(nm・km)。
工作波长既可选用1310nm,又可选用1550nm。
这种光纤是使用最为广泛的光纤,我国已敷设的光纤、光缆绝大多数是这类光纤。
G.652光纤中的三个子类G.652A、G.652B、G.652C、G.652D的区别主要在于:G.652A:最高传输速率为2.5Gb/sG.652B:最高速率10Gb/s,最高速率传输时需色散补偿适用于波长1310nm、1550nm和1625nm的应用环境,优于ITU-T建议G.652标准和国家标准技术规范。
产品特点弯曲损失小;传输损失小;曲率小;几何尺寸稳定;可用于松套管及带状两种用途;偏振模色散小。
G.652C:低水峰光纤,波长范围更宽,最高速率10Gb/s,最高速率传输时需色散补偿。
光纤的分类和特点光纤是一种基于光波传输原理的高速通信技术,在其应用领域中广泛使用。
为了更好地了解光纤,我们需要对其分类和特点进行详细的了解。
光纤分类:1.单模光纤:单模光纤是由一条非常细的玻璃纤维组成,可以将光波从一端传输到另一端。
单模光纤主要通过单一的光波模式进行传输,使其可以在长距离传输的同时,保持较低的信号损耗和干扰。
单模光纤适用于远距离的高速光通信,以及高精度传感器等需要高精度光学传输的场合。
2.多模光纤:多模光纤也是由玻璃纤维组成,但相对于单模光纤,多模光纤内包含的光波模式更多。
在短距离高速通信领域中,多模光纤通常被用作数据中心的连接和千兆以太网等数据传输。
多模光纤的光纤芯直径更大,光波的传播距离也更短,但其也具有较低的材料成本和易于安装的优点。
3.塑料光纤:根据其名称,塑料光纤是由塑料材料制成的光导纤维,其光学传输性能略逊于玻璃光纤。
因此,塑料光纤适用于较短距离的低速光通信,例如车辆电气系统的传感器和灯光控制等。
塑料光纤通常以耐压、耐热、抗紫外线等特性作为排障需求支持,同时其也具有良好的柔性和低成本的优点。
光纤特点:1.稳定:光纤轻便、紧凑、柔韧、释放热量速度慢,不易烧坏。
2.耐腐蚀:在通常使用条件下,光纤不会腐蚀。
3.大容量:光纤传输的信息量很大,因此它可以传输大量数据和图像,具有较高的传输速率。
4.抗干扰:光纤信号不受外界干扰,如雷电、电磁干扰、辐射干扰以及其他干扰,因此具有可靠性高等优点。
5.安全:光纤信号的传输是通过光波来实现的,没有电流存在,没有电磁辐射和电磁污染,不会对人体产生危害。
总之,光纤通信技术相比其他传输媒介在传输距离、可靠性、抗干扰等方面有着明显的优势。
在现代高速通信领域中,光纤是一种非常重要的技术,不论是单模光纤、多模光纤,还是塑料光纤,都为现代通信网络的建设提供了有力的支持。
(一)光纤的传输特性
一.衰减
1.光在光纤中传播时,平均光功率沿光纤长度方向呈指数规律减少,即:
P(L)=P(0)10-(αL/10)
2.α为衰减系数,它的取值只与在光纤中传播的光线的波长有关。
3.衰减谱
石英玻璃光纤的衰减谱具有三个主要特征是:
a.衰减随波长的增大而呈降低趋势。
b.衰减吸收峰与OH_离子有关。
c.在波长大于1600nm衰减的增大的原因是由微(或宏)观弯曲损耗和
石英玻璃吸收损耗引起的。
4.衰减起因
光纤中的传输光能衰减的起因是材料本身、制造缺陷、弯曲、接续等对光能的吸收和散射损耗。
究其原因,如表3.1所示。
二.色散
1.由于光纤中的信号是由不同的频率成分和不同的模式成分来携带的,
这些不同的频率成分和不同的模式成分的传输速度不同,从而引起色
散。
2.在光纤中,不同速度的信号传过的距离所需的时延不同。
时延差越大,
色散就越严重。
因此,常用时延差表示色散程度。
3.单模光纤中只传输基模LP01,总色散由材料色散、波导色散和折射剖面
色散组成。
这三个色散都与波长有关,所以单模光纤的总色散也称为
波长色散。
公式:D(λ)=D m+D w+D p
4.纯石英玻璃材料色散与波长的关系,如图所示。
从图可看出,在波长
微1.29μm附近由一个零材料色散波长λ0有所移动,但移动变化甚
微,而过了λ0材料色散微正值。
材
料
色
散
(
p
s
/
(
n
m
·
k
m
)
)
图 纯石英玻璃材料色散与波长的关系
波长(μm)
三.偏振模色散
光纤中的光传输可描述为完全时沿X轴振动和完全是沿Y轴上的振动或一些光在两个轴上的振动,如下图。
每个轴代表一个偏振“模”。
两个偏振模的到达时间差称为偏振色散PMD(Polarization Mode Dispersion)。
造成单模光纤中的PMD的内在原因是光纤的椭圆度和残余内应力。
四.光纤的非线性效应
1.当光功率增加到一定程度时,光信号与光纤传输媒介间的非线性交互现象将会呈现。
光纤的非线性可分为两类:受激散射效应和折射率扰动。
2.受激散射效应也分为两种形式:由于声光子振动而产生的受激布里渊散
射(SBS)和由于分子振动而产生的受激拉曼散射。
3.折射率扰动引起的五种非线性效应为:自相位调制、光孤子形成、交叉相位调制、调制不稳定和四波混频。
(二)光纤折射率分布
一.基本原理
1.纤芯中的光折射率不是均匀分布的,它随r(离开光纤芯轴的距离)的
变化而变化。
公式:n=n(r)
2.光折射率的变化规律一般分三种,表现在g(折射率分布指数)的不同
取定:
g=1 三角形分布; g=2 抛物线分布(梯度分布); g→∞阶跃分布
3.纤芯中传导的模数量N与折射率g和归一化频率V有关:
N=[V2/2][g/(g+2)]
V=2π(a/λ)NA=RaNA
NA=n12-n22
V值相同时,三角折射率分布光纤芯中传导模数量最少。
4.能同时传输几个模的光纤称为多模光纤。
光纤中传导模数量越少,光纤
的带宽就越宽。
如果要减少模数(即V值),则必须减小芯直径2a或数
值孔径NA,或者增大光波长。
5.阶跃折射率分布(g→∞)的光纤,V值比常数V C∞=2.405更小,仅有一
个模,即基模LP01能在纤芯中传播。
这种只传播一个模的光纤称为单模
光纤。